
C o n c u r r e n t C o n s t r a i n t P r o g r a m m i n g
B a s e d on F u n c t i o n a l P r o g r a m m i n g

(Extended Abstract)

Gert Smolka

Programming Systems Lab
DFKI and Universit~t des Saarlandes

Postfach 15 11 50, D-66041 Saarbriicken, Germany
smolka@dfki, de, http ://www. ps. uni-sb, de/~smolka/

1 Introduction

We will show how the operational features of logic programming can be added
as conservative extensions to a functional base language with call by value se-
mantics. We will address both concurrent and constraint logic programming [9,
2, 18]. As base language we will use a dynamically typed language that is ob-
tained from SML by eliminating type declarations and static type checking. Our
approach can be extended to cover all features of Oz [6, 15].

The experience with the development of Oz tells us that the outlined ap-
proach is the right base for the practical development of concurrent constraint
programming languages. It avoids unnecessary duplication of concepts by reusing
functional programming as core technology. Of course, it does not unify the
partly incompatible theories behind functional and logic programming. They
both contribute at a higher level of abstraction to the understanding of different
aspects of the class of programming languages proposed here.

2 T h e B a s e L a n g u a g e D M L

As base language we choose a dynamically typed language DML that is obtained
from SML by eliminating type declarations and static type checking. Given the
fact that SML is a strictly statically typed language this surgery is straightfor-
ward. To some extent it is already carried out for the definition of the dynamic
semantics in the definition of SML [4].

There are several reasons for choosing SML. For the extensions to come it
is essential that the language has call by value semantics, sequential execution
order, and assignable references. Moreover, variants, records and exceptions are
important. Finally, SML has a compact formal definition and is well-known.

Since SML does not make a lexical distinction between constructors and
variables, we need to retain constructor declarations. Modules loose their special
status since they can be easily expressed with records functions.

Since DML is dynamically typed, the primitive operations of the language
will raise suitable exceptions if some of their arguments are ill-typed. Equality

in DML is defined for all values, where equality of functions is defined analogous
to references.

Every SML program can be t ranslated into an DML program tha t produces
exactly the same results. Hence we can see SML as a statically typed language
tha t is defined on top of DML. There is the interesting possibility of a program-
ming system tha t based on DML offers a variety of type checking disciplines.
Code checked with different type disciplines can be freely combined.

To provide for the extensions to come, we will organize the operational se-
mantics of DML in a style tha t is rather different from the style used in the
definition of SML [4].

3 V a l u e s

We distinguish between primitive values and compound values. Primitive values
include numbers, nullary constructors, and names. Names represent primitive
operations, reference cells, and functions. Compound values are obtained by
record and variant construction.

We organize values into a first-order s tructure over which we obtain suf-
ficiently rich first-order formulas. This set-up gives us a relation a ~ r tha t
holds if an assignment a satisfies a formula r An assignment is a mapping from
variables to values. The details of such a construction can be found in [17].

4 S t a t e s

A state is a finite function a mapping addresses a to so-called units u. Units are
either primitive values other than names or representations of records, variants,
reference cells, functions, and primitive operations:

{11 = a l , . . . , l k = ak}
c(a)

re~(a)
fun(Match, Env)

primop

A match Match is a sequence of clauses (pl=>el [. . .] pk=>ek). An environ-
ment Env is a finite function from program variables to addresses.

For technical convenience we will identify addresses, names and variables
occurring in formulas. We say that an assignment a satisfies a s tate a and write
a ~ a if for every address a in the domain of a the following holds:

1. If a(a) is a primitive value v, then a(a) = v.
2. If a(a) is a reference cell, a function, or pr imop, then a(a) = a.
3. If a(a) = {11 = h i , . . . ,lk = ak}, then a(a) = {ll = a (a l) , . . . ,lk = o~(ak)}.
4. If a(a) = c(a'), then a(a) = c(a(a')).

Note that every state is satisfiable and that all assignments satisfying a state a
agree on the domain of a.

Our states and environments are different from the corresponding notions
in the definition of SML. There environments map program variables to values
and states map addresses to values. In our set-up environments map program
variables to addresses and states map addresses to units. This means that our
states represent both stateful and stateless information. Moreover, our states
make structure sharing explicit. The sharing information is lost when we move
from a state to a satisfying assignment. Given a state a, the unique restriction
of an assignment satisfying a to the domain of a is an environment in the sense
of the definition of SML.

The relation a ~ r is defined to hold if and only if every assignment that
satisfies a also satisfies r If the free variables of r are all in the domain of a,
then we have either a ~ r or a ~ --r This means that a state has complete
information about the values of its addresses. We require that the first-order
language be rich enough so that for every a there exists a formula r such that

for all assignments a. Note that a determines r up to logical equivalence. We use
r to denote a constraint with the above property and say that r represents
the logic content of a.

5 T h r e a d a n d S t o r e

The operational semantics of DML distinguishes between a thread and a store.
The thread is a functional evaluator that operates on the store. The states of the
store are the states defined above. The store should be thought of as an abstract
data type that is accessed by the thread only through a number of predefined
operations. An example of such an operation is record selection, which takes an
address a and a label 1 and returns an address or an exception packet.

An interesting primitive operation is the equality test al = a2. It returns
t r u e if a ~ al = a2 and f a l s e if a ~ -~ al = a2. Note that this definition yields
structural equality for records and variants.

We write a --+ a r to say that there is an operation on the store that will
replace the state a with a state a r. The following monotonicity property holds
for DML and all extensions we will consider:

abr a 'br

provided all free variables of r are in the domain of a.

6 Logic Variables

We now extend DML with logic variables, one of the essentials of logic program-
ming. Logic variables are a means to represent in a state partial information

about the values of addresses. Logic variables are modelled with a new unit
l va r . The definition of states is extended so that a state may map an address
also to l v a r or an address. We only admit states a whose dereference relation
a --+0 a ' is terminating, where a --+0 a' holds iff a(a) = a'. The case ~(a) = a '
may appear when a logic variable is bound. We use o* (a) to denote the unique
normal form of a with respect to the dereference relation --+~. The definition of
the relation c~ ~ a is extended as follows:

1. If a(a) = lva r , then there is no constraint on c~(a).
2. If a(a) = a', then ~(a) = a(a ') .

States can now represent partial information about the values of their addresses.
This means that a does not necessarily determine the t ruth value of a formula
r whose free variables are in the domain in a.

Our states contain more information than necessary. For instance, if a(a) =
al and a(al) = a2, then the difference between a and a[a2/a] cannot be observed
at the level of the programming language. In general, we impose the semantic
requirement that for a state a and addresses al and a2 such that a ~ al = a2
the difference between al and a2 must not be observable. As it comes to space
complexity, it is nevertheless important to model structure sharing.

The existing operations of DML are extended to the new states as follows.
If an operation needs more information about its arguments than the state pro-
vides, then the operation returns the control value b locked. If there is only one
thread, then computation will terminate. If there are several threads, the thread
will retry the operation in the hope that other threads have contributed the
missing information (see next section).

A match (e.g., (x: :x r => el I n i l => e2)) blocks until the store contains
enough information to commit to one of the clauses or to know that none applies.
Of particular interest is the equality test al =as, which we defined to return t r u e
if a ~ al = a2 and f a l s e if a ~ -~ al = a2. Since in the presence of logic variables
a may entail neither al = a2 nor -~al = a2, the equality test al=a2 may block.
There is an efficient incremental algorithm [17] that checks for entailment and
disentailment of equations al = as.

We say that an operation is granted by a if it does not block on a. All
extensions we will consider will satisfy the generalized monotonicity condition:

if a grants o and a --~ a ' , then a ' grants o.

The operation

ivar: unit -> 'a

creates a fresh logic variable and returns its address. The operation

isvar: 'a -> bool

returns true if its argument a dereferences to a logic variable (i.e., a(a*(a)) =
l v a r) and f a l s e otherwise. The variable binding operation

<-: 'a * 'a -> 'a

expects tha t its left argument is a logic variable, binds it to its right argument,
and returns the right argument. More precisely, if <- is applied to (al , a2) and
a* (al) = a3, a(a3) = l v a r and a*(a2) = a4, we distinguish two cases:

1. If a3 = a4, then there is no side effect and a4 is returned.
2. If a3 # a4, then the store is updated to o-[a4/a3] and a4 is returned.

The operation

wait: 'a -> 'a

is an identity function that blocks until its argument is bound to a nonvariable
unit. This operation is useful for concurrent programming.

7 Multiple Threads

It is straightforward to extend DML with multiple threads. We use interleaving
semantics, tha t is, the operations threads perform on the store do not overlap
in time. Threads can be created with the expression

spawn e

which spawns a new thread evaluating e and returns () . Often it is convenient
to use the derived form

thread e

which expands to

let val x = ivar() in (spawn x <- e); x end

where x is a program variable that does not occur free in e. For instance, if we

want to evaluate the constituents of the application e(el, e2) concurrently, we
can simply write

(thread e) (thread el, thread e2)

since the necessary synchronization comes for free.
The combination of logic variables and reference cells provides for powerful

synchronization techniques. For this we need an operation

exchange: 'a ref * 'a -> 'a

which updates the reference cell given as first argument to hold the second
argument and returns the previous content of the cell. Now a function

mutex: (unit -> 'a) -> 'a

that applies the function given as argument under mutual exclusion can be
writ ten as follows:

local val r = ref()

in
fun mutex(a) =

let val c = ivar()
in wait (exchange (r, c)) ;

let val v = a() in c <- (); v end
end

end;

A function

c h a n n e l : u n i t - > { p u t : 'a -> unit, get: unit -> 'a}

that returns an asynchronous channel (i.e., a concurrent queue) can be written
as fol lows:

fun channel() =
let val init = ivar()

val putr= ref init
val getr = ref init
f u n p u t (x) =

let val new = ivar()
val old = exchange(purr,new)

in old <- x::new; () end
fun get () =

let val new = ivar()
val x::c = exchange(getr,new)

in new <- c ; x end
in {put=put, get=get} end

The put function puts items on the channel and the get function gets items from
the channel. The get function blocks until there is an item on the channel. The
blocking is caused by the match

val x : : c = exchange (getr,new)

To obtain fairness, the simple requirement that every thread that is not
blocked will eventually advance sumces. In the two examples above starvation

is excluded since the blocked threads are implicitly queued by means of logic
variables. Note that both example functions encapsulate the logic variables they
introduce. Our simple fairness requirement rests on the genera|ized monotonicity
condition stated above (i.e., the property that a thread can advance cannot be
invalidated by the operations performed by other threads). Languages that take
channels as concurrency primitive (e.g., Pict [7]) require the more complicated
fairness condition that our channels implement with logic variables.

The outlined style of concurrent programming originated with Oz and is
explored in [15, i]. The paper [15] relates to a previous version of Oz that did
not have sequential composition. The book [I] is based on the current version

of Oz and explores concurrent programming with object-oriented abstractions.
The interested reader may also consult [19], which outlines a distributed version
of Oz currently under development.

8 U n i f i c a t i o n

Next we define unification. We say that a t is obtained from a by a narrowing
step if there are addresses a and a t in the domain of a such that a(a) = lva r ,
a*(a') r a, and a ' = a[a'/a]. Note that the variable binding operation <-
performs a narrowing step if it succeeds. We say that a t is obtained from a
by unification of al and a2 if a t can be obtained from a by a minimal number of
narrowing steps such that a t ~ al = a2 holds. If there is such a a t, we say that
al and a2 axe unifiable in a. If a t is obtained from a by unification of al and a2,
then r is logically equivalent to r A al = a2. Moreover, al and a2 are unifiable
in a if and only if r A al = a2 is satisfiable. This logical characterisation of
unification is a design principle and will also hold for the constraint extensions
introduced in later sections.

The unification operation

= = : ~a * J a -> ~a

expects that its two arguments al and a2 be unifiable. If this is the case, it
narrows the state accordingly and returns a2. Otherwise, it returns an exception
packet.

Our states combine first-order constraints with higher-order functions and
reference cells. Unification only concerns the part of a state that represents first-
order constraints. Investigations of unification and constraint solving that relate
to the unification defined here can be found in [3, 17].

9 C h o i c e s

An essential feature of logic programming is a built-in mechanism for search. To
add this feature to DML, we introduce choice expressions of the form

cho ice e l l . . . l e k

A choice is evaluated by replacing it with one of its alternatives e~. To make this
practical, the choices are tried from left to right employing chronological back-
tracking as in Prolog. We arrange things such that a speculative computation
terminates with failure if a unification operation fails. If there is only one thread,
this gives us the search mechanism of pure Prolog.

If there are multiple threads, we require that a choice is only committed once
all other threads are either blocked or can only advance by committing a choice.

1 0 S p a c e s

The outlined Prolog-like search is not satisfactory in a concurrent setting since
search is done at the top level and cannot be encapsulated into concurrent agents.
I t also fails to provide means for programming search engines like all solution
search. This long standing problem of logic programming is solved by Oz with
a new concept called spaces. A space is a box consisting of a store and threads.
Computa t ion in a space is speculative and does not have a direct effect outside.
Computa t ion in a space proceeds until the space becomes either failed or stable.
Stability means tha t no thread can advance except by committ ing a choice. There
is an operat ion tha t blocks until a space is failed or stable and then reports the
result. For stable spaces there are two possibilities: either there is a pending
choice or not. If there is no pending choice, the space can be merged with the
parent space to obtain the result of the speculative computat ion. If there is a
pending choice, the space can be cloned and be commit ted to the respective
alternatives.

Spaces turn out to be a simple and flexible means for programming search
engines. A first version is described in [II, 14]. A recent paper on spaces and
their use is [I0].

11 F i n i t e D o m a i n Cons tra in t s

Finite domain constraints are constraints over integers that in conjunction with
constraint programming yield a powerful tool for solving combinatorial problems
like scheduling [2, 18, 12]. To include them in our framework, we introduce a new
unit l v a r (D) tha t represents a logic variable that is constrained to take a value in
D, where D must be a finite set of integers. Variable binding and unification are
adapted so tha t they respect finite domain constraints. The primitive operations
of DML treat finite domain variables like unconstrained variables. There is a
new primitive operation

fdvar: findom-> int

tha t returns a fresh logic variable constrained to the finite domain given as
argument. Unification is extended to handle constrained logic variables according
to their logical meaning. For instance, the expression

l e t v a l x = f d v a r [1 , 2] v a l y = f d v a r [0 , 2] in x == y end

is equivalent to the expression 2.
More expressive constraints like 2 * x = y are realized with concurrent agents

called propagators . For instance, if the store knows that x E { 1 , . . . , 10} and
y E { 1 , . . . , 9}, a propagator for the constraint 2 . x = y can narrow the domains
of x and y to x E {1,2,3,4} and y E {2,4,6,8}. This form of inference is
called constraint propagation. In general, there will be many propagators tha t
communicate through the store. The power of a constraint programming system
depends on the class of propagators it offers. Depending on the constraints they

realize, propagators often use nontrivial algorithms. A ubiquitous constraint is
"xl, �9 . . , xk are all different". For instance, if the store knows

x 6 {1,2,3} y � 9 {1,2,3} z � 9 u � 9 {1,2 ,3 ,4 ,5} v � 9 {1,3,4}

a propagator for "x, y, z , u, v are all different" can narrow the domains to

x � 9 y � 9 z � 9 u � 9 v � 9

which determines the values of u and v. There is a complete propagation algo-
r i thm for the all different constraint that has quadratic complexity in the number
variables and possible values [8].

12 F e a t u r e C o n s t r a i n t s

Feature constraints are constraints over records that have applications in com-
putational linguistics and knowledge representation. There is a parameterized
primitive operation

tellfeature#1abe1: record * 'a -> unit

that constrains its first argument to be a record that has a field with the label

label and with the value that is given as second argument. For instance,

t ellf eature#age (x, y)

posts the constraint that x is a record of the form {age=y }.

To accommodate feature constrains, we use units of the form

lva r (w, {/1 = a l , . . . , l k = a k })

that represent logic variables that are constrained to records as specified. A
record satisfies the above specification if it has at most w fields and at least a
field for every label l~ with a value that satisfies the constraints for the address ai.
The metavariable w stands for a nonnegative integer or co, where k _~ w.

There is also a primitive operation

tellwidth: record * int -> unit

that constrains its first argument to be a record with as many fields as specified
by the second argument.

The operation t e l l f e a t u r e is in fact a unification operation. It narrows the
store in a minimal way so that the logic content of the new state is equivalent
to the logic content of the old state conjoined with the feature constraint told.
For instance, the expression

let val x = ivar()

in tellwidth(x,l) ; tellfeature#a(x,7) ; x end

is equivalent to the expression {a=7}.

Feature constraints and the respective unification algorithms are the subject
of [17]. Feature constraints are related to Ohori's [5] inference algorithm for
polymorphic record types.

10

13 C o n c l u s i o n

The main point of the paper is the insight that logic and concurrent constraint
languages can be profitably based on functional core languages with call by
value semantics. This avoids unnecessary duplication of concepts. SML wins
over Scheme since it has richer data structures and factored out reference cells.

Our approach does not unify the theories behind functional and logic pro-
gramming. It treats the extensions necessary for concurrent constraint program-
ming at an abstract implementation level. To understand and analyse concurrent
constraint programming, more abstract models are needed (e.g., [9, 2, 13, 15,16]).

It seems feasible to extend the SML type system to logic variables and con-
straints. Such an extension would treat logic variables similar to reference cells.
Feature constraints could possibly be treated with Ohori's polymorphic'record
types [5].

The approach presented here is an outcome of the Oz project. The devel-
opment of Oz started in 1991 from logic programming and took several turns.
Oz subsumes all concepts in this paper but has its own syntax and is based on
a relational rather than a functional core. The relational core makes Oz more
complicated than necessary. The insights formulated in this paper can be used
to design a new and considerably simplified version of Oz. Such a new Oz would
be more accessible to programmers experienced with SML and would be a good
vehicle for teaching concurrent constraint programming.

Acknowledgments

Thanks to Martin Miiller and Christian Schulte for comments on a draft of the
paper, and thanks to all Oz developers for inspiration.

R e f e r e n c e s

1. M. Henz. Objects for Concurrent Constraint Programming. Kluwer Academic
Publishers, Boston, Nov. 1997.

2. J. Jaffax and M. J. Maher. Constraint logic programming: A survey. The Journal
of Logic Programming, 19/20:503-582, May-July 1994.

3. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming. Morgan Kauf-
mann Publishers, San Mateo, CA, USA, 1988.

4. R. Milner, M. Torte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Rewsed). The MIT Press, Cambridge, MA, 1997.

5. A. Ohori. A polymorphic record calculus and its compilation. A CM Trans. Prog.
Lang. Syst., 17(6):844-895, 1995.

6. Oz. The Oz Programming System. Programming Systems Lab, DFKI and Uni-
versit~t des Saaxlandes: ht tp ://www. ps. uni-sb, de/oz/.

7. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner.
The MIT Press, Cambridge, MA, 1997.

11

8. J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 362-367, 1994.

9. V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
MA, 1993.

10. C. Schulte. Programming constraint inference engines. In G. Smolka, editor, Pro-
ceedings of the 3rd International Conference on Principles and Practice of Con-
straint Programming, volume 1330 of Lecture Notes zn Computer Science, pages
519-533, Schloss Hagenberg, Linz, Austria, Oct. 1997. Springer-Verlag.

11. C. Schulte and G. Smolka. Encapsulated search in higher-order concurrent con-
straint programming. In M. Bruynooghe, editor, Proceedings of the Internatwnal
Logic Programming Symposium, pages 505-520, Ithaca, New York, USA, Nov. 1994.
The MIT Press, Cambridge, MA.

12. C. Schulte, G. Smolka, and J. Wiirtz. Finite domain constraint programming in Oz,
a tutorial, 1998. Programming Systems Lab, DFKI and Universit/it des Saarlandes:
ftp : / / f t p . ps. uni-sb, de/oz/document at ion/FDTutorial, ps. gz.

13. C. Smolka. A foundation for concurrent constraint programming. In J.-P. Jouan-
naud, editor, Constraints in Computational Logics, volume 845 of Lecture Notes in
Computer Science, pages 50-72. Springer-Verlag, Berlin, Sept. 1994.

14. G. Smolka. The definition of Kernel Oz. In A. Podelski, editor, Constraints: Baszcs
and Trends, volume 910 of Lecture Notes in Computer Science, pages 251-292.
Springer-Verlag, Berlin, 1995.

15. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 324-343.
Springer-Verlag, Berlin, 1995.

16. G. Smolka. Problem solving with constraints and programming. A CM Computing
Surveys, 28(4), Dec. 1996. Electronic Section.

17. G. Smolka and R. Treinen. Records for logic programming. The Journal of Logic
Programming, 18(3):229-258, Apr. 1994.

18. P. Van Hentenryck, V. Saraswat, et al. Strategic directions in constraint program-
ming. ACM Computing Surveys, 28(4):701-726, Dec. 1997. ACM 50th Anniversary
Issue. Strategic Directions in Computing Research.

19. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mobile
objects in Distributed Oz. A CM Transactions on Programming Languages and
Systems, 19(5), Sept. 1997.

