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1 Introduction 

We will show how the operational features of logic programming can be added 
as conservative extensions to a functional base language with call by value se- 
mantics. We will address both concurrent and constraint logic programming [9, 
2, 18]. As base language we will use a dynamically typed language that is ob- 
tained from SML by eliminating type declarations and static type checking. Our 
approach can be extended to cover all features of Oz [6, 15]. 

The experience with the development of Oz tells us that the outlined ap- 
proach is the right base for the practical development of concurrent constraint 
programming languages. It avoids unnecessary duplication of concepts by reusing 
functional programming as core technology. Of course, it does not unify the 
partly incompatible theories behind functional and logic programming. They 
both contribute at a higher level of abstraction to the understanding of different 
aspects of the class of programming languages proposed here. 

2 T h e  B a s e  L a n g u a g e  D M L  

As base language we choose a dynamically typed language DML that is obtained 
from SML by eliminating type declarations and static type checking. Given the 
fact that SML is a strictly statically typed language this surgery is straightfor- 
ward. To some extent it is already carried out for the definition of the dynamic 
semantics in the definition of SML [4]. 

There are several reasons for choosing SML. For the extensions to come it 
is essential that the language has call by value semantics, sequential execution 
order, and assignable references. Moreover, variants, records and exceptions are 
important. Finally, SML has a compact formal definition and is well-known. 

Since SML does not make a lexical distinction between constructors and 
variables, we need to retain constructor declarations. Modules loose their special 
status since they can be easily expressed with records functions. 

Since DML is dynamically typed, the primitive operations of the language 
will raise suitable exceptions if some of their arguments are ill-typed. Equality 



in DML is defined for all values, where equality of functions is defined analogous 
to references. 

Every SML program can be t ranslated into an DML program tha t  produces 
exactly the same results. Hence we can see SML as a statically typed language 
tha t  is defined on top of DML. There is the interesting possibility of a program- 
ming system tha t  based on DML offers a variety of type checking disciplines. 
Code checked with different type disciplines can be freely combined. 

To provide for the extensions to come, we will organize the operational se- 
mantics of DML in a style tha t  is rather  different from the style used in the 
definition of SML [4]. 

3 V a l u e s  

We distinguish between primitive values and compound values. Primitive values 
include numbers, nullary constructors, and names. Names represent primitive 
operations, reference cells, and functions. Compound values are obtained by 
record and variant construction. 

We organize values into a first-order s tructure over which we obtain suf- 
ficiently rich first-order formulas. This set-up gives us a relation a ~ r tha t  
holds if an assignment a satisfies a formula r An assignment is a mapping from 
variables to values. The details of such a construction can be found in [17]. 

4 S t a t e s  

A state is a finite function a mapping addresses a to so-called units u. Units are 
either primitive values other than names or representations of records, variants, 
reference cells, functions, and primitive operations: 

{11 = a l , . . . , l k  = ak} 
c(a) 

re~(a) 
fun(Match, Env) 

primop 

A match Match is a sequence of clauses (pl=>el [ . . .  ] pk=>ek). An environ- 
ment  Env is a finite function from program variables to addresses. 

For technical convenience we will identify addresses, names and variables 
occurring in formulas. We say that  an assignment a satisfies a s tate  a and write 
a ~ a if for every address a in the domain of a the following holds: 

1. If a(a) is a primitive value v, then a(a) = v. 
2. If a(a) is a reference cell, a function, or pr imop,  then a(a) = a. 
3. If a(a) = {11 = h i , . . .  ,lk = ak}, then a(a) = {ll = a ( a l ) , . . .  ,lk = o~(ak)}. 
4. If a(a) = c(a'), then a(a)  = c(a(a')). 



Note that  every state is satisfiable and that  all assignments satisfying a state a 
agree on the domain of a. 

Our states and environments are different from the corresponding notions 
in the definition of SML. There environments map program variables to values 
and states map addresses to values. In our set-up environments map program 
variables to addresses and states map addresses to units. This means that  our 
states represent both stateful and stateless information. Moreover, our states 
make structure sharing explicit. The sharing information is lost when we move 
from a state to a satisfying assignment. Given a state a, the unique restriction 
of an assignment satisfying a to the domain of a is an environment in the sense 
of the definition of SML. 

The relation a ~ r is defined to hold if and only if every assignment that  
satisfies a also satisfies r If the free variables of r are all in the domain of a, 
then we have either a ~ r or a ~ --r This means that  a state has complete 
information about the values of its addresses. We require that  the first-order 
language be rich enough so that for every a there exists a formula r such that  

for all assignments a. Note that a determines r up to logical equivalence. We use 
r to denote a constraint with the above property and say that r represents 
the logic content of a. 

5 T h r e a d  a n d  S t o r e  

The operational semantics of DML distinguishes between a thread and a store. 
The thread is a functional evaluator that  operates on the store. The states of the 
store are the states defined above. The store should be thought of as an abstract 
data  type that  is accessed by the thread only through a number of predefined 
operations. An example of such an operation is record selection, which takes an 
address a and a label 1 and returns an address or an exception packet. 

An interesting primitive operation is the equality test al = a2. It returns 
t r u e  if a ~ al = a2 and f a l s e  if a ~ -~ al = a2. Note that  this definition yields 
structural equality for records and variants. 

We write a --+ a r to say that there is an operation on the store that  will 
replace the state a with a state a r. The following monotonicity property holds 
for DML and all extensions we will consider: 

abr a 'br  

provided all free variables of r are in the domain of a. 

6 Logic Variables 

We now extend DML with logic variables, one of the essentials of logic program- 
ming. Logic variables are a means to represent in a state partial information 



about the values of addresses. Logic variables are modelled with a new unit 
l va r .  The definition of states is extended so that a state may map an address 
also to l v a r  or an address. We only admit states a whose dereference relation 
a --+0 a '  is terminating, where a --+0 a' holds iff a(a) = a'. The case ~(a) = a '  
may appear when a logic variable is bound. We use o* (a) to denote the unique 
normal form of a with respect to the dereference relation --+~. The definition of 
the relation c~ ~ a is extended as follows: 

1. If a(a) = lva r ,  then there is no constraint on c~(a). 
2. If a(a) = a', then ~(a) = a(a ' ) .  

States can now represent partial information about the values of their addresses. 
This means that  a does not necessarily determine the t ruth  value of a formula 
r whose free variables are in the domain in a. 

Our states contain more information than necessary. For instance, if a(a) = 
al and a(al) = a2, then the difference between a and a[a2/a] cannot be observed 
at the level of the programming language. In general, we impose the semantic 
requirement that  for a state a and addresses al and a2 such that  a ~ al = a2 
the difference between al and a2 must not be observable. As it comes to space 
complexity, it is nevertheless important to model structure sharing. 

The existing operations of DML are extended to the new states as follows. 
If an operation needs more information about its arguments than the state pro- 
vides, then the operation returns the control value b locked.  If there is only one 
thread, then computation will terminate. If there are several threads, the thread 
will retry the operation in the hope that  other threads have contributed the 
missing information (see next section). 

A match (e.g., (x: :x r  => el I n i l  => e2)) blocks until the store contains 
enough information to commit to one of the clauses or to know that  none applies. 
Of particular interest is the equality test al =as, which we defined to return t r u e  
if a ~ al = a2 and f a l s e  if a ~ -~ al = a2. Since in the presence of logic variables 
a may entail neither al = a2 nor -~al = a2, the equality test al=a2 may block. 
There is an efficient incremental algorithm [17] that checks for entailment and 
disentailment of equations al = as. 

We say that  an operation is granted by a if it does not block on a. All 
extensions we will consider will satisfy the generalized monotonicity condition: 

if a grants o and a --~ a ' ,  then a '  grants o. 

The operation 

ivar: unit -> 'a 

creates a fresh logic variable and returns its address. The operation 

isvar: 'a -> bool 

returns true if its argument a dereferences to a logic variable (i.e., a(a*(a)) = 
l v a r )  and f a l s e  otherwise. The variable binding operation 



<-: 'a * 'a -> 'a 

expects tha t  its left argument is a logic variable, binds it to its right argument,  
and returns the right argument.  More precisely, if <- is applied to (al ,  a2) and 
a* (al) = a3, a(a3) = l v a r  and a*(a2) = a4, we distinguish two cases: 

1. If a3 = a4, then there is no side effect and a4 is returned. 
2. If a3 # a4, then the store is updated to o-[a4/a3] and a4 is returned. 

The operation 

wait: 'a -> 'a 

is an identity function that  blocks until its argument  is bound to a nonvariable 
unit. This operation is useful for concurrent programming.  

7 Multiple Threads 

It  is straightforward to extend DML with multiple threads. We use interleaving 
semantics, tha t  is, the operations threads perform on the store do not overlap 
in time. Threads  can be created with the expression 

spawn e 

which spawns a new thread evaluating e and returns () .  Often it is convenient 
to use the derived form 

thread e 

which expands to 

let val x = ivar() in (spawn x <- e); x end 

where x is a program variable that does not occur free in e. For instance, if we 

want to evaluate the constituents of the application e(el, e2) concurrently, we 
can simply write 

(thread e) (thread el, thread e2) 

since the necessary synchronization comes for free. 
The combination of logic variables and reference cells provides for powerful 

synchronization techniques. For this we need an operation 

exchange: 'a ref * 'a -> 'a 

which updates the reference cell given as first argument to hold the second 
argument and returns the previous content of the cell. Now a function 

mutex: (unit -> 'a) -> 'a 

that applies the function given as argument under mutual exclusion can be 
writ ten as follows: 



local val r = ref() 

in 
fun mutex(a) = 

let val c = ivar() 
in wait (exchange (r, c)) ; 

let val v = a() in c <- (); v end 
end 

end; 

A function 

c h a n n e l :  u n i t  - >  { p u t  : 'a -> unit, get: unit -> 'a} 

that returns an asynchronous channel (i.e., a concurrent queue) can be written 
as fol lows:  

fun channel() = 
let val init = ivar() 

val putr= ref init 
val getr = ref init 
f u n  p u t ( x )  = 

let val new = ivar() 
val old = exchange(purr,new) 

in old <- x::new; () end 
fun get () = 

let val new = ivar() 
val x::c = exchange(getr,new) 

in new <- c ; x end 
in {put=put, get=get} end 

The put function puts items on the channel and the get function gets items from 
the channel. The get function blocks until there is an item on the channel. The 
blocking is caused by the match 

val x : : c = exchange (getr,new) 

To obtain fairness, the simple requirement that every thread that is not 
blocked will eventually advance sumces. In the two examples above starvation 

is excluded since the blocked threads are implicitly queued by means of logic 
variables. Note that both example functions encapsulate the logic variables they 
introduce. Our simple fairness requirement rests on the genera|ized monotonicity 
condition stated above (i.e., the property that a thread can advance cannot be 
invalidated by the operations performed by other threads). Languages that take 
channels as concurrency primitive (e.g., Pict [7]) require the more complicated 
fairness condition that our channels implement with logic variables. 

The outlined style of concurrent programming originated with Oz and is 
explored in [15, i]. The paper [15] relates to a previous version of Oz that did 
not have sequential composition. The book [I] is based on the current version 



of Oz and explores concurrent programming with object-oriented abstractions. 
The interested reader may also consult [19], which outlines a distributed version 
of Oz currently under development. 

8 U n i f i c a t i o n  

Next we define unification. We say that  a t is obtained from a by a narrowing 
step if there are addresses a and a t in the domain of a such that  a(a) = lva r ,  
a*(a') r a, and a '  = a[a'/a]. Note that  the variable binding operation <- 
performs a narrowing step if it succeeds. We say that  a t is obtained from a 
by unification of al and a2 if a t can be obtained from a by a minimal number of 
narrowing steps such that  a t ~ al = a2 holds. If there is such a a t, we say that  
al and a2 axe unifiable in a. If a t is obtained from a by unification of al and a2, 
then r is logically equivalent to r A al = a2. Moreover, al and a2 are unifiable 
in a if and only if r A al = a2 is satisfiable. This logical characterisation of 
unification is a design principle and will also hold for the constraint extensions 
introduced in later sections. 

The unification operation 

= = :  ~a * J a  -> ~a 

expects that  its two arguments al and a2 be unifiable. If this is the case, it 
narrows the state accordingly and returns a2. Otherwise, it returns an exception 
packet. 

Our states combine first-order constraints with higher-order functions and 
reference cells. Unification only concerns the part of a state that  represents first- 
order constraints. Investigations of unification and constraint solving that  relate 
to the unification defined here can be found in [3, 17]. 

9 C h o i c e s  

An essential feature of logic programming is a built-in mechanism for search. To 
add this feature to DML, we introduce choice expressions of the form 

cho ice  e l l . . . l e k  

A choice is evaluated by replacing it with one of its alternatives e~. To make this 
practical, the choices are tried from left to right employing chronological back- 
tracking as in Prolog. We arrange things such that a speculative computation 
terminates with failure if a unification operation fails. If there is only one thread, 
this gives us the search mechanism of pure Prolog. 

If there are multiple threads, we require that a choice is only committed once 
all other threads are either blocked or can only advance by committing a choice. 



1 0  S p a c e s  

The  outlined Prolog-like search is not satisfactory in a concurrent setting since 
search is done at the top level and cannot be encapsulated into concurrent agents. 
I t  also fails to provide means for programming search engines like all solution 
search. This long standing problem of logic programming is solved by Oz with 
a new concept called spaces. A space is a box consisting of a store and threads. 
Computa t ion  in a space is speculative and does not have a direct effect outside. 
Computa t ion  in a space proceeds until the space becomes either failed or stable. 
Stability means tha t  no thread can advance except by committ ing a choice. There 
is an operat ion tha t  blocks until a space is failed or stable and then reports  the 
result. For stable spaces there are two possibilities: either there is a pending 
choice or not. If  there is no pending choice, the space can be merged with the 
parent  space to obtain the result of the speculative computat ion.  If there is a 
pending choice, the space can be cloned and be commit ted to the respective 
alternatives. 

Spaces turn out to be a simple and flexible means for programming search 
engines. A first version is described in [II, 14]. A recent paper on spaces and 
their use is [I0]. 

11 F i n i t e  D o m a i n  Cons tra in t s  

Finite domain constraints are constraints over integers that  in conjunction with 
constraint programming yield a powerful tool for solving combinatorial  problems 
like scheduling [2, 18, 12]. To include them in our framework, we introduce a new 
unit l v a r ( D )  tha t  represents a logic variable that  is constrained to take a value in 
D, where D must  be a finite set of integers. Variable binding and unification are 
adapted so tha t  they respect finite domain constraints. The primitive operations 
of DML treat  finite domain variables like unconstrained variables. There is a 
new primitive operation 

fdvar: findom-> int 

tha t  returns a fresh logic variable constrained to the finite domain given as 
argument.  Unification is extended to handle constrained logic variables according 
to their logical meaning. For instance, the expression 

l e t  v a l  x = f d v a r [ 1 , 2 ]  v a l  y = f d v a r [ 0 , 2 ]  in  x == y end 

is equivalent to the expression 2. 
More expressive constraints like 2 * x = y are realized with concurrent agents 

called propagators .  For instance, if the store knows that  x E { 1 , . . . ,  10} and 
y E { 1 , . . . ,  9}, a propagator  for the constraint 2 .  x = y can narrow the domains 
of x and y to x E {1,2,3,4} and y E {2,4,6,8}.  This form of inference is 
called constraint  propagation. In general, there will be many  propagators  tha t  
communicate  through the store. The power of a constraint programming system 
depends on the class of propagators  it offers. Depending on the constraints they 



realize, propagators often use nontrivial algorithms. A ubiquitous constraint is 
"xl,  �9 . . ,  xk are all different". For instance, if the store knows 

x 6  {1,2,3} y � 9  {1,2,3} z � 9  u � 9  {1,2 ,3 ,4 ,5} v � 9  {1,3,4} 

a propagator for "x, y, z ,  u, v are all different" can narrow the domains to 

x � 9  y � 9  z � 9  u � 9  v � 9  

which determines the values of u and v. There is a complete propagation algo- 
r i thm for the all different constraint that  has quadratic complexity in the number 
variables and possible values [8]. 

12  F e a t u r e  C o n s t r a i n t s  

Feature constraints are constraints over records that  have applications in com- 
putational linguistics and knowledge representation. There is a parameterized 
primitive operation 

tellfeature#1abe1: record * 'a -> unit 

that constrains its first argument to be a record that has a field with the label 

label and with the value that is given as second argument. For instance, 

t ellf eature#age (x, y) 

posts the constraint that x is a record of the form {age=y .... }. 

To accommodate feature constrains, we use units of the form 

lva r (w,  {/1 = a l , . . . , l k  = a k } )  

that  represent logic variables that  are constrained to records as specified. A 
record satisfies the above specification if it has at most w fields and at least a 
field for every label l~ with a value that  satisfies the constraints for the address ai. 
The metavariable w stands for a nonnegative integer or co, where k _~ w. 

There is also a primitive operation 

tellwidth: record * int -> unit 

that  constrains its first argument to be a record with as many fields as specified 
by the second argument. 

The operation t e l l f e a t u r e  is in fact a unification operation. It narrows the 
store in a minimal way so that  the logic content of the new state is equivalent 
to the logic content of the old state conjoined with the feature constraint told. 
For instance, the expression 

let val x = ivar() 

in tellwidth(x,l) ; tellfeature#a(x,7) ; x end 

is equivalent to the expression {a=7}. 

Feature constraints and the respective unification algorithms are the subject 
of [17]. Feature constraints are related to Ohori's [5] inference algorithm for 
polymorphic record types. 
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13  C o n c l u s i o n  

The main point of the paper is the insight that  logic and concurrent constraint 
languages can be profitably based on functional core languages with call by 
value semantics. This avoids unnecessary duplication of concepts. SML wins 
over Scheme since it has richer data structures and factored out reference cells. 

Our approach does not unify the theories behind functional and logic pro- 
gramming. It treats the extensions necessary for concurrent constraint program- 
ming at an abstract implementation level. To understand and analyse concurrent 
constraint programming, more abstract models are needed (e.g., [9, 2, 13, 15,16]). 

It seems feasible to extend the SML type system to logic variables and con- 
straints. Such an extension would treat logic variables similar to reference cells. 
Feature constraints could possibly be treated with Ohori's polymorphic'record 
types [5]. 

The approach presented here is an outcome of the Oz project. The devel- 
opment of Oz started in 1991 from logic programming and took several turns. 
Oz subsumes all concepts in this paper but has its own syntax and is based on 
a relational rather than a functional core. The relational core makes Oz more 
complicated than necessary. The insights formulated in this paper can be used 
to design a new and considerably simplified version of Oz. Such a new Oz would 
be more accessible to programmers experienced with SML and would be a good 
vehicle for teaching concurrent constraint programming. 
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