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Abst rac t .  Let P(x) -- 0 (rood N) be a modular multivariate polynomial 
equation, in m variables, and total degree k with a small root x0. We 
show that there is an algorithm which determines c(~ 1) integer polyno- 
mial equations (in m variables) of total degree polynomial in cmklog N, 
in time polynomial in craklog N, such that each of the equations has xo 
as a root. This algorithm is an extension of Coppersmith's algorithm [2], 
which guarantees only one polynomial equation. It remains an open prob- 
lem to determine xo from these linearly independent equations (which 
may not be algebraically independent) in polynomial time. The algo- 
rithm can be used to attack an RSA scheme with small exponent in 
which a message is padded with random bits in multiple locations. Given 
two encryptions of the same underlying message with multiple random 
paddings of total size about 1/9 of the length N (for exponent 3 RSA), 
the algorithm can be used to obtain the message. 

1 I n t r o d u c t i o n  

Let P (x )  be a degree k polynomial in x over the integers. It is well known 
that  for the modular equation P ( z )  -- 0(rnod p), where p is a prime, all integer 
roots (rnog p) can be determined in polynomial time (Berlekamp's algorithm). 
All integer roots for the integer equation P (x )  = 0 can also be determined in 
polynomial time ([11]). However, the modular equation modulo a large composite 
N is not known to be solvable in polynomial time (unless the factorization of 
N is known). This is the basis of various public-key cryptographic schemes, the 
most well known of which is RSA [12]. 

Coppersmith [2] recently showed that  if the modular equation P (x )  -- 0 
(rnod N),  has a small root So < N 1/~, then this root can be determined in 
time polynomial in klog N. He showed that  using the lattice basis reduction 
algorithm ([11]), one obtains another polynomial Q (x) over the integers, of degree 
polynomial in k logN (and in polynomial running time), such that  Q(z0) -- 0. 
Then Q(0~) can be solved for x0 using previously known algorithms. 

Coppersmith [2] also showed that  his technique can be applied to multivariate 
polynomials (in variables x). However, only one integer multivariate polynomial 
equation was obtained, which is insufficient to determine the small root Xo. He 
mentioned solving for xo as an open problem. The problem is further compli- 
cated by the fact that  even if one obtains several integer multivariate polynomial 
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equation, they may not be sufficiently independent to eliminate variables so as 
to obtain a univariate polynomial equation. 

We make progress in solving this open problem by showing that  one indeed 
gets severM (linearly independent) integer multivariate polynomial equations 
satisfied by the small root x0. Let P(x)  be an integer polynomial of total degree 
k, in m variables. Then, if P(xo) = 0(rood N), we obtain ck multivariate integer 
polynomial equations each satisfied by the same root x0. The total degree of 
each of these polynomials is polynomial in cmklog N. The running time of the 
algorithm is also polynomial in cmklog N. However, it remains an open problem 
whether these linearly independent equations can actually be solved for xo in 
polynomial time, by e.g. eliminating variables (using resultants -cf. [8]). 

For example, one may have obtained two equations (x 2 4- 1)f(~, y) = 0, and 
(y24-1)f(~, y) -- 0. They are definitely linearly independent, but the only integer 
solutions are the ones which satisfy f(~,  y) = 0. 

For simplicity, we do the analysis for the univariate case, as the multivariate 
case is a simple generalization (see [2]). We show that for the univariate de- 
gree k polynomial equation P(x)  = 0 (mad N), if there is a small integer root 
I;~ol < N 1/~, then one obtains ck linearly independent polynomial equations each 
satisfied by z0 (ck > 1). 

The algorithm in [2] was obtained by doing lattice basis reduction ([11]) of 
the dual lattice formed from the coefficients of P(x)  and its powers. The analysis 
of the dual lattice (instead of the primal) makes it even more difficult to prove (or 
disprove) that  the equations obtained are algebraically independent. In section 4 
we give an algorithm which works by doing lattice basis reduction of the primal 
lattice. It is a form of generalized Diophantine approximation ([11]). The fact 
that  Coppersmith's result [2] can be obtained alternatively by working in the 
primal lattice was observed independently by Howgrave-Graham [5]. Infact, he 
goes on to prove that  the two alternate approaches are equivalent. 

Finally, we mention that finding small roots of modular polynomial equations 
has great practical significance. Consider the public key encryption scheme RSA 
[12]. The public key in this scheme is a large composite number N, a product of 
two secret primes. Also part of the public key is a number called the exponent 
e. A plaintext �9 has the following encryption c 

c = =' N )  

Suppose the plaintext �9 is actually obtained from a message by padding it with 
some random bits. For example, in 1024 bit RSA (i.e. N is 1024 bits long), 
suppose the message m is only 1000 bits. Then the plaintext x could have been 
set to m appended by r, where r is a 24 bit random number (padding). 

As an application of the univariate case, Coppersmith [2] showed that  for 
RSA with small exponent (say 3), two encryptions of the same message with 
random paddings reveals the message, as long as the padding is less than 1/9 of 
the length of N. 
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He also showed, how multiple paddings are also prone to similar attacks, if 
one can solve the multivariate modular polynomial equations for small roots. 
In the previous example, a plaintext x with double padding could have been 
obtained from m by both prefixing and suffixing it with random paddings of 12 
bits each. In section 6 we give details of how such an attack is actually launched. 

Recently, Bleichenbacher [1] has shown that  the KMOV public key cryp- 
tosystem (based on elliptic curves modulo large composites) can be attacked 
using the multivariate algorithm. Essentially, given the ciphertext, and 2/3 of 
the plaintext, the other 1/3 of the plaintext can be obtained. In section 7 we 
summarize both the KMOV scheme, and the attack on the KMOV scheme. 

The rest of the paper is organized as follows. Section 2 introduces lattices 
and the LLL lattice basis reduction algorithm. Section 3 gives the details of 
the algorithm and the analysis for the univariate case, using the dual lattice. 
Section 4 introduces the Diophantine Approximation variant, which is based on 
the primal lattice. Section 5 states the multivariate case. In section 6 and 7 we 
give applications of the multivariate case to RSA and KMOV. In Section 8, we 
give empirical evidence as to how the equations obtained are very independent, 
and rather random in nature. 

2 R e d u c e d  B a s i s  f o r  L a t t i c e s  

Let n be a positive integer. A subset L of the n-dimensional real vector space 
Tr is called a lattice if there exists a basis bl, b2, ...b,~ of ~ n  such that  

L = 2 b i  = r ibi  : r i  E Z(1 < i < n 

i=1 I . i = l  

In this situation we say that bl, b2, ...b,, form a basis for L, or that they span L. We 
recall the Gram-Schmidt orthogonalization process. The vectors b~ (1 < i < n) 
and the real numbers #ij (1 < j < i < n) are inductively defined by 

i--1 

3=1 

mj = (b,, b;)l(b;, b;), 

where (,) denotes the ordinary inner product on 7r '~. The determinant det(L) of 
the lattice L is defined by 

clef(L) = Idet(h, b~, ...b,)l = Idet(b~, b~, ...b~) I 

where bi and b~ are written as column vectors. 

The dual lattice of L is the lattice spanned by the rows of the matrix (bl,..., b , ) -  x. 

A basis bl, b2, ...b,~ for a lattice L is called reduced (LLL) if 

# q _ < l / 2 f o r  l <_j < i <_n, and 
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�9 2 * 2 Ibr + ~ , - , b , _ x l  > 3/4]b~_xl fo r  1 < i < n. 

L e m m a  1 ([11]): Let bl, b2, ...b,~ be a reduced basis for a lattice L in 7~ '~, and let 
b~, b~, ...b* be the Gram-Schmidt orthogonal vectors (as defined above). Then 

[bj[ 2 < 2 i -1 .  Ib:l 2 fo r  1 < j < i < rt 

det(L) <_ r I  Ib~l < 2 "("-1)/4.  det(L), 
i = 1  

]bd _< 2(~-1)/4 . det(L)l/'~ 

L e m m a  2 ([11]): Let L C Z'* be a lattice with basis b,,b2, ...b,~, and let B E R,  
B >_ 2, be such that  ]b~l 2 _< B for 1 < i < n. Then there is an algorithm which 
obtains a reduced basis in O(n41og B) arithmetic operations on integers of binary 
length O(nlog B). 

L e m m a  3 (Diophantine Approximation) ([11]): There exists a polynomial time 
algorithm that,  given a positive integer n and rational numbers a l ,  as,  ...a,~, 
satisfying 0 < e < 1, finds integers Pl,P2, ...P,~, q for which 

Ip~ - qa~ l <_ e for  1 < i < n, 

1 < q < 2'K'*+l)/4e -'~ 

Lemma 3 follows from Lemma 2. 

3 Obtaining more than one polynomial  equations 

We show that  for a polynomial equation of degree k(mod N) in one variable ~, 
if there is a small root (smaller than N1/k),  then the same solution satisfies two 
(in-fact more than two) polynomial equations over integers of degree polynomial 
in k. Moreover, these polynomial equations can be obtained in time polynomial 
in klog N. 

The following is essentially an improved analysis of the technique outlined 
in [2], along with three new observations which we point out towards the end of 
this section. 

Let s0 be the small unknown solution of P(z)  = 0 (mod N). W.l.o.g assume 
that  P(x)  is monic. Let e : r / l o g N ,  where r > 1. Let c > 1/k be a constant. 
The intention is to obtain ck different polynomial equations. Let h be an integer 
such that  hk > max(7, (4c logN) / ( r  - 1)). 
Let n = hk. 

For each pair of integers i , j  satisfying 0 < i < k, 1 <_ j < h, set 

Q~, (x) = x 'P(x)  j 
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Thus, Qij (zo) = ~ N J ,  where Yo = P ( x o ) / N  . . . .  (1) 

Build the rational matr ix  M of size (2hk  - k)  x (2hk  - k)  as in section 2 of [2]. 
Let, 

The upper right block B, of size ( h k )  x ( h k - k ) ,  has rows indexed by the integer g 
with 0 < g < hk ,  and columns indexed by 7(i, J) = i + (j  - 1)k, with 0 < i < k 
and 1 < j < h, so that  0 < 7 ( i , j )  < h k - k .  The entry B [ g , 7 ( i , j ) ]  is the 
coefficient of ~z in the polynomial Qij (x). 

The lower right block C is a (hk  - k)  • ( hk  - k)  diagonal matrix, with the 
value g J  in each column 7(i, j ) .  The upper left block A is a ( h k )  x (hk )  diagonal 
matrix. A[g,  g] has the rational approximation to 6 �9 X g, where X = N (1/~)-~,  
and -- 1/v hk) 

We restrict our at tention to [z0] < X . . . .  (2) 
Let row vector r be such that  its left-hand entries are rg -- z0 g, and whose right- 

hand entries are rT(, j  ) - 0~0. Let s : r M .  From (1) and (2), it follows that  
the Euclidean norm of s is strictly less than 1. (see [2]). 

The matr ix  M can also be written as 

M = B2 
c 

where B2 is an upper triangular matrix((hk - k) x (hk  - k ) ) ,  and the diagonal 
entries of B2 are all one (since all the polynomials Qij are monic). Thus, we can 
transform M ,  using elementary row operations, to M ~ 

M I = A2 I 
A3' 

where I is an identity matr ix  ( ( h k  - k)  x (hk  - k ) ) .  Note that  (A1 'T A2'T) T is 
still upper triangular. It also follows that  (A1 ~T A3'T) T is upper triangular. In 
fact, we will soon calculate the diagonal entries of (A1 ~T A3'T) T. 

Obtain M from M'  using row exchanges. 

| a3 '  
\A2' 

Denote the upper left ( h k )  • ( h k )  block of M by ~ / =  (A1 'T A3'T) T. Note that  

det(i.t) = dec(m) 

Now we restrict our at tention to M. By construction of M, and the row 
operations performed, ~ / i s  still an upper triangular matrix.  The lower diagonal 
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elements of jlT/, for k < 7( i ,J)  + k < hk ,  are given by ~r.r(i,j)+k-~(ij)+~ = 

_NJ6X-(~( iJ)+k) .  

The nex t  step in [2] is to do the LLL basis reduction of the lattice generated 
by rows of M (see Lemma 2). The LLL algorithm goes through a series of steps 
involving elementary operations on the rows of the matr ix  representing the lat- 
tice. Let, bi, and b~ denote the intermediate basis vectors and the corresponding 
Gram-Schmidt orthogonalization vectors respectively. It is a property of the LLL 
algorithm that  max {Ib;I 2 �9 x < i < ,~} is non-increasing. 

Since M is an upper triangular matrix, if we start the LLL algorithm on 
/Q, with the order of the rows reversed, the Gram-Schmidt orthogonalization 
of this initial matr ix  will yield a diagonal matrix, with the diagonal entries 
remaining the same. The maximum of the absolute value of these diagonal entries 
is Nh-16X-(~+(h-2)k).  Denote this quantity by b m a z .  

A property of the reduced basis is that  the final b* satisfy (see Lemma 1) 

Ib$12 < 2'-JlbTI 2 f o r  1 <_j < i < n 

Thus, 

Moreover, 

i 

n Ib$1 ~ ~ 2'<'-x)/21b~12' 
j = l  

Ib~l = det(l~) 
j = l  

Thus, Ib~l > (det(!VI)/bmaz(n-i))i/i2-(i-x)/4. 
With the choice of h as previously mentioned, it can be shown that 
(recall, det(J(/I)= d e t ( M )  = N(h-1 )hk /2x -hk (hk -1 ) /2~  hk. Also, for h k  > 7, 6 h~ > 
2(hk-1)/2) 

d e t ( 1 Q ) / b m a z  c~ > 2'K"-x)/4 

Thus, for n -  ck  < i < n ,  Ibm[ > 1. 

The Euclidean norm of any element ~ cib~ of the lattice M is at least Ic,~[ x 
Ib~l > Ic.I.  So any lattice element with norm less than 1 must have c,~ = 0. 
Continuing this argument,  we have that  any such lattice element must have 
ci = 0, for n - ck  < i < n .  In particular s is such an element. 

Let s = r M  = rI'Alr = r I " ~ r ,  where M is the matr ix  obtained by performing 
the LLL algorithm above. Now, r I "  has the property that  the entries with index 
i, n - ck  < i < n ,  are zero. Thus, the same holds for s~r -1. Since, s has only 
powers of z as variables, this yields ck  equations in z, ..z '~-x. These equations 
are linearly independent as M is non-singular. 

These polynomial equations over integers can be solved to obtain z0. 

Summarizing, the improved analysis was based on the following observations: 
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1. One can do elementary row operations on M so that  M is upper triangular, 
and can give the diagonal entries of M explicitly. 

2. These diagonal entries give initial values of ]b[ [. 
3. The maximum norm [b~l is non-increasing as LLL proceeds. 

4 Diophantine Approximation Alternative 

The analysis in the previous section (as in [2]) was done with the dual lattice 
formed from the equations Qij(z),  i.e. the lattice was reduced with respect to 
the rows instead of the columns. Further, at the end we had to invert the matrix 
~r to obtain the polynomial equations over the integers. Thus, it is difficult to 
get an insight into how the integer equations were obtained from the original 
polynomials Qij (z). Without such an insight it would be even more difficult to 
prove if the equations obtained are algebraically independent. 

In this section, we do a similar analysis but with the primal lattice, and 
show that the integer polynomial equations are obtained by a weighted (and 
generalized) Diophantine approximation (see Lemma 3). 

Let P(z)  = ao + a lz  + ... + a t z  k. Since zo is a root of this polynomial 
modulo N, there is an integer Y0: ao/N + at /Nzo + ... + a~/Nzko = Yo. If each of 
the coefficients was small (e.g. _< 1), and z0 was small (which we already know 
is small), Yo would be zero, and we would have an equation over the integers. 
However, ai in general is not small. 

Let Iz01 < X.  Consider the equation, 

(Po + qaolN) + (Pl + qallN)zo + ...(p~ + qak/N)z~o : qYo + ~_aP, Zlo 
i----0 

Here Pi and q are integers. If we can ensure that  each of the quantities I(Pi + 
qadN)X~[ is less than 1/(k + 1), then since the right hand side of the equation is 
an integer it will have to be zero. We would have an integer polynomial equation 
as long as one of the coefficients is non-zero. Since a~: = 1 (P is monic), the 
latter condition is guaranteed by requiring 0 < [q[ < N 

The former condition can be fulfilled by doing a simultaneous Diophantine 
approximation of ai/N (weighted by X i) - s e e  section 2. However, the require- 
ment [q[ < N does not allow for a good enough approximation, and hence 
requires X to be rather small (X < Nt/k2). 

We now employ the trick used in [2]; we use all of the polynomials Qij (as 
defined in Section 3). Let h be an integer to be determined. Let 7(i, J) be as 
defined in the previous section. Consider the following equation which holds for 
zo, Yo = P(zo)/N, all integers pg and qT(iJ): 

h k - 1  / z - l h - 1  h k - 1  k - l h - 1  

g--O i=O j = l  g=O / = 0  j----1 
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Here, ag,~(ij) is the coefficient of z~ in the polynomial Qij(z). 

If we can upper bound each of the outer summands on the LHS (in absolute 
value) by 1/hk ,  then since the right hand side is an integer, it must be zero. 
This would yield an integer polynomial equation. It would be non-trivial if each 
[q'y(id)l < NJ, and some Iq~(/j)[ > 0. 

To this end, we set up a matrix M as in the previous section, again intend- 
ing to do a (generalized) weighted Diophantine approximation. Let X (to be 
determined) be an upper bound on z0. 

The upper right block B, of size (hk)  x (hk - k), has entry B[g,7( i , j ) ]  = 
(a,,~{~,j)/NJ)Xg. 
The lower right block C is a (hk - k) x (hk - k) diagonal matrix, with the 
value #j (to be determined) in each column 7(i, J) �9 The upper left block A is a 
(hk)  x (hk)  diagonal matrix with A[g, g] = Xg .  

We perform lattice basis reduction on the lattice generated by the columns of 
M. Let bl be the first vector in the reduced basis, which is a linear combination 
of the columns of M, given by integers P9 and q'KiJ)" Thus, each of the outer 
summands on the LHS of equation (3) is less than Ibi]. 

It is a property of the reduced basis that  tbil < 2("-i)14(det(M))Z/ '~,  where 
n = 2hk - k is the dimension of M. Thus, we require 

2(~-z)14(det (M))  U'~ < 1 /hk  ...(4) 
Also, [qT(ij)* #jl < Ibzl �9 Thus, to ensure IqT(i,j)l < NJ, it suffices to have 

Ibll < 2(n-1)14(det (M))  1/n < I # j I N #  ...(5) 
Some qv(i,j) will be non-zero if ]bt[ < 1. 

Also, note that  d e t ( M )  yhk(h~-l)/2,  k , = " "  ~ l - - . - h - 1  . . . .  ( 6 )  
The inequalities (4) and (5) impose opposing conditions on #j.  A simple cal- 
culation shows that  both (4) and (5) can be satisfied if X < N z/ t -~,  where 
�9 > 1/log N. This requires h to be O(log N) as well. 

To obtain more than one equation, we bound other small vectors b2, b3 etc. 
of the reduced basis. Thus, if Ibtl < 1 /hk ,  bt would yield another set of integers 
p#, and q~(ij), and hence another polynomial equation, by (3). 

First note that,  since M is an upper-triangular matrix, and bt is an integer 
linear-combination of the columns of M, therefore ]bt[ > min(lMii]),  0 < i < n. 
Call this quantity Mmi~. Another property of the reduced basis is that Ib:] < 
2(i-1)/21b'1, for 1 < j < i < n. It follows that,  

Ib#l _< 2~("-~)/(~(~-(#-l)))(det M)~/(~-(#-~))M,~ -I)/(~-(#-I)) , fo~ 1 ~ j < n 

However, Mmin = min(IMii l )  = min(Xg,#j) ,  where 0 < g < hk - 1, and 
1 < j < h. The previous analysis had forced #j ~ N - J .  Hence M, ni,~ ~ N -(h- i ) .  
This does not yield a good upper bound for [bj 1- 
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To solve this problem, we do certain elementary column operations (similar to 
the row operations of the previous section), ending in yet another diagonal (n • n) 
matrix. View M as 

We make use of the fact that the polynomials qij(z) are monic, and hence, we 
can obtain the following matrix M ~ 

M '  = B2' 
\ A 3 '  C'  

where B2' is now a diagonal matrix, and (AY m A3tT) T is an upper triangular 
matrix. Thus, we can perform LLL on the following upper-triangular matrix 
instead 

B21 ] 

The minimum diagonal entry of this matrix is # h -  t N h -  1. The determinant of .~f 
is same as that  of M, and the previous analysis holds. This allows us to obtain 
bounds for X and the corresponding h (for a given c) similar to those in Section 
3. 

5 Multivariate polynomials 

Let P(x) ~ 0 (rood N) be a modular multivariate polynomial equation, in m 
variables, and total degree k with a root Xo. Moreover, let the root be small, 
i.e. Jz0~J < N ~', for i < i < m, and ~ai < (I/k). There is an algorithm 
which determines ck(ck ~ I) linearly independent integer polynomial equations 
(in m variables) of total degree polynomial in cmklog N, in time polynomial in 
cmklog N, such that each of the equations has xo as a root. 

The proof of this statement is exactly the same as that of the univariate case 
(Section 3 or 4), except that the polynomials qij and the matrix M are built in 
a more generalized fashion (see [2]). For completeness, we reproduce from [2]. 

Define 

z = P ( z o l ,  ...=o~)/N 

Note that  qi~...~.~j(zot, ..., zo,,~) is divisible by N j. Set a limit T (corresponding 
to hk in section 3) and develop the modular equations qi1...i.~a (Z01, "", ZOrn) ---- 

0 (rood N) for all nonnegative integer indices (ii, ...ira, j) with I < j, i,~ < k, 
and ii + i2 + ... +im + kj ~_ T. The condition im < k is required so that the 
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submatr ix  B2 (as in section 3) is a uppertr iangular  mat r ix  with diagonal entries 
all one (w.l.o.g. we can assume tha t  the polynomials  are monic in z,~). 

We build the matr ix  M analogous to tha t  of section 3. The vector r contains 
all monomials  of total  degree at most  T, so the sum of the total  degrees of these 
monomials  is (see e.g. [7]) 

m - 1  = m ~ m + l ]  
i--0 i=0 

(r+m  
By symmetry,  the sum of the degrees in each zi, i = 1, ..., m - 1, is \ m + 1 ] 

These appear  as negative exponent of cti in the diagonal entries of the upper  left 
block A of M. 

Let T = hk. The powers (moduli) of N appearing in the lower right submatr ix  
C of M add (asymptotically for large h) to 

h h 
E ( h k - j k + m )  j~_l ( h k - ( j + l ) k + m )  1 [T+m~-o((T+rn m)  

m - m = k \ r n + l ]  ) 
.4=1 

For example,  for m = 2, the powers of N add upto k2(h - 1)h(2h - 1)/12. 
With the requirement XJa~ < ( l / k )  - e for appropriate  e we will have Ib~l > 1, 
for n - ck < i < n, where n is the dimension of the mat r ix  .~/. Note tha t  the 

dimension of the matr ix  ~ / i s  the total  number  of monomials  which is ( T  +rnrn). 

6 A p p l i c a t i o n  t o  R S A  w i t h  R a n d o m  P a d d i n g s  

For simplicity, let 's assume that  the public exponent in the RSA scheme is 3. 
Given a plaintext z, the ciphertext c obtained by encrypting z under RSA is 
given by 

c = z 3 ( m o d  N )  

Here N is a large composite, which is par t  of the public key. 

If  a message m is not of full length (for example,  if m is less than  1024 bits, 
when N is 1024 bit long), one could pad m with a random number  t to obtain a 
number x of full size. Thus, if m was only 1000 bits long, a 24 bit random string 

could be appended to m to obtain x, in which case 

x = 224. rn-4-t 

Alternatively, more than one random number  could have been used to fill 
different contiguous locations of ~. For example,  the top 12 bit positions, and 
the least significant 12 bits could be used for padding with t l  and t2 respectively, 
whereas m could be placed in the middle, in which case 

a~ ---- 21012- t l  -4- 212 �9 rrt -4- t2 
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If a message is encrypted twice using these schemes, then the results of the 
previous sections can be used (heuristically) to obtain the message as follows. 
As an example, we will consider the case of double padding mentioned above. 

Note that,  is we have two encryptions of m, i.e. of plaintexts z and z' ,  both 
of which were obtained from m by double random paddings then 

x' = z § 21~ (tl' - tl) + (t2' -- t2) 

Let t : 21~ ( t l '  - t l )  + (t2' - t2). Then 

c = z 3 (mad N) 

el = ;g,3 = (Z -'~ t )  3 = ;g3 _.~ 3;C2t -k 3Zt 2 + ~3( rood N )  

Using a result of Franklin and Reiter [4] (also see [3]) it follows that  

t(c' + 2 c -  t 3) t(3~3 + 3z~t + 3=t~) (mod N) 
z : c I - -  c-{- 2 t  3 : 3 z 2 t  d- 3 z t  2 Jr 3 t  3 

Hence, we can recover z if we know c, c', N, and t. 

I f t  is not known, but  the random paddings were small, i.e., each of ( t l ' - t l ) ,  
and (t2' - t2) were small (say, less than N1/lS), then we could do the following. 
First, we eliminate z, by taking the resultant ([8]) of the above two equations 
with respect to z. Thus, 

Resultant= (x a - c, (z + t) 3 - c') =, 
t 9 + (3c - 3c')t 6 + (3c ~- + 21c~' + 3(c')~)t~ + (c - c')~ = 0 (rood IV) 

This is a multivariate polynomial in (tl' - tl), (t2' - t2), with small roots. Thus, 
we can apply the algorithm of section 5, and there is a possibility that it may 
yield (tl' - tl), and (t2' - t2), and hence t. 

In section 8 we show some empirical results, and mention the practicality of 
this attack. 

7 A p p l i c a t i o n  to  A t t a c k s  on K M O V  

Let N be a large composite integer, product of two secret prime numbers p and 
q. The public key of the KMOV [6] public-key scheme is N and an integer e 
relatively prime to (p+ 1)(q % 1). A message is a pair (m~, rn~) where m=, rny E 
S/(N ). It is encrypted by computing (c=, %) = e. (m~, m~) (mad N), over an 

2 3 (rood N). The scalar multiplication elliptic curve parameterized by b = my - m x 
by e refers to adding (m=, m~) to itself e times in the group of the elliptic curve 
(see [9],[6] or[l] for definition of an elliptic curve). We will not go into the details 
of this group, but it suffices to note that a point (zl, yl) is on the elliptic curve 
parameterized by b if y l  2 : X l  3 + b ( r n o d  N ) .  

Since, both  the plaintext (m=, r%) , and the ciphertext (c=, %) are on this 
elliptic curve, it follows that  

2 3 2 3 ( ,nod IV)  b = cy  - c z = m y  - m e  
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Bleichenbacher ([1]) observed that  if the ciphertext is known, which implies 
that b is known, and 2/3 of the plaintext (m, , rnv)  is known, then the rest of 
the plaintext can be obtained (using the results from section 5) from the degree 
3, multivariate polynomial equation obtained from 

3 2 m z = m y + b ( m o d N )  

8 Empirical results 

We implemented the algorithm for the univariate case using the package LiDIA 
[10]. Surprisingly, not only did we we obtain a large number of equations, but the 
GCD of the polynomials turned out to be a polynomial of a very small degree. 
For example, the following polynomial P (z ) ,  has root z0 = 1 (modulo g = 84). 

P(z)  = 83 + 4 2 z  + 4 2 z  2 + z 3 

The algorithm of Section 3, yielded the following polynomials (for h = 3), each 
of which evaluated to zero at z0 = 1 

- 1  + z  - z  2 +2z  3 - 2 z  4 +2z  5 - z  6 + z  7 - z  s 
- I  +2z  z - z  6 
- 1  - 3 z  - x  2 +2z  3 +6z  4 +2z 5 - z  6 - 3 z  7 - z  s 
- 3 7  +32x z +5z  6 

37z - 3 2 x  4 - 5 z  7 
- 1  +~ +73~2 +2z3 _2z4 _62z5 _z6  +z~ _ l l z S  
1607 -1607z  +146z 3 -146x  4 + l l z  6 -1157  
1610 +x  -1608~ ~ +140x 3 - 2 z  4 - 1 4 4 z  s +14z 6 + ~  - 1 2 z  s 

The GCD of these polynomials is (z - 1). 

When dealing with multivariate polynomials, the dimension of the matr ix  
involved in the basis reduction starts becoming rather large. As mentioned at 
the end of section 5 the size of such a matr ix  for bivariate polynomials (i.e 
ra - 2) is square that  of T = hk. If we want to detect upto 1/k of the missing 
bits, then the running time of the algorithm is proportional to 2 l~ since 

= r / log  N (see the beginning of section 3). Since, the LLL algorithm itself has 
time complexity O(n61og 3 Nh), where n = (hk) 2 is the dimension of the basis, the 
total t ime complexity is O(21~ s N). For 1024 bit RSA, k = 3, h 
has to be rather large, which makes the algorithm rather impractical for current 
computers. If we are only interested in detecting much fewer missing bits, then 
the size of the matr ix and hence the running time may be more amenable, and 
actually feasible. 

9 Conclusion 

We make progress in solving modular multivariate polynomial equations with 
small roots. Our algorithm obtains several integer polynomial equations in the 
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multiple variables. However, the problem of showing that  these equations can 
actually be used to determine the roots is still open. The problem lies in the fact 
that  even though the equations may be linearly independent, one may not be 
able to eliminate variables by taking resultants. 

However, empirical results show that  the different equations obtained are 
rather random in nature, and hence their resultant may be able to eliminate all 
but one variable. On the other hand, even though the algorithm is polynomial 
in k, and log N, the exponents are rather large for the multivariate case. Thus, 
the algorithm is not practical (for current computers) if the size of the root is 
as large as N 1/~. Thus for instance, for 1024 bit RSA with exponent 3, it may 
not be practical to launch an attack to detect 340 missing bits in the plaintext 
(spread over two contiguous regions). However, if much lesser number of bits are 
missing, the algorithm can be used effectively to detect those bits. 
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