
Lower Bounds on Generic Algorithms in Groups

Ueli Maurer Stefan Wolf

Computer Science Department
Swiss Federal Institute of Technology (ETH Ziirich)

CH-8092 Ziirich, Switzerland
E-mail addresses: {maurer,wolf}@inf.ethz.ch

Abs t r ac t . In this paper we consider generic algorithms for computa-
tional problems in cyclic groups. The model of a generic algorithm was
proposed by Shoup at Eurocrypt '97. A generic algorithm is a general-
purpose algorithm that does not make use of any particular property
of the representation of the group elements. Shoup proved the hard-
ness of the discrete logarithm problem and the Diffie-Hellman problem
with respect to such algorithms for groups whose order contains a large
prime factor. By extending Shoup's technique we prove lower bounds on
the complexity of generic algorithms solving different problems in cyclic
groups, and in particular of a generic reduction of the discrete logarithm
problem to the Diffie-Hellman problem. It is shown that the two problems
are not computationally equivalent in a generic sense for groups whose
orders contain a multiple large prime factor. This complements earlier
results which stated this equivalence for all other groups. Furthermore,
it is shown that no generic algorithm exists that computes p-th roots
efficiently in a group whose order is divisible by p2 if p is a large prime.

Keywords . Diffie-Hellman protocol, discrete logarithms, generic algo-
rithms, roots in finite groups, complexity, lower bounds.

1 I n t r o d u c t i o n

1.1 C o m p u t a t i o n a l P r o b l e m s in Cyc l i c Groups

Let G be a finite cyclic group with generator g. The security of the well-known
Diffie-Hellman (DH) protocol [3] relies on the difficulty of the following compu-
tat ional problem, the so-called Diffie-Hellman (DH) problem: Given two group
elements g~ and gY, compute g~Y. Of course this problem is at most as hard as the
discrete logarithm (DL) problem: Given g~, compute x. The relationship between
the two problems has been studied intensively with the objective to prove that
the DH problem is as hard as the DL problem for any group [2],[5],[6],[1],[7]. For
certain classes of groups or, more precisely, for all groups of certain orders, the
DH problem and the DL problem were shown to be polynomial-t ime equivalent.
In Section 1.3 we give two examples of such proofs. We will see in Section 2.2
tha t these reductions are close to optimal. However, it is shown in Section 2.3
tha t for cyclic groups of certain orders, such an equivalence cannot be proved

?3

universally. This is true for groups of which the order contains at least one multi-
ple large prime factor. In Section 3, a complete characterization is given for when
p-th roots can be computed efficiently in a group G by a generic algorithm.

1.2 Generic Algorithms

Shoup considered in [12] the difficulty of the DL problem, the DH problem,
and related problems with respect to generic algorithms. Intuitively, a generic
algorithm is a general-purpose algorithm that does not make use of any property
of the representation of the group elements other than the fact that each group
element has a unique representation, e.g., by some binary string. More precisely, a
generic algorithm for the group Zn takes as input a list (a (x l) , . . . , a(xl)), where
the x~ are elements of Zn and a is a random encoding of the group elements, i.e.,
a random mapping from Zn to a set S of size n of binary strings. The generic
algorithm is allowed to make calls to oracles which compute the functions add,
mapping S x S to S, and inv, mapping S to S, with

add(a(x) ,a(y)) = a (x + y) and inv(a(x)) = a (- x) .

Shoup proved that no generic algorithm can solve the DH problem in cyclic
groups of order n with non-negligible probability substantially faster than in time
O(v~) , where p is the largest prime factor of n. Clearly, this implies that the
same lower bound holds for the DL problem. The Pohlig-Hellman algorithm [10],
together with the baby-step giant-step time-memory tradeoff, is a generic algo-
ri thm that (almost) matches this bound.

The Pohlig-Hellman discrete-logarithm algorithm works as follows. Let g be
a generator of the (multiplicatively written) cyclic group G, and let a = g=.
For a fixed prime factor q of the order IG] of G, consider the group element
alVl/q -_ g~.lal/q. The algorithm is based on the following two observations.
Because (alVl/a)q = alGi = e, where e is the neutral element of G, the group
element atal /q can take q possible values when a varies over G, namely the q
different q-th roots

gO __ e , glGl/q , . . . , g(q-1)JGI/q

of e. These group elements form a subgroup of G which is generated by glGI/q.

Second, the modulus of x with respect to q determines which of these roots is
equal to a lal/q. More precisely,

aiGi/q ..~ gi.JGi/q ~ x =-- i (mod q) .

Hence x can be determined modulo q by solving the DL problem in the subgroup
(g IGI/q) o f G. If q is a prime factor of IGi with multiplicity f > 1, then the
coefficients x0, x l , . . . , x i -1 of the q-adic representation

x - xo + x l q + " " + x l -] q 1-1 (mod q l)

can be computed as follows. Because x0 - x (rood q), the first coefficient x0 can
be obtained as just described. When Xo is known, the group element

(a . g-Z~ IGi/q2

74

is computed. Because (a. g-X~ IGl/q2 = 9 xl"lGl/q, this group element is again
equal to one of the q-th roots of the neutral element. The coefficient xl can also
be determined by solving the DL problem in (gIGI/q).

With this method, x can be computed modulo qf for all prime factors q of
IGI, and Chinese remaindering yields x modulo IGI, i.e., the discrete logarithm
of a. The complexity of this algorithm for a group G with IGI = I-[q[' is

O (Z fi(logIGl + ql)) �9

Let q be the largest prime factor of IGI. If memory space for storing v ~ group
elements is available, the running time reduces to O (~ f~(log IGI + x /~logqi))
when the baby-step giant-step method is applied for computing discrete loga-
rithms in the subgroups. This running time is of order

V~" (log IGI) ~ .

The (more efficient) index-calculus methods for the computation of discrete
logarithms in the multiplicative group of a finite field (see for example [8]) are
not generic. They make use of the fact that the representation of a group element
is an integer or a polynomial which can efficiently be factored in some cases, and
that this decomposition is compatible with the group operation. However, there
exist groups for which no faster algorithms are known than the generic methods
so far. Examples are non-supersingular elliptic curves over finite fields.

1.3 E x a m p l e s o f Gener ic R e d u c t i o n s o f the D L P r o b l e m to t h e
D H P r o b l e m

The following two reductions of the DL problem to the DH problem, which
work for all groups of certain orders, are special cases of reductions due to den
Boer [2] and Maurer [5] (see also [7],[1]). The two lemmas below are corollaries to
the results proved there. A reduction of the DL problem to the DH problem can
be given by an efficient algorithm for computing discrete logarithms in a group
G = (g) of order IGI (where no other assumptions on G or, more precisely, on
the representation of the elements of G, are made) which is allowed to make calls
to a so-called Diffie-Hellman oracle for G.

D e f i n i t i o n 1. A Diffie-Hellman (DH) oracle for a group G with respect to a
generator g takes as inputs two elements a, b E G (where a = g~ and b = gV)
and returns the element g~V.

In Lemmas 2 and 3, reductions of the DL problem to the DH problem are
described in special situations, where the number of required calls to the DH
oracle is minimized. The motivation is that the resulting lower bound on the
complexity of breaking the DH protocol is equal to a possible corresponding
lower bound for solving the DL problem, divided by the number of calls to the
DH oracle performed by the reduction algorithm.

75

L e m m a 2 . [2] Consider a group G = (g) whose order IGI = p is a pr ime with
p - 1 = 21 for some integer I. Then there exists an algorithm that computes
discrete logarithms in G in t ime polynomial in l ogp and makes 1

l o g (p - 1) - 1

calls to a D H oracle for G.

Remark . Note t h a t the result of Shoup ment ioned above implies t h a t without
a DH oracle, discrete logar i thms in G cannot be compu ted subs tan t ia l ly fas ter
t h a n in t ime O(v/~) by a generic a lgor i thm.

Proof. Let g~ be given. By calling the DH oracle for G with respec t to g one can
com pu te the group e lements

bo = g~ , bl = g~2 = DHg(bo, bo) , b2 = g~4 , . . . , bl-1 = g J - ~ g~(p-~)/2

Let x = c w (mod p), where c is a fixed genera tor of GF(p)* , and let fu r ther
w - Wo + 2Wl + . . . + 2 t - l w l - 1 (mod p - 1). First , wo can be de te rmined because
bl-1 = g if wo = 0 and bl-1 = g -1 if Wo = 1. Fu r the rmore

b z _ 2 g X (V - ~) / 4 g c(w~ () , (1) = = = gC w~ c ~'~(v-1)/2

where
g' := gC w~

is also a genera tor of G. The last expression of (1) is equal to g' if wl = 0 and to
(g ,) - i if wl = 1. Proceeding like this, w and x = c ~ can be de te rmined in t ime
po lynomia l in logp, and by l - 1 = log(p - 1) - 1 calls to the DH oracle for G.

[]

L e m m a 3 . [5] Consider a group G = (g) whose order IGI = p is a pr ime with
p - 3 (rood 4), and assume that a cyclic elliptic curve E, ,b(p) (with generator
Q) over G F (p) exists such that IEa,b(p)] = 2 t /or some 1. Then there exists
an algorithm that computes discrete logarithms in G with probability at least
1/2 - 1 /x /~ in t ime polynomial in l ogp and makes at mos t 91ogp calls to a D H
orac le /or G.

Proof. Note first t h a t p - 2 v ~ + 1 _< IE,,b(p)l < p + 2 V ~ + 1. (For an in t roduc t ion
to elliptic curves, see for example [9].) Let g~ be given. Then , x can be c o m p u t e d
as follows. F rom g~, compu te

g(x+d) 3 +a(x+d)+b

for some r a n d o m offset d (this requires two calls to the DH oracle for G), and

g((x+d)a+a(x+d)+b) (p+D/4 __--: gY

1 All logarithms in this paper are to the base 2.

76

by at most 2 log((p + 1)/4) oracle calls. If gy2 ~ g(~+d)S+,4~+d)+b (this can be
tested by one oracle call), then (x + d) 3 + a(x + d) + b is not a quadratic residue
modulo p and the algorithm fails. With probability at least

p - 2vffi+ 1 1 1
2p

however, the algorithm does not fail, and the pair (gx+d, gy) is such that P : -
(x + d, y) is a point of the curve E,~,b(p). The number of oracle calls for the
computation of this point is at most 21og((p + 1)/4) + 3.

We now compute w (modulo 2 l) such that P = wQ. In the following, the
points of the elliptic curve are represented in projective coordinates (see [9]). In
this representation, doubling of a point in the curve requires 7 multiplications
modulo p but, unlike in the affine representation, no inversions. From (g~, gY, gl)
one can hence compute, in polynomial time, (g~l, gUl, g~) such that (xl, Yl, zl) =
/~ := 2P, using 7 oracle calls. Analogously, (g~',gY',g~') can be computed for
i = 2 , . . . , l - 1 such that (xi,yi, z~) = Pi := T P .

Let w _= wo + 2wl + ..- + 2 t - lwl_l (mod 2t), where the wi are binary. Then
we have Pl-1 = O if Wo = 0 and Pl-1 ~ (9 if wo = 1. Here (9 stands for the
neutral element of Ea,b(p), the so-called point at infinity. In projective coordi-
nates, (x, y, z) represents (9 if and only if z = 0. Hence w0 can be determined
by comparing g~-~ with gO = e. Furthermore,

PI-2 = 2 l -2P = 2l-2(Wo + 2wl)Q = 21-2woQ + 21-1wlQ .

Hence PI-2 equals 2t-2woQ if and only if wx = 0. Given (gX~_2, gUS-2,g~-2) and
(x t, y~, 1) = 2~-2w0Q, one can check equality of the points by comparing (g~-2)~'
with gXt-2 and (gZ~-2)y' with gy~-2. This requires no calls to the DH oracle.

Proceeding like this, w and wQ = P = (x + d, y), and hence x, can be
computed in polynomial time and by 7 (/ - 1) < 7(log(p + 2vf fi + 1) - 1) calls to
the DH oracle. Hence the total number of oracle calls for the computation of x
from g~ is

21og((p + 1)/4) + 3 + 7(log(p + 2v~ + 1) - 1) _< 91ogp,

and this concludes the proof. []

In the next section we will show that the number of oracle calls in the reductions
of Lemmas 2 and 3 are close to optimal and a constant multiple of the optimal
number, respectively.

A generalization of the method used in the proof of Lemma 3 allows to prove
the following theorem, which is an immediate consequence of the results of [5].
It is well-known that for each number d E [p - 2v/'p+ 1, p + 2 v ~ + 1] there exists
a cyclic elliptic curve over GF(p) of order d. For a number n, we define u(n)
to be the minimum of the set of largest prime factors of the numbers d in the
interval In - 2vfn + 1, n + 2v/n + 1].

77

T h e o r e m 4. [5] Let n -= rI p~" be a positive integer such that all multiple prime
factors of n are of order (logn) ~ Then there exists a generic algorithm that
makes calls to a DH oracle for G and computes discrete logarithms in groups G
of order n in time

x/max{u(pi)} �9 (log n) ~ .

The following conjecture on the existence of smooth numbers in small intervals
has been made in [5].

C o n j e c t u r e 1. v(n) = (logn) O(1).

This assumption appears plausible when considering related results on smooth
numbers in larger intervals, but it has not been proved. If this conjecture is true,
then there exists a polynomial-time generic reduction algorithm of the DL prob-
lem to the DH problem for every group whose order does not contain a multiple
large prime factor.

2 L o w e r B o u n d s o n G e n e r i c R e d u c t i o n s o f t h e

D L P r o b l e m t o t h e D H P r o b l e m

2.1 M o t i v a t i o n

In this section we prove lower bounds on the complexity of reductions of the DL
problem to the DH problem that work for all cyclic groups of a certain order,
i.e., generic algorithms for the computation of discrete logarithms that make
calls to a DH oracle, but which do not exploit any particular property of the
representation of the group elements.

As mentioned earlier, Shoup proved in [12] that in the generic model, the
DH and DL problems are of roughly equal difficulty. However, this has no im-
plications for any particular group G. On the other hand, a generic reduction
between the two problems would prove the relative hardness of the DH problem,
with respect to the hardness of the DL problem, for every (particular) group of
a certain order. All the previously described reductions of the DL problem to
the DH problem are generic (see [2],[5],[1], and Section 1.3).

The smaller the number of calls to the DH oracle required in a reduction
of the DL problem to the DH problem is, the stronger is the equivalence result
implied by the reduction. Ideally, one might wish to find a reduction that uses
only one or a constant number of oracle calls. However, the results stated below
show that such a reduction cannot exist in the generic model.

2.2 A G e n e r a l Lower B o u n d on t he N u m b e r o f D H - O r a c l e Cal l s

T h e o r e m 5. Let n be a positive integer and let p be a prime factor of n. For
any (possibly probabilistic) generic reduction algorithm of the DL problem to the
DH problem that works for groups of order n, runs in time at most T (>_ 4), and

78

computes the correct discrete logarithm with probability c~, the expected number
of calls to the D H oracle is at least

a l o g (p / T 2) .

We need the following lemma (see [11] or [12]).

L e m m a 6 . When given a polynomial P (X 1 , . . . , Xk) over Zpt of total degree d,
the probability that P (x l , . . . , x k) = 0 for independently and randomly chosen
elements x l , . . . , xk of Zp, is at most d/p.

Proof of Theorem 5. The proof method is related to the technique used by Shoup
in [12]. The underlying group is Z,~ together with a random encoding a of the
group elements, i.e., a randomly chosen map from Zn to some set S of n elements.
Let n = pts with gcd(s,p) = 1. The generic algorithm must compute discrete
logarithms, i.e., it takes as input a(1) and a(x) and should output x. Since we
are proving a lower bound, and because additional knowledge can only reduce
the running time, we can assume that discrete logarithms modulo s are easy
to compute. Hence in what follows, let without toss generality n = p t The DH
oracle, which can be used in addition to the oracles for addition and inversion,
is an oracle for multiplication, i.e.,

DH(a(y) , a(z)) = a(y . z) .

Let the generic algorithm make A calls to the addition and inversion oracles
and M calls to the multiplication oracle during a particular execution. Hence we
have A + M < T if T is an upper bound on the number of steps the algorithm
performs. The algorithm can interact with the oracles in the following way. By
calls to the oracles, a(P~(x)) can be computed for (without loss of generality
pairwise distinct) polynomial expressions Pi(X) , i = 1 , . . . , A + M + 2, with

_pl (x) = 1, P (X) = x ,

and where, for all i > 3, P~(X) is equal to either

Pk(X) + - P k (X) , or P (X) . P (X)

for some k, 1 < i. Of course the algorithm is free to perform additional computa-
tions, but this does not influence the following information-theoretic arguments.
The crucial observation is that , unless P~(x) = Pj(x) for some i ~ j , the algo-
r i thm sees completely random elements of S and cannot learn anything about x
other than the fact that Pi(x) ~ P~(x) for all i ~ j . In other words, let E C_ Z,~
be the event that Pi(x) = Pj(x) for some i ~ j , and let ~ be the complementary
event. Then, we have

I (x ; A+M+ I f) = 0 , (2)

where I(U; V IA) = H(UIA) - H(UIV, .4) is the mutual (Shannon) information
between the random variables U and V, given the event .4. In other words,

79

equation (2) means that the random variable x is statistically independent of
[o'(P 1 (x)) , . . . , cr(PA+M+ 2 (X))], given the event ~. This holds because a is chosen
randomly among all possible encodings.

Lemma 6 implies that

P[E] <_ 2M(A + M + 2)(A + M + 1) , (3)
2p

i.e., that the probability of the event ~ is upper bounded by D/p, where

D := 2M(A + M + 2)(A + M + 1) / 2 .

The number D is equal to the maximal possible degree of the polynomials P~,
namely 2 M, multiplied with the numb er (A + M + 2) (A + M + 1) / 2 of two-element
sets {i , j} C_ { 1 , . . . , A + M + 2}.

We conclude from (2) and (3) that the probability that the algorithm answers
correctly is upper bounded by

P[E] + P[~]. 1 1 D + 1
n . P[~] < PIE] + ~-~ < - - p (4)

because x is a random element of Z~. Note that n. PIE] is the number of elements
x of Z v, compatible with the event ~. The best strategy of the algorithm, given
~, is to output one of these elements randomly. From the assumption in the
theorem, and from (4), we conclude

E[min{(D + 1)/p, 1}] _> a ,

where the expectation is taken over the executions of the probabilistic algorithm
and over the random choices of a and x. Hence E[M] >_ a . log(p/T 2) holds for
T > 4 . []

Theorem 5 implies that the reduction of Lemma 2 is optimal with respect to
the number of calls to the DH oracle, and that the number of oracle calls in the
reduction of Lemma 3 is only 18 times greater than the theoretical lower bound.

The result of Theorem 5 is pessimistic in the following sense. Assume that
one can prove for a certain class of groups that discrete logarithms cannot be
computed faster than in time TDL. Then the best result one can hope for by
using a general-purpose reduction is that the DH problem cannot be solved faster
than in time TDH m. TDL/ logp.

2.3 G r o u p O r d e r s w i t h M u l t i p l e L a r g e P r i m e Factors

Let us now consider the problem of a generic reduction of the DL to the DH
problem for groups G whose order contains a multiple large prime factor p. It
was shown in [7] that such a reduction is possible if the DH oracle can be used
to either construct a DH oracle for certain subgroups of G = (g) such as (gP), or
to compute p-th roots in G. Shoup proved in [12] that the first problem cannot

80

be solved with generic algorithms, and Theorem 10 below states that the same
is t rue for the second problem. However, at first sight it appears plausible that
there exist different ways of constructing generic reductions for such groups, for
example by using the general auxiliary-group technique of [7] (see also [6]) with
auxiliary groups defined directly over the ring Zp, and not over the field GF(p).
But, perhaps somewhat surprisingly, it can be shown that no efficient generic
reduction exists for such groups. In other words, it is impossible to prove the
computational equivalence of the DH and DL problems for all groups when no
assumption on the representation of the group elements is made.

T h e o r e m 7. Let n be a positive integer and let p be a multiple prime factor of
n. For any (possibly probabilistic) generic reduction algorithm of the DL problem
to the DH problem that works for groups of order n, runs in time at most T,
and outputs the correct discrete logarithm with probability c~, we have

r

Proof. Let pt, t > 1, be the maximal power of p dividing n. By the same ar-
gument as in the proof of Theorem 5, we can assume that n = pt. Let x -
xo + x lp + �9 ". + x t - l p t-1 (mod pt) be the p-adic expansion of x modulo pt. We
give a lower bound on the complexity of the computation of xt-1. Again, be-
cause additional knowledge can only decrease the running time, we can assume
that x o , . . . , x t - 2 are given, and hence that x =_ x t_ lp t-1 (mod pt). By inter-
acting T times with the given oracles, the algorithm can compute a(Pi(x t -1))
for i = 1 , . . . , T + 2, where the P, (X) are (pairwise distinct) polynomials with
P I (X) = 1, P2(X) = p t - l X and for i >_ 3 either P~(X) = Pk (X) + PI(X) ,
P i (X) = - P k (X) , or P~(X) = Pk(X) �9 P l (Z) for some 1 < k, l < i. The cru-
cial, and somewhat surprising, fact now is that , although the polynomials can
be multiplied, Pi (X) is a linear polynomial in X for all i. More precisely, the
polynomials are of the form P, (X) = a , p t - l x + bi. This follows by induction
and from the fact that pt _ 0 (mod n). According to Lemma 6, the probability
of the event g that P~(xt-1) = Pj (x t -1) for some i ~t j is upper bounded by
(T + 2)(T + 1)/(2p). As in the proof of Theorem 5, we conclude

a < (T + 2) (T + 1) + 2

- 2 p

and this implies the statement of the theorem. []

Note that each of the pessimistic results described at the beginning of this section
also implies a statement similar to the one of Theorem 7.

The bound of Theorem 7 shows that a DH oracle for G is virtually of no help
for computing discrete logarithms in G modulo pt when p is a prime factor of IGI
with multiplicity t > 1. The reason is that discrete logarithms can be obtained
equally efficiently without a DH oracle by the baby-step giant-step method.

8]

2.4 A Completeness Result

Theorems 5 and 7 state lower bounds on the complexity of probabilistic algo-
rithms with respect to their worst-case running time. These results can be used
to derive bounds that hold for the expected running time, which of course are
the results we are finally interested in.

Theorem 8. Let n be a positive integer, let p be the largest prime factor of n,
and let q be the largest multiple prime factor of n. For any generic reduction
algorithm of the DL problem to the DH problem for cyclic groups of order n,
the expected running time T of the algorithm and the expected number M of
DH-oracle calls are lower bounded by

T>(__q_l
- 2

and by

M > l~
- 2

.

Proof. The proof is based on the fact that the actual running time of a proba-
bilistic algorithm exceeds twice its expected running time only with probability
at most 1/2. We construct from the given algorithm a new algorithm by stopping
the execution after 2T steps. The new algorithm has worst-case running time 2T
and answers correctly with probability at least 1/2. Then the two bounds follow
by applying Theorems 7 and 5 to the new algorithm. []

Theorems 4 and 8 imply the following characterization of groups for which the
DH and DL problems axe equivalent in a generic, but non-uniform, sense.

C o r o l l a r y 9. If Conjecture 1 is true, then there exists a polynomial-time generic
reduction of the DL problem to the DH problem for groups G of order n if and
only if all multiple prime factors of n are of size (log n) ~ .

3 C o m p u t i n g R o o t s i n C y c l i c G r o u p s

The problem of computing roots in cyclic groups, which is of independent in-
terest, arises in the context of reducing the DL problem to the DH problem in
groups whose order contains multiple prime factors, as mentioned in Section 7.
We give a complete characterization of which roots can be computed efficiently
by generic algorithms in groups of a certain order.

Let n = pts with t _ 2 and gcd(s,p) = 1. The following theorem states tha t
no efficient (i.e., polynomial-time in logp) general-purpose algorithm exists that
computes p-th (or pr- th for 1 < r < t) roots in a cyclic group G = (g) of order
n. Moreover, this holds even when the algorithm is also allowed to make calls to
a DH oracle for G.

8 2

T h e o r e m 10. Let a generic algorithm be given that computes p~-th (r > 1) roots
in a cyclic group G = (g) of order n = pts, where gcd(s,p) = 1 and t > r hold.
Assume further that the algorithm is (besides the usual operations) allowed to
make calls to a DH oracle for G (with respect to some generator g). Then the
probability that the algorithm outputs a correct root is at most

((T + 2)(T + 1) + 2)([t i f f - 1)
2p

if T is an upper bound on the number of steps the algorithm performs.

Remark. It is easy to see that in case r > t, p~-th roots can easily be computed
in G (without a DH oracle).

Proof. The proof is related to the proof of Theorem 5 in [12]. Assume without
loss of generality that n = p~, and that an encoding a of the group elements is
chosen randomly. The input to the algorithm is a(1) and a(p~x). The algorithm
can interact with the oracles for addition, inversion, and multiplication (the
DH oracle) by computing a list of expressions a(P,(x)) for i = 1 , . . . , T + 2
where PI (X) = 1, P2(X) = p~X, and, for i _> 3, P~(X) = Pk(X) + PI(X),
P~(X) = - P k (X) , or P,(X) -- Pk(X) . Pt(X), where k, l < i. It is not difficult to
see by induction that the polynomials have the form

d

P, (X) ~ a " ~X "m = i , m ~ P) ,

m ~ O

where d := It~r] - 1. Note that, although the polynomials can also be multiplied,
the degrees are bounded by d <_ t /r .

Let the complementary events g and g be defined as in the proof of Theo-
rem 5. From Lemma 6 we conclude

p[s _< (T + 2)(T + 1)d

2p

If E occurs, the best the algorithm can do at the end is to output a(Pi(x))
for some 1 < i < T + 2. The probability that this answer is correct, i.e., that
p~Pi(x) - p ~ x = 0, given ~, is at most d/(p. P[~]), according to Lemma 6. Hence
the probability that the algorithm answers correctly is at most

p[g] + p[g-], d (T + 2)(T + 1)d + 2d

p . P[~----~ -< 2p '

and this concludes the proof of the theorem. []

Theorem 10, together with the argument used in the proof of Theorem 8,
implies that no generic algorithm can compute p~-th roots (r _> 1) in a group
whose order is divisible by p~ (t > r) substantially faster than in expected time
(9(x/-~), even when the algorithm is allowed to make calls to a DH oracle. It is not
surprising that also this bound is asymptotically tight, as Theorem 11 shows.

83

T h e o r e m 11. Let G = (g) be a cyclic group of order 1(71 = p t s with gcd(s,p) =
1. For 1 <_ r < t, p~-th roots can be computed in G in time v ~ " (log IGI) ~
by a generic algorithm (that uses group operations in G, but no calls to a DH
oracle).

Proof. The following algorithm is a generalization of a method, due to Massey,
for the computation of square roots modulo a prime number [4]. Let h be a
p*-th power in G. With the Pohlig-Hellman method, together with the baby-
step giant-step time-memory tradeoff, the discrete logarithm k (modulo pt) of
h can be computed in time x/~" (log [GD ~ where memory space for storing
x/P group elements is needed. Since h is a p~-th power in G, k is a multiple of
p~. Let d : - - s -1 (mod p~) (note that this inverse exists and can be computed
efficiently). Then

(gs

is a p~-th root of h. This algorithm is obviously generic and runs in time
(log []

4 C o n c l u d i n g R e m a r k s

We have proved lower bounds on the complexity of generic algorithms solving
certain problems in cyclic groups. In particular, we have studied generic reduc-
tions of the DL problem to the DH problem. These reductions are useful because
they imply the equivalence of the DH and DL problems for every particular group
of a certain order, whereas the results of [12] concerning generic algorithms for
solving the DH and DL problems cannot be directly applied when considering
a concrete group. We have derived lower bounds on the number of calls to the
DH oracle and on the overall complexity of such reductions. The second of these
bounds implies that the DH and DL problems are not computationally equiva-
lent in general for all groups of which the order contains a multiple large prime
factor. This pessimistic result completes earlier results stating that an efficient
generic algorithm which makes calls to a DH oracle and computes discrete loga-
rithms in a group G exists if [G[does not contain a multiple large prime factor,
and shows how relevant multiplicity of prime factors is in this context.

We state as an open problem to prove the equivalence of the DH and DL
problems also for particular classes of groups whose orders contain multiple
large prime factors. However, such a proof must exploit certain properties of the
representation of the group elements. Another open question is whether there
exists, for all remaining groups, an efficient uniform reduction of the DL problem
to the DH problem, and whether it is possible to find a reduction algorithm for
every group that achieves the theoretical lower bound on the number of required
calls to the DH oracle.

84

R e f e r e n c e s

1. D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to
cryptography, Advances in Cryptology - C R Y P T O '96, Lecture Notes in Computer
Science, Vol. 1109, pp. 283-297, Springer-Verlag, 1996.

2. B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, Advances
in Cryptology - CRYPTO '88, Lecture Notes in Computer Science, Vol. 403, pp.
530-539, Springer-Verlag, 1989.

3. W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory, Vol. 22, No. 6, pp. 644-654, 1976.

4. J. L. Massey, Advanced Technology Seminars Short Course Notes, pp. 6.66-6.68,
Z/irich, 1993.

5. U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms, Advances in Cryptology - CRYPTO '9~, Lec-
ture Notes in Computer Science, Vol. 839, pp. 271-281, Springer-Verlag, 1994.

6. U. M. Maurer and S. Wolf, The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms, to appear in SIAM Journal of Com-
puting, 1998.

7. U. M. Maurer and S. Wolf, Diffie-Hellman oracles, Advances in Cryptology -
C R Y P T O '96, Lecture Notes in Computer Science, Vol. 1109, pp. 268-282,
Springer-Verlag, 1996.

8. K. S. McCurley, The discrete logarithm problem, in Cryptology and computational
number theory, C. Pomerance (Ed.), Proc. of Symp. in Applied Math., Vol. 42,
pp. 49-74, American Mathematical Society, 1990.

9. A. J. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publish-
ers, 1993.

10. S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Information
Theory, Vol. 24, No. 1, pp. 106-110, 1978.

11. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identi-
ties, Journal of the ACM, Vol. 27, No. 4, pp. 701-717, 1980.

12. V. Shoup, Lower bounds for discrete logarithms and related problems, Advances
in Cryptology - E U R O C R Y P T '97, Lecture Notes in Computer Science, Vol. 1233,
pp. 256-266, Springer-Verlag, 1997.

