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Abstract .  Many tasks in cryptography (e.g., digital signature verifica- 
tion) call for verification of a basic operation like modular exponentiation 
in some group: given (g, x, y) check that g~ = y. This is typically done by 
re-computing 9 = and checking we get y. We would like to do it differently, 
and faster. 

The approach we use is hatching. Focusing first on the basic modular 
exponentiation operation, we provide some probabilistic batch verifiers, 
or tests, that verify a sequence of modular exponentiations significantly 
faster than the naive re-computation method. This yields speedups for 
several verification tasks that involve modular exponentiations. 

Focusing specifically on digital signatures, we then suggest a weaker 
notion of (batch) verification which we call "screening." It seems useful 
for many usages of signatures~ and has the advantage that it can be 
done very fast; in particular, we show how to screen a sequence of RSA 
signatures at the cost of one RSA verification plus hashing. 

1 I n t r o d u c t i o n  

It  is a consequence of the "adversarial" nature  of cryptography tha t  many  of 
its computat ional  tasks are for the purpose of "verifying" some proper ty  or 
computat ion.  For example, signatures need to be verified; the opening of a bit- 
commitment  needs to be verified; in protocols, various claims about  generated 
values and their relations need to be verified. 

These tasks are computat ionally important ;  for example, signature verifica- 
tion is likely to be done much more often than signature generation, as certificates 
and signed documents are circulated. 

At the heart  of many  of these verification tasks is the problem of verifying 
a basic computat ional  operation like modular  exponentiation in some group: 
given (g, x, y) check tha t  gZ = y. The naive way to verify such a claim is to 
redo the operation and check we get back the same value: namely, re-compute 
g~ and check it equals y. We would like to find means of verification, for such 
basic operations, tha t  are faster than re-computation,  and thereby speed up any 
verification process using such operations. 
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In this paper we investigate the use of batching for the purpose of speeding 
up such verification. This is a natural  idea since we often have to verify many 
instances simultaneously. For example, a certificate chain can contain many sig- 
natures to check; a bank can be signing coins and we have many coins to verify; 
ZK proofs use many bit  commitments, whose decommitments need to be verified. 

We consider batching for verification in several contexts. The first is very 
general, namely batch verification for modular exponentiation itself. We provide 
several batch verifiers for modular exponentiation. These are probabilistic tests 
that  verify the correctness of a batch of exponentiations much faster than doing 
each verification individually. We specify several uses for these tests, but  there 
are probably more. Next we suggest a new notion called "signature screening," 
which provides "weak but  fast" verification for signatures, and show how to 
implement it very efficiently for RSA signatures. 

We also suggest a notion of batch program instance checking, and provide fast 
batch verification methods for degrees of polynomials which have applications 
in verifiable secret sharing and other robust distributed tasks. These, together 
with some applications of the results here, and all proofs, are omit ted from this 
abstract,  and can be found in our full paper [2] which is available on the web. 

Following a brief discussion of previous work, we will look at all the above in 
more detail. 

PREVIOUS WORK. The modular exponentiation operation itself can be made 
more efficient via pre-processing [9, 13] or addition chain heuristics [8, 18, 16]. 
What  we are saying is that  performing modular exponentiation is only one way 
to perform verification, and if the interest is verification, one can do bet ter  than 
any of these ways. In particular, our batch verifiers will perform bet ter  than the 
naive re-computation based verifier, even when the latter uses the best known 
exponentiation methods. In fact, bet ter  exponentiation methods only make our 
batch verifiers even faster, because we use these methods as subroutines. 

The idea of batching in cryptography is of course not new: some previous 
instances are [11,15, 6,14]. However, there seems to have been no previous sys- 
tematic look at the general problem of batch verification for modular exponenti- 
ation, and our first set of results indicates tha t  by putting oneself above specific 
applications one can actually find general speed-up tools that  apply to them; in 
particular, we improve some of the mentioned works. 

1.1 B a t c h  ver i f i ca t ion  

Let R be a boolean relation. (Meaning R(inst) E {0, 1} for any instance inst of 
R. For example, R(x,  y) = 1 iff gX = y in some group of which g is a generator, 
or R might be a signature verification algorithm with respect to some fixed 
public key.) The verification problem for R is: given an instance inst, check 
whether R(inst) = 1. In the batch verification problem we are given a sequence 
i n s t l , . . . ,  instn of instances and asked to verify that  for all i = 1 , . . . ,  n we have 
R(inst~) = 1. The naive way is to compute R(insti), and check it is 1, for all 
i = 1 , . . . ,  n. We want to do it faster. To do this, we allow probabilism and an 
error probability. A batch verifier (also called a test) is a probabilistic algorithm 
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Test No.  o f  mult ip l icat ions  

Naive ExpCost~ ( kl ) 

RANDOM SUBSET (t:{,S) 

SMALL EXPONENTS (SE) 

BUCKET 

hi~2 + ExpCost~ C kl ) 

l + nil2 + ExpCostc(kl ) 

min.,>2 [~1---~_1] . (n + m + 2'~-'m + ExpCosta(k,)) 

Fig. 1. Performance of algorithms for batch verification of modular exponentiation. 
We indicate the number of multiplications each method uses to get error 2 -~. See the 
text for explanations of the parameters. 

V which takes instx , . . . ,  inst,~ and produces a bit as output.  We ask that  when 
R(insti) = 1 for all i = 1 , . . . ,  n, this output  be 1. On the other hand, if there is 
even a single i for which R(insti) = 0 then we want that  V ( i n s t l , . . . ,  instn) = 1 
with very low probability. Specifically, we let I be a security parameter  and ask 
that  this probability be at most 2 - t .  

We stress tha t  if even a single one of the n instances is "wrong" the verifier 
should detect it, except with probability 2 - l .  Yet we want this verifier to run 
faster than the time to do n computations of R. 

1.2 B a t c h  ver i f i e r s  for  m o d u l a r  e x p o n e n t i a t i o n  

Let g be a generator of a (cyclic) group G, and let q denote the order of G. 
The modular exponentiation function is x ~ gZ, where x E Zq. Define the 
exponentiation relation EXPc.,g(x,y) = 1 iff gX = y, for x G Zq and y G G. 

We design batch verifiers for this relation. As per the above, such a verifier is 
given a sequence (x l, YI ) , . . . ,  (xn, Yn) and wants to verify that  EXPG,g (xi, yi) = 
1 for all i = 1 , . . . ,  n. The naive test is to compute gZ, and test it equals Yi, for 
all i = 1 , . . . ,  n, having cost n exponentiations. We want to do better.  

Three tests, the RANDOM SUBSET TEST, the SMALL EXPONENTS TEST and 
the BUCKET TEST are presented, with analysis of correctness, in Section 3. Their  
performance is summarized in Table 1, with the naive test listed for comparison. 
We explain the notation used in the table: kl = lg(IG]); ExpCosta(kl)  is the 
number of multiplications required to compute an exponentiation a b for a E 
G and b an integer of kl bits; and ExpCost~(kl)  is the cost of computing s 
different such exponentiations. (Under the normal square-and-multiply method,  
ExpCosta(kl  ) ~. 1.5kl multiplications in the group, but  it could be less [9, 13, 
8]. Obviously ExpCost~.(kl) < s.  ExpCostG(kl), but  there are ways to make it 
strictly less [9, 13,8], which is why it is a separate parameter.  See Section 2.3 
for more information.) We treat  costs of basic operations like exponentiation 
as a parameter  to stress that  our tests can make use of any method for the 
task. In particular, this explains why standard methods of speeding up modular 
exponentiation such as those mentioned above are not "competitors" of our 
schemes; rather  our batch verifiers will always do bet ter  by using these methods 
as subroutines. 
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Table 3 in Section 3.6 looks at some example parameter values and computes 
the speed-ups. We see where are the cross over points in performance: for small 
values of n the SMALL EXPONENTS TEST is better, while for larger values, 
BUCKET TEST wins. Notice that even for quite small values of n we start getting 
appreciable speed-ups over the naive method, meaning the benefits of batching 
kick in even when the number of instances to batch is quite small. 

Asymptotically more efficient tests can be constructed by recursively apply- 
ing the tests we have presented, but the gains kick in at values of n that seem 
too high to be useful, so we don't discuss this. 

SOME APPLICATIONS. Applications are relatively obvious, namely to any discrete 
logarithm based protocol in which discrete exponentiation needs to be verified. 
In some cases, we need to tweak the techniques. 

DSS signatures [12] are a particularly attractive target for batch verification 
because signing is fast and verification is slow. Naccache et al. [15] give some 
batch verification algorithms for a slight variant of DSS. We can adapt our tests 
to apply to this variant, and get faster batch verification algorithms. See [2]. 

In many ZK or witness-hiding proofs, discrete exponentiation may be used to 
implement bit commitment, and there are lots of such commitments. Our batch 
verifiers will speed-up verification of the de-commitments. We can also improve 
the discrete log based n-party signature protocols of Brickell et al. [10]. See [2]. 

EXPONENTIATION WITH COMMON EXPONENT. The version of the exponentiation 
problem that underlies RSA is different from the above in that the exponent, not 
the base, is fixed. The results discussed above don't apply to this version. Batch 
verification of RSA signatures can be done via screening as we now discuss. 

1.3 Screening: Fast  bu t  weak verification for s ignatures  

For the particular case of signature verification, we suggest a different notion 
of batch verification, called screening, which has weaker guarantees but can be 
achieved at much lower cost. In certain usages of signatures, it is adequate and 
useful. 

Fix some signature scheme and a public key pk for it. Let Verifypk(., .) be the 
verification algorithm of this scheme, meaning a signature x of message M is valid 
if Verifypk(M, x) = 1. A batch instance for signature verification consists of a 
sequence (M1, Xl) , . . . ,  (Mn, xn) where x~ is a purported signature of Mi relative 
to pk. Batch verification in the sense we have been discussing so far would 
mean batch verification for the relation VeriIy_k(. , .): the test would reject with 
high probability if there was any i E {1,.. .  ,n~ for which Verifypk(M~,x~ ) = O. 
In screening, what we ask is that if the batch instance (Ml ,Xl) , . . . ,  (Mn, xn) 
contains a forgery --meaning there is some i such that Ms was never signed by 
the signer-- then our batch verifier will reject, with high probability. However, 
if the signer has in the past signed all the messages Mx, . . . ,  Mn, then our test 
might accept even if for some i the string xi is in fact not a valid signature of 
M~. 

In other words, screening is the task of determining whether the signer has 
at some point authenticated the text Mi, rather than the task of checking that 



240 

the particular string x~ provided is a valid signature of Mi. The rationale is 
that in many applications, all that counts is whether or not Mi is authentic. 
Take for example a case where the Mi are electronic coins. We may only really 
care whether the coin is valid, not whether we actually hold a correct signature 
demonstrating the validity of this particular coin. 

In Section 4 we show how RSA signatures generated under the standard 
"hash-then-decrypt" paradigm can be very efficiently screened: the cost of batch 
verification is that of one exponentiation with the public RSA exponent plus 
some hashing. 

1.4 Ba tch  p r o g r a m  instance checking and  o ther  resul ts  

The notion of batch verification has on the face of it nothing to do with program 
checking since there is no program in the picture that one is trying to check. 
Nonetheless, we apply this notion to do program checking in a novel way. Our 
approach, called batch program instance checking, permits fast checking, and 
also permits instance checking, not just program checking, in the sense that 
(in contrast to standard program checking [7]), a correct result is not rejected 
just because the program might be wrong on some other instance. We can do 
batch program instance checking for any function f whose corresponding graph 
(the relation R$(x ,y )  = 1 iff f ( x )  = y) has efficient batch verifiers, so that the 
main technical problem is the construction of batch verifiers. See [2] for more 
information including explanations of how this differs from other notions like 
batch program checking [17]. 

The idea of batch verification introduced here was applied in [1] in the do- 
main of fault-tolerant distributed computing. They design a batch verifiable 
secret sharing protocol and use it to construct "distributed pseudo-random bit 
generators," which are efficient ways of generating shared distributed coins. 

An invited talk on batch verification including the material presented in this 
paper was given at L A T I N  '98 [3]. 

2 D e f i n i t i o n s  

Here we provide formal definitions of the main new notions underlying this work, 
extending the discussion in Section 1. 

2.1 Ba tch  verification 

Let R(.) be a boolean relation, meaning R(.) ~ {0, 1}. An instance for the 
relation is an input inst on which the relation is evaluated. A batch instance for 
relation R is a sequence i n s t l , . . . ,  inst,~ of instances for R. (We call n the size 
of the instance, and also call this an n-instance for R.) We say that the batch 
instance is correct if R(insti) = 1 for all i = 1 , . . . ,  n, and incorrect if there is 
some i E {1, . . .  ,n} for which R(insti) = O. 

Defini t ion 1. A batch verifier for relation R is a probabilistic algorithm V that 
takes as input (possibly a description of R),  a batch instance X = ( i n s t l , . . . ,  
instn) for R, and a security parameter I provided in unary. It  satisfies: 
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(1) If X is correct then V outputs I. 
(2) If X is incorrect then the probability that V outputs 1 is at most 2 -z. 
The probability is over the coin tosses of V only. 

Obvious extensions can be made, such as allowing a slight error in the first case. 
We stress that  if there is even a single i for which R(insti) ~ 1, the verifier must 
reject, except with probability 2 -t .  Variants such as batch verification over a 
distribution, or computational batch verification, are easily defined. 

The naive batch verifier, or naive test, consists of computing R(insti) for 
each i = 1 , . . .  ,n,  and checking that  each of these n values is 1. 

In practice, setting I to be about 60, meaning an error of 2 -6~ should suffice. 

2.2 Signature screening: weak verification 

SIGNATURES. A digital signature scheme, ( Gen, Sign, Verify), consists of a key 
generation algorithm, a signing algorithm, and a verification algorithm. The first 
is probabilistic; the second may be; the third is not. A matching pair of public and 
secret keys can be generated via (pk, sk) ~- Gen(1 ~) where k is the security pa- 
rameter. A message is signed via x ~ Signsk(M ). A candidate message-signature 
pair (M,x) is verified by making sure Verifypk(M,x ) = 1. 

SCREENING. The notion was discussed in Section 1.3. We now provide the for- 
malization. Fix a signature scheme (Gen, Sign, Verify). Recall that  a batch in- 
stance for signature verification consists of a sequence ( M l , X l ) , . . . ,  (Mn, x , )  
where xi is a purported signature of Mi relative to some given public key pk. Let 
Screen Test be a (possibly probabilistic) algorithm, where Screen Testpk (( Mx , x 1 ), 
. . . ,  (M, ,x , ) )  outputs a bit. We want to say what it means for this algorithm 
to be a good screening algorithm for the signature scheme. 

An attacker A is given the public key pk. It tries to produce a batch instance, 
and is said to be successful if the batch instance contains an unauthenticated 
message but still passes the screening test. To make the notion strong, the at- 
tacker is allowed a chosen-message attack. So the game is like this. A has oracle 
access to Signs~(. ). After making some number of signing queries it outputs a 
batch instance (Ma,Xl ) , . . . ,  (Mn,x,).  We say that  Mi is a not legally signed if 
it was not previously a query to the Signs~(. ) oracle. We say that  A is successful 
if the batch instance (M1, x l ) , . . . ,  (Mn,x,)  contains a message Mi that  was not 
legally signed, but ScreenTestvk((Ml,xl), . . . ,(Mn,xn)) = 1. We let Succ(A) 
denote the success probability of A. The probability is over the choice of keys, 
the coins of the signing algorithm, the coins of A, and the coins of the screening 
algorithm. Intuitively, the screening algorithm is good if Succ(A) is small for 
any A whose computation time is not extraordinarily high. In the theorems (cf. 
Theorem 4) we will be more precise, quantifying the success probability as a 
function of the running time and allowed number of oracle queries of the adver- 
sary. 

Whenever we talk about the running time of an algorithm, it is the sum of 
the actual running time (on some fixed RAM model of computation) and the 
size of the code. 
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2.3 Costs  of  Mult ipl icat ion and Exponent iat ion  

Let G be a (multiplicative) group. Many of our algorithms are in cryptographic 
groups like Z~v or subgroups thereof (N could be composite or prime). We mea- 
sure cost in terms of the number of group operations, here multiplications, and 
discuss these costs below. 

Given a E G and an integer b, the standard square-and-multiply method 
computes a b E G at a cost of 1.51b I multiplications on the average. Using the 
windowing method based on addition chains [8, 18], the cost can be reduced 
to about 1.21bl; pre-computation methods have been proposed to reduce the 
number of multiplications further at the expense of storage for the pre-computed 
values [9, 13] (a range of values can be obtained here; we give some numerical 
examples in Section 3.6). Accordingly it is best to treat the cost of exponentiation 
as a parameter. We let ExpCostG(kl ) denote the time to compute a b in group 
G when kl -- Ibl, and express the costs of our algorithms in terms of this. 

Suppose we need to compute a bl , . . . ,  a b" , exponentiations in a common base 
a but with changing exponents. Say each exponent is t bits long. We can certainly 
do this with n. ExpCostG(t ) multiplications. However, it is possible to do better, 
via the techniques of [9,13], because in this case the pre-computation can be done 
on-line and still yield an overall savings. Accordingly, we treat the cost of this 
operation as a parameter too, denoting it ExpCost~.(t). 

Note squaring can be performed faster than general multiplication. 

3 B a t c h  V e r i f i c a t i o n  f o r  M o d u l a r  E x p o n e n t i a t i o n  

Let G be a group, and let q = ]G] be the order of G. Let g be a primitive element 
of G. Hence, for each y E G there is a unique i E Zq such that  y = gi. This i is 
the discrete logarithm of y to the base g and is denoted logg(y). Define relation 
EXPG,g(x, y) to be true iff gZ = y. (Equivalently, x = logg(y).) We let kl denote 
the length (number of bits) of q, and k2 the length of g. With G, g fixed we want 
to construct fast batch verifiers for the relation EXPG,9. 

3.1 R a n d o m  subset  test  
n The first thing that  one might think of is to compute x = ~i=1 xi rood q and y = 

Hin_-i yi (the multiplications are in G) and check that  gZ = y. However it is easy 
to see this doesn't work: for example, the batch instance (x + a, gZ), (x - a,  gZ) 
passes the test for any a E Zq, but is clearly not a correct instance when a # 0. 
A natural fix that  comes to mind is to do the above test on a random subset of 
the instances', pick a random subset S of {1, . . . ,  n}, compute x = T i e s  xi mod q 
and y = 1-I/es Y/and check that  gZ = y. (The idea is that  randomizing "splits" 
any "bad pairs" such as those of the example above.) We call this the ATOMIC 
RANDOM SUBSET TEST. It works in the sense of the following lemma, whose 
proof can be found in [2]. 

L e m m a  1. Given a group G and a generator g of G. Suppose ( x l , y l ) , . . . ,  
(xn,Yn) iS an incorrect batch instance of the batch verification problem for 
EXPa,a(. , .) .  Then the ATOMIC RANDOM SUBSET TEST accepts ( x l , y l ) , . . . ,  
( ~ ,  y~) with probability at most 1/2. 
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But 1/2 is not  a low enough error. (One can show the analysis is tight, so no bet-  
ter is expected.) To lower the error to the desired 2 -z we must  repeat  the atomic 
test independently l times, yielding the RANDOM SUBSET TEST of Figure 2. 
However, the repetit ion is costly: the total  cost is now n l / 2  + E x p C o s t ~ ( k l )  
multiplications. This is not so good, and, in many  practical instances may  even 
be worse than the naive test, for example if n _< I. (Since I should be at  least 60 
this is not  unlikely.) 

The conclusion is tha t  repeating many  times some atomic test  which itself 
has constant error can be costly even if the atomic test  is efficient. Thus,  in what  
follows we will look for ways to directly get low error. First, lets summarize  the 
results we just  discussed in a theorem. 

T h e o r e m  1. Given a group G, a generator g of G. The RANDOM SUBSET TEST 
is a batch verifier Jor the relation EXPG,g(., .) with cost n l / 2  + E x p C o s t ~ ( k l )  
multiplications, where kl = [lg(IGI)]. 

3.2 C o m p u t i n g  a p r o d u c t  o f  p o w e r s  

Before presenting the next test, we present a general algorithm we will use as 
a subroutine. Suppose a l , . . . , a n  E G. Suppose b t , . . . , b n  are integers in the 
range 0 , . . . , 2  t - 1 < ICl. We write them all as strings of length t, so tha t  bi = 
bi[t]. . ,  bill]. The problem is to compute the product  a = I-Jill  a~', the operations 

b, f o r / =  1 , . . , n  being in G. The  naive way to do this is to compute ci = a i 
and then compute a = l'Ln__l ci. This takes ExpCost~.( t)  + n - 1 multiplications, 
where kz is the size of the representation of an element of G. (Using square- 
and-multiply exponentiation, for example,  this works out to 3n tk2 /2  + n - 1 
multiplications; with a faster exponentiation it may  be a bit less.) However, 
drawing on some ideas from [9], we can do better ,  as follows: 

A lgo r i t hm FastMult ( (a l ,  bl ), . . . , (an, bn) ) 
a : =  1; 
f o r  j = t downto 1 do 

f o r  i = 1 t o  n do i f  bi~] = 1 t h e n  a := a .  ai; 
a := a 2 

r e t u r n  a 

This algori thm does t multiplications in the outer loop and n t / 2  multiplica- 
tions on the average for the inner loop. Hence, for computing y we get a total  of 
t + n t / 2  multiplications. 

3.3 T h e  S m a l l  E x p o n e n t s  T e s t  

We can view the ATOMIC RANDOM SUBSET TEST in a different way. Namely, 
n n @l 

pick bits S l , . . . ,  Sn E {0, 1} at  random, let x = ~ i=1  sixi  and y = 1-Ii=l Yi , and 
check tha t  gZ = y. (This corresponds to choosing the set S = { i : si = 1 }.) We 
know this test  has error 1/2. The idea to get lower error is to choose S l , . . . ,  Sn 
from a larger domain, say t bit strings for some t > 1. There are now two things 
to ask: whether this does help lower the error faster, and, if so, at  what  ra te  as 
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GIVEN: g a generator of G, and (x l , y l ) , . . . ,  ( x , , y , )  with x~ E Z n and yi E G. 
Also a security parameter I. 

C~ECK: That Vi E {1 , . . . ,n}  : Yi = g=~. 

-- R a n d o m  Subse t  (RS) Test:  Repeat the following atomic test, independently 
/ times, and accept iif all sub-tests accept: 

ATOMIC RANDOM SUBSET TEST; 

(1) For each i -- 1 , . . . , n  pick b~ E {0,1} at random 
(2) L e t S - - - - { i  : b i - - 1 }  

(3) Compute x = )-~es x~ rood q, and y = r L e s  y~ 
(4) if g= -- y then accept, else reject. 

- S m a l l  E x p o n e n t s  ( S E )  T e s t :  

(1) Pick s l , . . . ,  s ,  E {0, 1) ~ at random 
rt 8i 

(2) Compute x = ~"~ffil x,s ,  rood q, and y -- l'I,ffil Y, 

(3) If 9x _ y then accept, else reject. 

- B u c k e t  T e s t :  Takes an additional parameter m > 2. Set M -- 2"*. Repeat 
the following atomic test, independently [i](m - 1)~ times, and accept iff all 
sub-tests accept: 

ATOMIC BUCKET TEST: 

(1) For each i = 1, . . .  ,n  pick tl E {1, . . . ,  M} at random 
(2) For e a c h j - - - - 1 , . . . , M l e t B j - - { i  : t i - - - j }  

(3) For each j = 1 , . . . ,  M let cj = ~"~-~eBj. x~ rood q, and dj = I'LeB~ yi 

(4) Run the Small Exponent Test on the instance (c l ,d l ) , . . . ,  (cbl,dM) 
with security parameter set to m. 

Fig. 2. Batch verification algorithms for exponentia$ion with a common base. 

a function of t; and then as we increase 
look at  the lat ter  first. 

If  we can keep t small, then we have 
(ie. kl-bit)  exponent,  as compared to / of 
where we expect the main performance 
exponentiations. However, to a smaller 
large t has to be  to get the desired error 

t, how performance is impacted.  Let 's  

only a single exponentiat ion to a large 
them in the random subset test. Tha t ' s  
gain. But  now we have added n new 
exponent. Thus,  the question is how 
of 2 -~. 

We use some group theory to show tha t  the tradeoff between the length 
t of the s i ' s  and the error is about  as good as we could hope as long as the 
order q of the group is prime, namely setting t = l yields the desired error 
2 - l .  (See Section 3.5 for discussion of what  happens when q is not prime.) The 
corresponding test  is the SMALL EXPONENTS (SE) TEST and is depicted in 
Figure 2. The proof  of the following is in [2]. 
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T h e o r e m  2. Given a group G of prime order q and a generator g of G. Then 
SMALL EXPONENTS TEST is a batch verifier .for the relation EXPG,a(', ') with 
cost I + n(1 + 1/2) + ExpCostG(kl ) multiplications, where kl = Iql. 

3.4 T h e  Bucket  Test 

We saw that  the SMALL EXPONENTS TEST was quite efficient, especially for an 
n that  was not too large. We now present another test that  does even bet ter  
for large n. Our BUCKET TEST, shown in Figure 2, repeats m times an ATOMIC 
BUCKET TEST for some parameter  m to be determined. In its first stage, which is 
steps (1)-(3) of the description, the atomic test forms M "buckets" B 1 , . . . ,  BM. 
For each i it picks at random one of the M buckets, and "puts" the pair (xi,yi) 
in this bucket. (The value ti in the test description chooses the bucket for i.) The 
x~ values of pairs falling in a particular bucket are added while the corresponding 
Yi values are multiplied; this yields the values cj ,dj  for j = 1 , . . . ,  M specified 
in the description. The first par t  of the analysis below shows that  if there had 
been some i for which gZ, ~ Yi then except with quite small probability (2 -m)  
there is a "bad bucket," namely one for which gC~ i~ dj. 

Thus we are reduced to another instance of the same batch verification prob- 
lem with a smaller instance size M. Namely, given (cl, d l ) , . . . ,  (CM, dM) we need 
to check that  gCj __ dj for all j -- 1 , . . . ,  M. The desired error is 2 -m.  

We can use the SMALL EXPONENTS TEST to solve the smaller problem. 
(Alternatively, we could recursively apply the bucket test, bot toming out  the 
recursion with a use of the SE test after a while. This seems to help, yet for n 
so large that  it doesn't  really mat ter  in practice. Thus, we shall continue our 
analysis under the assumption that  the smaller sized problem is solved using 
the SMALL EXPONENTS TEST.) This yields a test depending on a parameter  m. 
Finally, we would optimize to choose the best value of m. Note that  until these 
choices are made we don' t  have a concrete test but  rather  a framework which 
can yield many possible tests. To enable us to make the best choices we now 
provide the analysis of the ATOMIC BUCKET TEST and BUCKET TEST with a 
given value of the parameter  m, and evaluate the performance as a function of 
the performance of the inner test, which is SE. Later we can optimize. Since we 
use SMALL EXPONENTS TEST, we require the order of the group to be prime. 
The proof of the following is in [2]. 

L e m m a  2. Suppose G is a group o] prime order q, and g is a generator of G. 
Suppose ( x l , y l ) , . . . ,  (xn,Yn) is an incorrect batch instance of the batch veri]ica- 
tion problem for EXPa(. ,.). Then the ATOMIC BUCKET TEST with parameter 
m accepts ( x y , y l ) , . . .  ,(Xn, Yn) with probability at most 2 - (m- l ) .  

Regarding performance, it takes n multiplications to generate the buckets and 
the smaller instance. To evaluate the smaller instance using SE with parame- 
ters 2rn,m, Iql, ks takes m + 2ram~2 + 2 m + ExpCostG(Iql) multiplications by 
Theorem 2. This process is repeated r l / (m - 1)] times. When we run the test, 
we choose the optimal value of m, meaning that  which minimizes the cost. Thus 
we have the following. 
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T h e o r e m  3. Given a group G o] prime order q, and a generator g of G. Then 
the BUCKET TEST (with m set to the optimal value) is a batch verifier ]or the 
relation EXPG,a(', ") with cost 

min { Iml--1] " (n + m + 2m-l(m + 2) + ExpCostG(kl)) } 
ra>2 

multiplications, where kl = ]q]. 

To minimize analytically we would set m ~-, log(n + kl) - loglog(n + kl),  but  in 
practice it is bet ter  to work with the above formula and find the best value of 
m by search. This is what is done to compute the numbers in Table 3. 

3.5 Pr ime  versus  non-pr ime  order 

The analysis of the SMALL EXPONENTS TEST as given by Theorem 2 (and hence 
of the BUCKET TEST as given by Theorem 3) is for groups of prime order. We 
are not working in Z~ (which has order q - 1, not a prime) but  in a group 
G which has order q a prime. In practice this is not really a restriction. As is 
s tandard in many schemes, we can work in an appropriate subgroup of Z~ where 
p is a prime such that  q divides p - 1. In fact, prime order,groups seem superior 
to plain integers modulo a prime in many ways. The discrete logarithm problem 
seems harder there, and they also have nice algebraic properties which many 
schemes exploit to their advantage. 

When the order is not prime, the SMALL EXPONENTS TEST (and hence the 
BUCKET TEST) do not work; it is easy to find counter-examples. For example, let 
p be a prime, and consider G = Zp, which has non-prime order p - 1. Let g E G 
be a generator of G and consider the batch instance ( x , - y  rood p -  1), (x,y) 
where y -- gX rood p. The SMALL EXPONENTS TEST will accept this instance 
whenever sl is even, which happens half the time, so its error will not be 2 - t ,  
but  only 1/2. (Obvious fixes like using only odd values of si don' t  work.) 

3.6 Performance  

Table 3 looks at the concrete performance of the tests as we vary the size n of the 
batch instance. We have set kl = 1024, and I = 60. (Meaning the exponentiation 
is for 1024 bit  moduli, and the error probability will be 2-6o.) We count the 
number of multiplications. We compare with the naive batch test, but  this test 
is not naively implemented, in the sense that  to be fair we use fast exponentiation 
as per [9, 13] to get the numbers in the first column. (Our tests use the same 
fast exponentiation methods as subroutines.) We assume a single exponentiation 
requires 200 multiplications [13]. (Using other storage to time tradeoffs as per [13] 
doesn't  change the results, namely that  our tests consistently perform better.)  

Observe that  which test is bet ter  depends on the value of n. As we expected, 
the RS test is actually worse than naive for small n. Until n about  200, the 
SMALL EXPONENTS TEST test is the best. From then on, the BUCKET TEST 
performs better.  But at least one of our tests always beats the naive one. Fur- 
thermore, observe that  benefits come in even for small values of n: at n = 5 the 
SE test is a factor of 2 bet ter  than naive. The factor of improvement increases 
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n N o .  o f  mult ip l icat ions  used  

Naive IR~NDOM SUBSETISMALL 

5 1K 

10 2K 

50 10 K 

100 20 K 

200 40 K 

500 100 K 

1,000! 2O0 K 

5,0001 1000 K 

12K 0.4K 

12.5K 0.6K 

13.5K 

15K 3.2K 

18K 6.2K 

27 K 15.2 K 

42 K 30.2 K 

162 K 150 K 

by  different tes t s  

EXPONENTSIBUCKE'I' 

4.3K 

4.4K 

1.8K 5K 

5.7K 

7.1K 

10 .TK 

1 6 . 5 K  

�9 56_._KK 

Fig. 3. Example: For increasing values of n, we list the number of 1024-bit multipli- 
cations (in thousands, rounded up), for each method to verify n exponentiations with 
error probability 2 -8~ The lowest number for each n is underlined. 

with n: at  n = 200 we can do about  6 times bet ter  than naive (using SE); at 
n = 5000, about  17 times bet ter  (using BUCKET). 

4 Fast Screening for R S A  

Batch verification for digital signature verification is a particular case of the gen- 
eral batch verification problem in which the relation is the signature verification 
relation. In particular, the above results help to get faster batch verification for 
discrete logarithm-based signatures like DSS (cf. [2]). However, we can do even 
bet ter  if we focus specifically on signatures, via the notion of screening presented 
in Section 2.2. 

This is particularly interesting for RSA signatures. Here the verification re- 
lation is modular exponentiation, but  with a common exponent,  namely the 
relation RN, e(X,y) = 1 iff x e ---- y mod N,  and thus the above batch verifiers, 
which are for modular exponentiation in a common base, don' t  address this 
problem. (The tests are easily adapted to the common exponent case, but  since 
the group is not of prime order, they don' t  work.) However, we present screening 
algorithms for the standard "hash-the-sign" type RSA signatures that  are much 
faster than any of the above batch verifiers. 

Note that  RSA signature verification may be relatively fast anyway if one 
chooses a small public exponent, like three. Yet, there are various reasons one 
might want to use a bigger verification exponent (for example, to play with the 
signing exponent and speed up the signing). Actually our screening tests improve 
over the standard verification method even for small exponents, but  obviously 
the gains are larger for large exponents. 

HASH-THEN-DECRYPT RSA SCHEMES. The user has public key N, e and secret 
key N,  d where N is an RSA modulus, e E Z~(N) an encryption exponent,  and 
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GIVEN: N, e and (M1, x l ) , . . . ,  (M,,, x,~) with xi E Z~, and oracle access to hash 
function H 

F D H - R S A  Signature Screening Test 
n r If (I-[iffil xi) = YI~=I H(M~) rood N then return 1 else return 0 

Fig. 4. RSA signaSure screening test. 

d the corresponding decryption exponent. Define functions ] ,  f--l:  Z~ V ._~ Z~ V 
by f ( x )  "" x e mod N and f - l ( y )  = yd mod N. The standard paradigm for 
signing with RSA in practice is to let SignN,d(M ) = H ( M )  d mod N for some 
hash function H.  A pair (M, x) is verified by checking that  x* = H ( M )  rood N.  
This was named the "hash-then-decrypt" paradigm and studied recently in [5] 
who point out that  collision-freeness of H is not a strong enough requierement 
to guarantee security of this scheme based on the one-wayness of RSA. To get 
a better security guarantee without sacrificing performance, [5] appeals to the 
random oracle paradigm [4] and considers a couple of schemes in this setting. 
The simplest is the Full Domain Hash (FDH-RSA) scheme, which assumes H is 
a random oracle mapping {0, 1}* to Z~,  and they show that  FDH-RSA scheme 
is secure assuming RSA is a one-way function. 

SCREENING FOR FDH-RSA.  Our screening algorithm, called F D H - R S A  SIG- 
NATURE SCREENING TEST, is presented in Figure 4. It is very simple. Note there 
is no security parameter l in it: the failure probability of the test is related only 
to the difficulty of inverting RSA as Theorem 4 indicates. 

This test is very efficient. There are n hashings (cheap), 2n multiplications, 
and then a single exponentiation, so that  the total number of multiplication 
is 2n + ExpCostzT v (H)  multiplications. This compares very favorably with our 
batch verifiers. 

Note this test does not provide a batch verifier in the sense of Definition 1. 
For example, let x be a valid signature of message M and a some value in 
Z~v - {1}. Then the batch instance (M, xo~) , (M,x /a)  is incorrect, but passes 
the above test. This is not a problem from the screening perspective, because 
the property we want here is only that  one cannot create such incorrect batch 
instances without knowing the signatures of the messages in the instance. Indeed, 
above, we had to know x to create the incorrect instance, meaning M is valid, 
even if the given signature is not. Thus, this example is not a counter-example 
to the screening property. 

However it may not be a priori clear that  our test really has the screening 
property: maybe there is a clever attack. Below, we show there is not, unless 
inverting RSA is easy. 

CORRECTNESS OF THE SCREEN TEST. Since this is based on the hardness of 
RSA we first recall the latter, following the concrete treatment of [5]. Fix some 
prime number e. The RSA generator, RSA(e), on input 1 k, picks a pair of random 
distinct (k/2)-bit primes p, q such that  neither p - 1 nor q - 1 are multiplies of 
e, lets N = pq, and computes d so that  ed - 1 mod ~o(N). It returns N, e, d. The 
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success probability of an inverting algorithm I is the probability that it outputs 
yd rood N on input N , e , y  when N , e , d  are obtained by running RSA(e)(1 k) 
and y = x e rood N for an x chosen at random from Z~v. We say that I (t, e)- 
breaks RSA(e), where t: N ~ N and e: N ~ [0, 1], if, in the above experiment, 
I runs for at most t(k) steps and has success probability at least e(k). We say 
that RSA(e ) is (t, e)-secure collection of one-way functions if there is no inverter 
which (t, e)-breaks RSA(e). 

The following theorem says that if RSA is one-way then an adversary can't 
produce a batch instance for FDH-RSA SIGNATURE SCREENING TEST that 
contains a message that was never signed by the signer but still passes the 
test. Furthermore we indicate the "concrete security" of the reduction. Refer to 
Section 2.2 for definitions. Note that in our case the treatment there is "lifted" 
to the random oracle model and we need to consider an additional parameter, 
namely the number of hash queries by the adversary. 

T h e o r e m  4. Suppose RSA(e ) is a (t ~, d)-secure collection of one-way ]unctions. 
Let A be an adversary who after a chosen message attack on the FDH-RSA sig- 
nature scheme outputs a batch instance, for the FDH-RSA signature verification 
relation, in which at least one message was never legally signed. Suppose this 
batch instance is of size n; suppose that in the chosen message attack A makes 
qsig FDH signature queries and qhash hash queries; and suppose the total running 
time of A is at most t(k) = t'(k) - J~(k3) �9 (n-}-qsig -{-qhash). Then the probability 
that FDH-RSA SIGNATURE SCREENING TEST accepts the batch instance is at 
most e(k) = d(k)  . (n + qsig + qh~sh)- 

5 Open Problems 

Devise fast batch verification algorithms for modular exponentiation in groups 
of non-prime order. Perhaps begin by looking at important special cases like 
Z~ where p is prime or Z~v where N is an RSA modulus. Also devise such 
algorithms for the case of modular exponentiation with a fixed exponent rather 
than a fixed base. Find fast screening algorithms for other signature schemes 
like DSS. Extend our screen test for FDH-RSA to other RSA based signature 
schemes like PSS [5] which have tighter security, and try to get tighter reductions 
of the security of the screen test to that of RSA as a one-way function. 
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