
Fast Batch Verification for Modular
Exponentiation and Digital Signatures

Mihir Bellare], Juan A. Garay 2, and Tal Rabin 2

i Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093, USA. E-Mail: mihir@cs.ucsd.edu

URL: http://w~-cse, ucsd. edu/user s/mihir

2 IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York
10598, USA. E-mail: {garay,talr}0watson.ibm.com

Abstract . Many tasks in cryptography (e.g., digital signature verifica-
tion) call for verification of a basic operation like modular exponentiation
in some group: given (g, x, y) check that g~ = y. This is typically done by
re-computing 9 = and checking we get y. We would like to do it differently,
and faster.

The approach we use is hatching. Focusing first on the basic modular
exponentiation operation, we provide some probabilistic batch verifiers,
or tests, that verify a sequence of modular exponentiations significantly
faster than the naive re-computation method. This yields speedups for
several verification tasks that involve modular exponentiations.

Focusing specifically on digital signatures, we then suggest a weaker
notion of (batch) verification which we call "screening." It seems useful
for many usages of signatures~ and has the advantage that it can be
done very fast; in particular, we show how to screen a sequence of RSA
signatures at the cost of one RSA verification plus hashing.

1 I n t r o d u c t i o n

It is a consequence of the "adversarial" nature of cryptography tha t many of
its computat ional tasks are for the purpose of "verifying" some proper ty or
computat ion. For example, signatures need to be verified; the opening of a bit-
commitment needs to be verified; in protocols, various claims about generated
values and their relations need to be verified.

These tasks are computat ionally important ; for example, signature verifica-
tion is likely to be done much more often than signature generation, as certificates
and signed documents are circulated.

At the heart of many of these verification tasks is the problem of verifying
a basic computat ional operation like modular exponentiation in some group:
given (g, x, y) check tha t gZ = y. The naive way to verify such a claim is to
redo the operation and check we get back the same value: namely, re-compute
g~ and check it equals y. We would like to find means of verification, for such
basic operations, tha t are faster than re-computation, and thereby speed up any
verification process using such operations.

237

In this paper we investigate the use of batching for the purpose of speeding
up such verification. This is a natural idea since we often have to verify many
instances simultaneously. For example, a certificate chain can contain many sig-
natures to check; a bank can be signing coins and we have many coins to verify;
ZK proofs use many bit commitments, whose decommitments need to be verified.

We consider batching for verification in several contexts. The first is very
general, namely batch verification for modular exponentiation itself. We provide
several batch verifiers for modular exponentiation. These are probabilistic tests
that verify the correctness of a batch of exponentiations much faster than doing
each verification individually. We specify several uses for these tests, but there
are probably more. Next we suggest a new notion called "signature screening,"
which provides "weak but fast" verification for signatures, and show how to
implement it very efficiently for RSA signatures.

We also suggest a notion of batch program instance checking, and provide fast
batch verification methods for degrees of polynomials which have applications
in verifiable secret sharing and other robust distributed tasks. These, together
with some applications of the results here, and all proofs, are omit ted from this
abstract, and can be found in our full paper [2] which is available on the web.

Following a brief discussion of previous work, we will look at all the above in
more detail.

PREVIOUS WORK. The modular exponentiation operation itself can be made
more efficient via pre-processing [9, 13] or addition chain heuristics [8, 18, 16].
What we are saying is that performing modular exponentiation is only one way
to perform verification, and if the interest is verification, one can do bet ter than
any of these ways. In particular, our batch verifiers will perform bet ter than the
naive re-computation based verifier, even when the latter uses the best known
exponentiation methods. In fact, bet ter exponentiation methods only make our
batch verifiers even faster, because we use these methods as subroutines.

The idea of batching in cryptography is of course not new: some previous
instances are [11,15, 6,14]. However, there seems to have been no previous sys-
tematic look at the general problem of batch verification for modular exponenti-
ation, and our first set of results indicates tha t by putting oneself above specific
applications one can actually find general speed-up tools that apply to them; in
particular, we improve some of the mentioned works.

1.1 B a t c h ver i f i ca t ion

Let R be a boolean relation. (Meaning R(inst) E {0, 1} for any instance inst of
R. For example, R(x, y) = 1 iff gX = y in some group of which g is a generator,
or R might be a signature verification algorithm with respect to some fixed
public key.) The verification problem for R is: given an instance inst, check
whether R(inst) = 1. In the batch verification problem we are given a sequence
i n s t l , . . . , instn of instances and asked to verify that for all i = 1 , . . . , n we have
R(inst~) = 1. The naive way is to compute R(insti), and check it is 1, for all
i = 1 , . . . , n. We want to do it faster. To do this, we allow probabilism and an
error probability. A batch verifier (also called a test) is a probabilistic algorithm

238

Test No. o f mult ip l icat ions

Naive ExpCost~ (kl)

RANDOM SUBSET (t:{,S)

SMALL EXPONENTS (SE)

BUCKET

hi~2 + ExpCost~ C kl)

l + nil2 + ExpCostc(kl)

min.,>2 [~1---~_1] . (n + m + 2'~-'m + ExpCosta(k,))

Fig. 1. Performance of algorithms for batch verification of modular exponentiation.
We indicate the number of multiplications each method uses to get error 2 -~. See the
text for explanations of the parameters.

V which takes instx , . . . , inst,~ and produces a bit as output. We ask that when
R(insti) = 1 for all i = 1 , . . . , n, this output be 1. On the other hand, if there is
even a single i for which R(insti) = 0 then we want that V (i n s t l , . . . , instn) = 1
with very low probability. Specifically, we let I be a security parameter and ask
that this probability be at most 2 - t .

We stress tha t if even a single one of the n instances is "wrong" the verifier
should detect it, except with probability 2 - l . Yet we want this verifier to run
faster than the time to do n computations of R.

1.2 B a t c h ver i f i e r s for m o d u l a r e x p o n e n t i a t i o n

Let g be a generator of a (cyclic) group G, and let q denote the order of G.
The modular exponentiation function is x ~ gZ, where x E Zq. Define the
exponentiation relation EXPc.,g(x,y) = 1 iff gX = y, for x G Zq and y G G.

We design batch verifiers for this relation. As per the above, such a verifier is
given a sequence (x l, YI) , . . . , (xn, Yn) and wants to verify that EXPG,g (xi, yi) =
1 for all i = 1 , . . . , n. The naive test is to compute gZ, and test it equals Yi, for
all i = 1 , . . . , n, having cost n exponentiations. We want to do better.

Three tests, the RANDOM SUBSET TEST, the SMALL EXPONENTS TEST and
the BUCKET TEST are presented, with analysis of correctness, in Section 3. Their
performance is summarized in Table 1, with the naive test listed for comparison.
We explain the notation used in the table: kl = lg(IG]); ExpCosta(kl) is the
number of multiplications required to compute an exponentiation a b for a E
G and b an integer of kl bits; and ExpCost~(kl) is the cost of computing s
different such exponentiations. (Under the normal square-and-multiply method,
ExpCosta(kl) ~. 1.5kl multiplications in the group, but it could be less [9, 13,
8]. Obviously ExpCost~.(kl) < s. ExpCostG(kl), but there are ways to make it
strictly less [9, 13,8], which is why it is a separate parameter. See Section 2.3
for more information.) We treat costs of basic operations like exponentiation
as a parameter to stress that our tests can make use of any method for the
task. In particular, this explains why standard methods of speeding up modular
exponentiation such as those mentioned above are not "competitors" of our
schemes; rather our batch verifiers will always do bet ter by using these methods
as subroutines.

239

Table 3 in Section 3.6 looks at some example parameter values and computes
the speed-ups. We see where are the cross over points in performance: for small
values of n the SMALL EXPONENTS TEST is better, while for larger values,
BUCKET TEST wins. Notice that even for quite small values of n we start getting
appreciable speed-ups over the naive method, meaning the benefits of batching
kick in even when the number of instances to batch is quite small.

Asymptotically more efficient tests can be constructed by recursively apply-
ing the tests we have presented, but the gains kick in at values of n that seem
too high to be useful, so we don't discuss this.

SOME APPLICATIONS. Applications are relatively obvious, namely to any discrete
logarithm based protocol in which discrete exponentiation needs to be verified.
In some cases, we need to tweak the techniques.

DSS signatures [12] are a particularly attractive target for batch verification
because signing is fast and verification is slow. Naccache et al. [15] give some
batch verification algorithms for a slight variant of DSS. We can adapt our tests
to apply to this variant, and get faster batch verification algorithms. See [2].

In many ZK or witness-hiding proofs, discrete exponentiation may be used to
implement bit commitment, and there are lots of such commitments. Our batch
verifiers will speed-up verification of the de-commitments. We can also improve
the discrete log based n-party signature protocols of Brickell et al. [10]. See [2].

EXPONENTIATION WITH COMMON EXPONENT. The version of the exponentiation
problem that underlies RSA is different from the above in that the exponent, not
the base, is fixed. The results discussed above don't apply to this version. Batch
verification of RSA signatures can be done via screening as we now discuss.

1.3 Screening: Fast bu t weak verification for s ignatures

For the particular case of signature verification, we suggest a different notion
of batch verification, called screening, which has weaker guarantees but can be
achieved at much lower cost. In certain usages of signatures, it is adequate and
useful.

Fix some signature scheme and a public key pk for it. Let Verifypk(., .) be the
verification algorithm of this scheme, meaning a signature x of message M is valid
if Verifypk(M, x) = 1. A batch instance for signature verification consists of a
sequence (M1, Xl) , . . . , (Mn, xn) where x~ is a purported signature of Mi relative
to pk. Batch verification in the sense we have been discussing so far would
mean batch verification for the relation VeriIy_k(. , .): the test would reject with
high probability if there was any i E {1,.. . ,n~ for which Verifypk(M~,x~) = O.
In screening, what we ask is that if the batch instance (Ml ,Xl) , . . . , (Mn, xn)
contains a forgery --meaning there is some i such that Ms was never signed by
the signer-- then our batch verifier will reject, with high probability. However,
if the signer has in the past signed all the messages Mx, . . . , Mn, then our test
might accept even if for some i the string xi is in fact not a valid signature of
M~.

In other words, screening is the task of determining whether the signer has
at some point authenticated the text Mi, rather than the task of checking that

240

the particular string x~ provided is a valid signature of Mi. The rationale is
that in many applications, all that counts is whether or not Mi is authentic.
Take for example a case where the Mi are electronic coins. We may only really
care whether the coin is valid, not whether we actually hold a correct signature
demonstrating the validity of this particular coin.

In Section 4 we show how RSA signatures generated under the standard
"hash-then-decrypt" paradigm can be very efficiently screened: the cost of batch
verification is that of one exponentiation with the public RSA exponent plus
some hashing.

1.4 Ba tch p r o g r a m instance checking and o ther resul ts

The notion of batch verification has on the face of it nothing to do with program
checking since there is no program in the picture that one is trying to check.
Nonetheless, we apply this notion to do program checking in a novel way. Our
approach, called batch program instance checking, permits fast checking, and
also permits instance checking, not just program checking, in the sense that
(in contrast to standard program checking [7]), a correct result is not rejected
just because the program might be wrong on some other instance. We can do
batch program instance checking for any function f whose corresponding graph
(the relation R$(x ,y) = 1 iff f (x) = y) has efficient batch verifiers, so that the
main technical problem is the construction of batch verifiers. See [2] for more
information including explanations of how this differs from other notions like
batch program checking [17].

The idea of batch verification introduced here was applied in [1] in the do-
main of fault-tolerant distributed computing. They design a batch verifiable
secret sharing protocol and use it to construct "distributed pseudo-random bit
generators," which are efficient ways of generating shared distributed coins.

An invited talk on batch verification including the material presented in this
paper was given at L A T I N '98 [3].

2 D e f i n i t i o n s

Here we provide formal definitions of the main new notions underlying this work,
extending the discussion in Section 1.

2.1 Ba tch verification

Let R(.) be a boolean relation, meaning R(.) ~ {0, 1}. An instance for the
relation is an input inst on which the relation is evaluated. A batch instance for
relation R is a sequence i n s t l , . . . , inst,~ of instances for R. (We call n the size
of the instance, and also call this an n-instance for R.) We say that the batch
instance is correct if R(insti) = 1 for all i = 1 , . . . , n, and incorrect if there is
some i E {1, . . . ,n} for which R(insti) = O.

Defini t ion 1. A batch verifier for relation R is a probabilistic algorithm V that
takes as input (possibly a description of R), a batch instance X = (i n s t l , . . . ,
instn) for R, and a security parameter I provided in unary. It satisfies:

241

(1) If X is correct then V outputs I.
(2) If X is incorrect then the probability that V outputs 1 is at most 2 -z.
The probability is over the coin tosses of V only.

Obvious extensions can be made, such as allowing a slight error in the first case.
We stress that if there is even a single i for which R(insti) ~ 1, the verifier must
reject, except with probability 2 -t . Variants such as batch verification over a
distribution, or computational batch verification, are easily defined.

The naive batch verifier, or naive test, consists of computing R(insti) for
each i = 1 , . . . ,n, and checking that each of these n values is 1.

In practice, setting I to be about 60, meaning an error of 2 -6~ should suffice.

2.2 Signature screening: weak verification

SIGNATURES. A digital signature scheme, (Gen, Sign, Verify), consists of a key
generation algorithm, a signing algorithm, and a verification algorithm. The first
is probabilistic; the second may be; the third is not. A matching pair of public and
secret keys can be generated via (pk, sk) ~- Gen(1 ~) where k is the security pa-
rameter. A message is signed via x ~ Signsk(M). A candidate message-signature
pair (M,x) is verified by making sure Verifypk(M,x) = 1.

SCREENING. The notion was discussed in Section 1.3. We now provide the for-
malization. Fix a signature scheme (Gen, Sign, Verify). Recall that a batch in-
stance for signature verification consists of a sequence (M l , X l) , . . . , (Mn, x ,)
where xi is a purported signature of Mi relative to some given public key pk. Let
Screen Test be a (possibly probabilistic) algorithm, where Screen Testpk ((Mx , x 1),
. . . , (M, ,x ,)) outputs a bit. We want to say what it means for this algorithm
to be a good screening algorithm for the signature scheme.

An attacker A is given the public key pk. It tries to produce a batch instance,
and is said to be successful if the batch instance contains an unauthenticated
message but still passes the screening test. To make the notion strong, the at-
tacker is allowed a chosen-message attack. So the game is like this. A has oracle
access to Signs~(.). After making some number of signing queries it outputs a
batch instance (Ma,Xl) , . . . , (Mn,x,). We say that Mi is a not legally signed if
it was not previously a query to the Signs~(.) oracle. We say that A is successful
if the batch instance (M1, x l) , . . . , (Mn,x,) contains a message Mi that was not
legally signed, but ScreenTestvk((Ml,xl), . . . ,(Mn,xn)) = 1. We let Succ(A)
denote the success probability of A. The probability is over the choice of keys,
the coins of the signing algorithm, the coins of A, and the coins of the screening
algorithm. Intuitively, the screening algorithm is good if Succ(A) is small for
any A whose computation time is not extraordinarily high. In the theorems (cf.
Theorem 4) we will be more precise, quantifying the success probability as a
function of the running time and allowed number of oracle queries of the adver-
sary.

Whenever we talk about the running time of an algorithm, it is the sum of
the actual running time (on some fixed RAM model of computation) and the
size of the code.

242

2.3 Costs of Mult ipl icat ion and Exponent iat ion

Let G be a (multiplicative) group. Many of our algorithms are in cryptographic
groups like Z~v or subgroups thereof (N could be composite or prime). We mea-
sure cost in terms of the number of group operations, here multiplications, and
discuss these costs below.

Given a E G and an integer b, the standard square-and-multiply method
computes a b E G at a cost of 1.51b I multiplications on the average. Using the
windowing method based on addition chains [8, 18], the cost can be reduced
to about 1.21bl; pre-computation methods have been proposed to reduce the
number of multiplications further at the expense of storage for the pre-computed
values [9, 13] (a range of values can be obtained here; we give some numerical
examples in Section 3.6). Accordingly it is best to treat the cost of exponentiation
as a parameter. We let ExpCostG(kl) denote the time to compute a b in group
G when kl -- Ibl, and express the costs of our algorithms in terms of this.

Suppose we need to compute a bl , . . . , a b" , exponentiations in a common base
a but with changing exponents. Say each exponent is t bits long. We can certainly
do this with n. ExpCostG(t) multiplications. However, it is possible to do better,
via the techniques of [9,13], because in this case the pre-computation can be done
on-line and still yield an overall savings. Accordingly, we treat the cost of this
operation as a parameter too, denoting it ExpCost~.(t).

Note squaring can be performed faster than general multiplication.

3 B a t c h V e r i f i c a t i o n f o r M o d u l a r E x p o n e n t i a t i o n

Let G be a group, and let q =]G] be the order of G. Let g be a primitive element
of G. Hence, for each y E G there is a unique i E Zq such that y = gi. This i is
the discrete logarithm of y to the base g and is denoted logg(y). Define relation
EXPG,g(x, y) to be true iff gZ = y. (Equivalently, x = logg(y).) We let kl denote
the length (number of bits) of q, and k2 the length of g. With G, g fixed we want
to construct fast batch verifiers for the relation EXPG,9.

3.1 R a n d o m subset test
n The first thing that one might think of is to compute x = ~i=1 xi rood q and y =

Hin_-i yi (the multiplications are in G) and check that gZ = y. However it is easy
to see this doesn't work: for example, the batch instance (x + a, gZ), (x - a, gZ)
passes the test for any a E Zq, but is clearly not a correct instance when a # 0.
A natural fix that comes to mind is to do the above test on a random subset of
the instances', pick a random subset S of {1, . . . , n}, compute x = T i e s xi mod q
and y = 1-I/es Y/and check that gZ = y. (The idea is that randomizing "splits"
any "bad pairs" such as those of the example above.) We call this the ATOMIC
RANDOM SUBSET TEST. It works in the sense of the following lemma, whose
proof can be found in [2].

L e m m a 1. Given a group G and a generator g of G. Suppose (x l , y l) , . . . ,
(xn,Yn) iS an incorrect batch instance of the batch verification problem for
EXPa,a(. , .) . Then the ATOMIC RANDOM SUBSET TEST accepts (x l , y l) , . . . ,
(~ , y~) with probability at most 1/2.

243

But 1/2 is not a low enough error. (One can show the analysis is tight, so no bet-
ter is expected.) To lower the error to the desired 2 -z we must repeat the atomic
test independently l times, yielding the RANDOM SUBSET TEST of Figure 2.
However, the repetit ion is costly: the total cost is now n l / 2 + E x p C o s t ~ (k l)
multiplications. This is not so good, and, in many practical instances may even
be worse than the naive test, for example if n _< I. (Since I should be at least 60
this is not unlikely.)

The conclusion is tha t repeating many times some atomic test which itself
has constant error can be costly even if the atomic test is efficient. Thus, in what
follows we will look for ways to directly get low error. First, lets summarize the
results we just discussed in a theorem.

T h e o r e m 1. Given a group G, a generator g of G. The RANDOM SUBSET TEST
is a batch verifier Jor the relation EXPG,g(., .) with cost n l / 2 + E x p C o s t ~ (k l)
multiplications, where kl = [lg(IGI)].

3.2 C o m p u t i n g a p r o d u c t o f p o w e r s

Before presenting the next test, we present a general algorithm we will use as
a subroutine. Suppose a l , . . . , a n E G. Suppose b t , . . . , b n are integers in the
range 0 , . . . , 2 t - 1 < ICl. We write them all as strings of length t, so tha t bi =
bi[t]. . , bill]. The problem is to compute the product a = I-Jill a~', the operations

b, f o r / = 1 , . . , n being in G. The naive way to do this is to compute ci = a i
and then compute a = l'Ln__l ci. This takes ExpCost~.(t) + n - 1 multiplications,
where kz is the size of the representation of an element of G. (Using square-
and-multiply exponentiation, for example, this works out to 3n tk2 /2 + n - 1
multiplications; with a faster exponentiation it may be a bit less.) However,
drawing on some ideas from [9], we can do better , as follows:

A lgo r i t hm FastMult ((a l , bl), . . . , (an, bn))
a : = 1;
f o r j = t downto 1 do

f o r i = 1 t o n do i f bi~] = 1 t h e n a := a . ai;
a := a 2

r e t u r n a

This algori thm does t multiplications in the outer loop and n t / 2 multiplica-
tions on the average for the inner loop. Hence, for computing y we get a total of
t + n t / 2 multiplications.

3.3 T h e S m a l l E x p o n e n t s T e s t

We can view the ATOMIC RANDOM SUBSET TEST in a different way. Namely,
n n @l

pick bits S l , . . . , Sn E {0, 1} at random, let x = ~ i=1 sixi and y = 1-Ii=l Yi , and
check tha t gZ = y. (This corresponds to choosing the set S = { i : si = 1 }.) We
know this test has error 1/2. The idea to get lower error is to choose S l , . . . , Sn
from a larger domain, say t bit strings for some t > 1. There are now two things
to ask: whether this does help lower the error faster, and, if so, at what ra te as

244

GIVEN: g a generator of G, and (x l , y l) , . . . , (x , , y ,) with x~ E Z n and yi E G.
Also a security parameter I.

C~ECK: That Vi E {1 , . . . ,n} : Yi = g=~.

-- R a n d o m Subse t (RS) Test: Repeat the following atomic test, independently
/ times, and accept iif all sub-tests accept:

ATOMIC RANDOM SUBSET TEST;

(1) For each i -- 1 , . . . , n pick b~ E {0,1} at random
(2) L e t S - - - - { i : b i - - 1 }

(3) Compute x =)-~es x~ rood q, and y = r L e s y~
(4) if g= -- y then accept, else reject.

- S m a l l E x p o n e n t s (S E) T e s t :

(1) Pick s l , . . . , s , E {0, 1) ~ at random
rt 8i

(2) Compute x = ~"~ffil x,s , rood q, and y -- l'I,ffil Y,

(3) If 9x _ y then accept, else reject.

- B u c k e t T e s t : Takes an additional parameter m > 2. Set M -- 2"*. Repeat
the following atomic test, independently [i](m - 1)~ times, and accept iff all
sub-tests accept:

ATOMIC BUCKET TEST:

(1) For each i = 1, . . . ,n pick tl E {1, . . . , M} at random
(2) For e a c h j - - - - 1 , . . . , M l e t B j - - { i : t i - - - j }

(3) For each j = 1 , . . . , M let cj = ~"~-~eBj. x~ rood q, and dj = I'LeB~ yi

(4) Run the Small Exponent Test on the instance (c l ,d l) , . . . , (cbl,dM)
with security parameter set to m.

Fig. 2. Batch verification algorithms for exponentia$ion with a common base.

a function of t; and then as we increase
look at the lat ter first.

If we can keep t small, then we have
(ie. kl-bit) exponent, as compared to / of
where we expect the main performance
exponentiations. However, to a smaller
large t has to be to get the desired error

t, how performance is impacted. Let 's

only a single exponentiat ion to a large
them in the random subset test. Tha t ' s
gain. But now we have added n new
exponent. Thus, the question is how
of 2 -~.

We use some group theory to show tha t the tradeoff between the length
t of the s i ' s and the error is about as good as we could hope as long as the
order q of the group is prime, namely setting t = l yields the desired error
2 - l . (See Section 3.5 for discussion of what happens when q is not prime.) The
corresponding test is the SMALL EXPONENTS (SE) TEST and is depicted in
Figure 2. The proof of the following is in [2].

245

T h e o r e m 2. Given a group G of prime order q and a generator g of G. Then
SMALL EXPONENTS TEST is a batch verifier .for the relation EXPG,a(', ') with
cost I + n(1 + 1/2) + ExpCostG(kl) multiplications, where kl = Iql.

3.4 T h e Bucket Test

We saw that the SMALL EXPONENTS TEST was quite efficient, especially for an
n that was not too large. We now present another test that does even bet ter
for large n. Our BUCKET TEST, shown in Figure 2, repeats m times an ATOMIC
BUCKET TEST for some parameter m to be determined. In its first stage, which is
steps (1)-(3) of the description, the atomic test forms M "buckets" B 1 , . . . , BM.
For each i it picks at random one of the M buckets, and "puts" the pair (xi,yi)
in this bucket. (The value ti in the test description chooses the bucket for i.) The
x~ values of pairs falling in a particular bucket are added while the corresponding
Yi values are multiplied; this yields the values cj ,dj for j = 1 , . . . , M specified
in the description. The first par t of the analysis below shows that if there had
been some i for which gZ, ~ Yi then except with quite small probability (2 -m)
there is a "bad bucket," namely one for which gC~ i~ dj.

Thus we are reduced to another instance of the same batch verification prob-
lem with a smaller instance size M. Namely, given (cl, d l) , . . . , (CM, dM) we need
to check that gCj __ dj for all j -- 1 , . . . , M. The desired error is 2 -m.

We can use the SMALL EXPONENTS TEST to solve the smaller problem.
(Alternatively, we could recursively apply the bucket test, bot toming out the
recursion with a use of the SE test after a while. This seems to help, yet for n
so large that it doesn't really mat ter in practice. Thus, we shall continue our
analysis under the assumption that the smaller sized problem is solved using
the SMALL EXPONENTS TEST.) This yields a test depending on a parameter m.
Finally, we would optimize to choose the best value of m. Note that until these
choices are made we don' t have a concrete test but rather a framework which
can yield many possible tests. To enable us to make the best choices we now
provide the analysis of the ATOMIC BUCKET TEST and BUCKET TEST with a
given value of the parameter m, and evaluate the performance as a function of
the performance of the inner test, which is SE. Later we can optimize. Since we
use SMALL EXPONENTS TEST, we require the order of the group to be prime.
The proof of the following is in [2].

L e m m a 2. Suppose G is a group o] prime order q, and g is a generator of G.
Suppose (x l , y l) , . . . , (xn,Yn) is an incorrect batch instance of the batch veri]ica-
tion problem for EXPa(. ,.). Then the ATOMIC BUCKET TEST with parameter
m accepts (x y , y l) , . . . ,(Xn, Yn) with probability at most 2 - (m- l) .

Regarding performance, it takes n multiplications to generate the buckets and
the smaller instance. To evaluate the smaller instance using SE with parame-
ters 2rn,m, Iql, ks takes m + 2ram~2 + 2 m + ExpCostG(Iql) multiplications by
Theorem 2. This process is repeated r l / (m - 1)] times. When we run the test,
we choose the optimal value of m, meaning that which minimizes the cost. Thus
we have the following.

246

T h e o r e m 3. Given a group G o] prime order q, and a generator g of G. Then
the BUCKET TEST (with m set to the optimal value) is a batch verifier]or the
relation EXPG,a(', ") with cost

min { Iml--1] " (n + m + 2m-l(m + 2) + ExpCostG(kl)) }
ra>2

multiplications, where kl =]q].

To minimize analytically we would set m ~-, log(n + kl) - loglog(n + kl), but in
practice it is bet ter to work with the above formula and find the best value of
m by search. This is what is done to compute the numbers in Table 3.

3.5 Pr ime versus non-pr ime order

The analysis of the SMALL EXPONENTS TEST as given by Theorem 2 (and hence
of the BUCKET TEST as given by Theorem 3) is for groups of prime order. We
are not working in Z~ (which has order q - 1, not a prime) but in a group
G which has order q a prime. In practice this is not really a restriction. As is
s tandard in many schemes, we can work in an appropriate subgroup of Z~ where
p is a prime such that q divides p - 1. In fact, prime order,groups seem superior
to plain integers modulo a prime in many ways. The discrete logarithm problem
seems harder there, and they also have nice algebraic properties which many
schemes exploit to their advantage.

When the order is not prime, the SMALL EXPONENTS TEST (and hence the
BUCKET TEST) do not work; it is easy to find counter-examples. For example, let
p be a prime, and consider G = Zp, which has non-prime order p - 1. Let g E G
be a generator of G and consider the batch instance (x , - y rood p - 1), (x,y)
where y -- gX rood p. The SMALL EXPONENTS TEST will accept this instance
whenever sl is even, which happens half the time, so its error will not be 2 - t ,
but only 1/2. (Obvious fixes like using only odd values of si don' t work.)

3.6 Performance

Table 3 looks at the concrete performance of the tests as we vary the size n of the
batch instance. We have set kl = 1024, and I = 60. (Meaning the exponentiation
is for 1024 bit moduli, and the error probability will be 2-6o.) We count the
number of multiplications. We compare with the naive batch test, but this test
is not naively implemented, in the sense that to be fair we use fast exponentiation
as per [9, 13] to get the numbers in the first column. (Our tests use the same
fast exponentiation methods as subroutines.) We assume a single exponentiation
requires 200 multiplications [13]. (Using other storage to time tradeoffs as per [13]
doesn't change the results, namely that our tests consistently perform better.)

Observe that which test is bet ter depends on the value of n. As we expected,
the RS test is actually worse than naive for small n. Until n about 200, the
SMALL EXPONENTS TEST test is the best. From then on, the BUCKET TEST
performs better. But at least one of our tests always beats the naive one. Fur-
thermore, observe that benefits come in even for small values of n: at n = 5 the
SE test is a factor of 2 bet ter than naive. The factor of improvement increases

247

n N o . o f mult ip l icat ions used

Naive IR~NDOM SUBSETISMALL

5 1K

10 2K

50 10 K

100 20 K

200 40 K

500 100 K

1,000! 2O0 K

5,0001 1000 K

12K 0.4K

12.5K 0.6K

13.5K

15K 3.2K

18K 6.2K

27 K 15.2 K

42 K 30.2 K

162 K 150 K

by different tes t s

EXPONENTSIBUCKE'I'

4.3K

4.4K

1.8K 5K

5.7K

7.1K

10 .TK

1 6 . 5 K

�9 56_._KK

Fig. 3. Example: For increasing values of n, we list the number of 1024-bit multipli-
cations (in thousands, rounded up), for each method to verify n exponentiations with
error probability 2 -8~ The lowest number for each n is underlined.

with n: at n = 200 we can do about 6 times bet ter than naive (using SE); at
n = 5000, about 17 times bet ter (using BUCKET).

4 Fast Screening for R S A

Batch verification for digital signature verification is a particular case of the gen-
eral batch verification problem in which the relation is the signature verification
relation. In particular, the above results help to get faster batch verification for
discrete logarithm-based signatures like DSS (cf. [2]). However, we can do even
bet ter if we focus specifically on signatures, via the notion of screening presented
in Section 2.2.

This is particularly interesting for RSA signatures. Here the verification re-
lation is modular exponentiation, but with a common exponent, namely the
relation RN, e(X,y) = 1 iff x e ---- y mod N, and thus the above batch verifiers,
which are for modular exponentiation in a common base, don' t address this
problem. (The tests are easily adapted to the common exponent case, but since
the group is not of prime order, they don' t work.) However, we present screening
algorithms for the standard "hash-the-sign" type RSA signatures that are much
faster than any of the above batch verifiers.

Note that RSA signature verification may be relatively fast anyway if one
chooses a small public exponent, like three. Yet, there are various reasons one
might want to use a bigger verification exponent (for example, to play with the
signing exponent and speed up the signing). Actually our screening tests improve
over the standard verification method even for small exponents, but obviously
the gains are larger for large exponents.

HASH-THEN-DECRYPT RSA SCHEMES. The user has public key N, e and secret
key N, d where N is an RSA modulus, e E Z~(N) an encryption exponent, and

248

GIVEN: N, e and (M1, x l) , . . . , (M,,, x,~) with xi E Z~, and oracle access to hash
function H

F D H - R S A Signature Screening Test
n r If (I-[iffil xi) = YI~=I H(M~) rood N then return 1 else return 0

Fig. 4. RSA signaSure screening test.

d the corresponding decryption exponent. Define functions] , f--l: Z~ V ._~ Z~ V
by f (x) "" x e mod N and f - l (y) = yd mod N. The standard paradigm for
signing with RSA in practice is to let SignN,d(M) = H (M) d mod N for some
hash function H. A pair (M, x) is verified by checking that x* = H (M) rood N.
This was named the "hash-then-decrypt" paradigm and studied recently in [5]
who point out that collision-freeness of H is not a strong enough requierement
to guarantee security of this scheme based on the one-wayness of RSA. To get
a better security guarantee without sacrificing performance, [5] appeals to the
random oracle paradigm [4] and considers a couple of schemes in this setting.
The simplest is the Full Domain Hash (FDH-RSA) scheme, which assumes H is
a random oracle mapping {0, 1}* to Z~, and they show that FDH-RSA scheme
is secure assuming RSA is a one-way function.

SCREENING FOR FDH-RSA. Our screening algorithm, called F D H - R S A SIG-
NATURE SCREENING TEST, is presented in Figure 4. It is very simple. Note there
is no security parameter l in it: the failure probability of the test is related only
to the difficulty of inverting RSA as Theorem 4 indicates.

This test is very efficient. There are n hashings (cheap), 2n multiplications,
and then a single exponentiation, so that the total number of multiplication
is 2n + ExpCostzT v (H) multiplications. This compares very favorably with our
batch verifiers.

Note this test does not provide a batch verifier in the sense of Definition 1.
For example, let x be a valid signature of message M and a some value in
Z~v - {1}. Then the batch instance (M, xo~) , (M,x /a) is incorrect, but passes
the above test. This is not a problem from the screening perspective, because
the property we want here is only that one cannot create such incorrect batch
instances without knowing the signatures of the messages in the instance. Indeed,
above, we had to know x to create the incorrect instance, meaning M is valid,
even if the given signature is not. Thus, this example is not a counter-example
to the screening property.

However it may not be a priori clear that our test really has the screening
property: maybe there is a clever attack. Below, we show there is not, unless
inverting RSA is easy.

CORRECTNESS OF THE SCREEN TEST. Since this is based on the hardness of
RSA we first recall the latter, following the concrete treatment of [5]. Fix some
prime number e. The RSA generator, RSA(e), on input 1 k, picks a pair of random
distinct (k/2)-bit primes p, q such that neither p - 1 nor q - 1 are multiplies of
e, lets N = pq, and computes d so that ed - 1 mod ~o(N). It returns N, e, d. The

249

success probability of an inverting algorithm I is the probability that it outputs
yd rood N on input N , e , y when N , e , d are obtained by running RSA(e)(1 k)
and y = x e rood N for an x chosen at random from Z~v. We say that I (t, e)-
breaks RSA(e), where t: N ~ N and e: N ~ [0, 1], if, in the above experiment,
I runs for at most t(k) steps and has success probability at least e(k). We say
that RSA(e) is (t, e)-secure collection of one-way functions if there is no inverter
which (t, e)-breaks RSA(e).

The following theorem says that if RSA is one-way then an adversary can't
produce a batch instance for FDH-RSA SIGNATURE SCREENING TEST that
contains a message that was never signed by the signer but still passes the
test. Furthermore we indicate the "concrete security" of the reduction. Refer to
Section 2.2 for definitions. Note that in our case the treatment there is "lifted"
to the random oracle model and we need to consider an additional parameter,
namely the number of hash queries by the adversary.

T h e o r e m 4. Suppose RSA(e) is a (t ~, d)-secure collection of one-way]unctions.
Let A be an adversary who after a chosen message attack on the FDH-RSA sig-
nature scheme outputs a batch instance, for the FDH-RSA signature verification
relation, in which at least one message was never legally signed. Suppose this
batch instance is of size n; suppose that in the chosen message attack A makes
qsig FDH signature queries and qhash hash queries; and suppose the total running
time of A is at most t(k) = t'(k) - J~(k3) �9 (n-}-qsig -{-qhash). Then the probability
that FDH-RSA SIGNATURE SCREENING TEST accepts the batch instance is at
most e(k) = d(k) . (n + qsig + qh~sh)-

5 Open Problems

Devise fast batch verification algorithms for modular exponentiation in groups
of non-prime order. Perhaps begin by looking at important special cases like
Z~ where p is prime or Z~v where N is an RSA modulus. Also devise such
algorithms for the case of modular exponentiation with a fixed exponent rather
than a fixed base. Find fast screening algorithms for other signature schemes
like DSS. Extend our screen test for FDH-RSA to other RSA based signature
schemes like PSS [5] which have tighter security, and try to get tighter reductions
of the security of the screen test to that of RSA as a one-way function.

A c k n o w l e d g m e n t s

The first author was supported by a 1996 Packard Foundation Fellowship in
Science and Engineering, and by NSF CAREER Award CCR-9624439.

We thank the (anonymous) referees of Eurocrypt 98 for their comments.

R e f e r e n c e s

1. M. BELLARE, J. GARAY AND T. RAmN. Distributed pseudo-random bit
generators-- a new way to speed-up shared coin tossing. Proceedings Fi~eenth
Annual Symposium on Principles of Distributed Computing, ACM, 1996.

250

2. S. BELLARE, J. GARAY AND T. PLABIN. Fast batch verification for modular expo-
nentiation and digital signatures. Pull version of this paper, available via http:/I
~ w - c s e . u c s d . e d u / u s e r s / m i h i r , 1998.

3. M. BELLARE, J. GARAY AND T. RABIN. Batch verification with applications to
cryptography and checking (Invited Paper), Latin American Theoretical INfor-
antics 98 (LATIN '98) Proceedings, LNCS Vol. 1830, C. Lucchesi and A. Moura
eds., Springer-Verlag, 1998.

4. M. BELLARE AND P. ROGAWAY. Random oracles are practical: A paradigm for
designing efficient protocols. First ACM Conference on Computer and Communi-
cations Security, ACM, 1994.

5. M. BELLARE AND P. ROGAWAY. The exact security of digital signatures: How to
sign with RSA and Rabin. Advances in Cryptology - Eurocrypt 96 Proceedings,
LNCS Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

6. M. BELLER AND Y. YACOBI. Batch Diffie-Hellman key agreement systems and
their application to portable communications. Advances in Cryptology - Euro-
crypt 92 Proceedings, LNCS Vol. 658, R. Rueppel ed., Springer-Verlag, 1992.

7. M. BLUM AND S. KANNAN. Designing programs that check their work. Proceed-
ings of the 21st Annual Symposium on the Theory of Computing, ACM, 1989.

8. J. Bos AND M. COSTER. Addition chain heuristics. Advances in Cryptology -
Crypto 89 Proceedings, LNCS Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

9. E. BRICKELL, D. GORDON, Z. MCCURLEY AND D. WILSON. Fast exponentiation
with precomputation. Advances in Cryptology- Eurocrypt 92 Proceedings, LNCS
Vol. 658, R. Rueppel ed., Springer-Verlag~ 1992.

10. E. BRICKELL, P. LEE AND Y. YACOEI. Secure audio teleconference. Advances in
Cryptology - Crypto 87 Proceedings, LNCS Vol. 293, C. Pomerance ed., Springer-
Verlag, 1987.

11. A. FIAT. Batch RSA. Journal ofCryptology, Vol. 10, No. 2, 1997, pp. 75-88.
12. NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY. Digital Signature

Standard (DSS). Federal Register, Vol. 56, No. 169, August 30, 1991.
13. C. LIM AND P. LEE. More flexible exponentiation with precomputation. Advances

in Cryptology - Crypto 94 Proceedings, LNCS Vol. 839, Y. Desmedt ed., Springer-
Verlag, 1994.

14. D. M'RA[HI AND D. NACCACHE. Batch exponentiation - A fast DLP based signa-
ture generation strategy. 3rd ACM Conference on Computer and Communications
Security, ACM, 1996.

15. D. NACCACHE, D. M'RA~RI, S. VAUDENAY AND D. RAPHAELI. Can D.S.A be
improved? Complexity trade-offs with the digital signature standard. Advances
in Cryptology - Eurocrypt 94 Proceedings, LNCS Vol. 950, A. De Santis ed.,
Springer-Verlag, 1994.

16. P. DE ROOIJ. Efficient exponentiation using precomputation and vector addi-
tion chains. Advances in Cryptology - Eurocrypt 94 Proceedings, LNCS Vol. 950,
A. De Santis ed., Springer-Verlag, 1994.

17. R. RUBINFELD. Batch Checking with applications to lineax functions. Information
Processing Letters, Vol 42, 1992, pp. 77-80.

18. ,]. SAUERBREY AND A. DIETEL. Resource requirements for the application of ad-
dition chains modulo exponentiation. Advances in Cryptology - Eurocrypt 92
Proceedings, LNCS Vol. 658, R. Rueppel ed., Springer-Verlag, 1992.

