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Abstract .  Message sequence charts (MSC) are commonly used in de- 
signing communication systems. They allow describing the communi- 
cation skeleton of a system and can be used for finding design errors. 
First, a specification formalism that is based on MSC graphs, combin- 
ing finite message sequence charts, is presented. We present then an 
automatic validation algorithm for systems described using the message 
sequence charts notation. The validation problem is tightly related to a 
natural language-theoretic problem over semi-traces (a generalization of 
Mazurkiewicz traces, which represent partially ordered executions). We 
show that a similar and natural decision problem is undecidable. 

1 Introduct ion 

Message sequence charts (MSC) are a notation widely used for the early design of 
communication protocols. With its graphical representation, it allows to describe 
the communication skeleton of a protocol by indicating the messages that  are sent 
between its different processes. Using message sequence charts one can document 
the features of a system, and the way its parts interact. Although MSCs often do 
not contain the full information that  is needed for implementing the described 
protocols, they can be used for various analysis purposes. For example, one can 
use MSCs to search for missing features or incorrect behaviors. It is possible to 
detect mistakes in the design, e.g., the existence of race conditions [1] or non- 
local choice [2]. Another task that  is often done using MSCs is providing 'feature 
transparence' ,  namely upgrading a communication system in a way that  all the 
previous services are guaranteed to be supported. 

In recent years MSCs have gained popularity and interest. An international 
committee (ITU-Z 120 [7]) has been working on developping standards for MSCs. 
Some tools for displaying MSCs and performing simple checks were developed [1,8]. 
We model systems of MSCs, allowing a (possibly infinite) family of (finite or in- 
finite) executions. Each execution consists of a finite or infinite set of send and 
receive events, together with a partial (causal) order between them. Such a sys- 
tem is denoted using M S C  graphs, where individual MSCs are combined to form 
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a branching and possibly looping structure. Thus, an MSC graph describes a 
way of combining partially ordered executions of events. 

We suggest in this paper a specification formalism for MSC properties based 
on directed graphs: each node of the graph consists of a template, which includes 
a set of communication events, and the causal order between them. We study 
three alternative semantics for the specification by MSC graphs: 

- Using the same semantics as for an MSC system. Namely, each maximal 
sequence corresponds exactly to one execution. 

- With gaps, i.e., as a template, where only part of the events (and the or- 
der between them) is specified. Moreover, choices in the specification graph 
correspond to different possible ways to continue the execution. 

- Again with gaps, but with choices corresponding~to conjunctions. Namely 
an execution matching the specification must include all the events in every 
possible path of the specification, respecting the associated causal orders. 

The main focus of this paper is on developping an algorithm for deciding 
whether there are executions of the checked system of MSCs that match the 
specification. Such an execution is considered as a 'bad' execution and if exists 
it should be reported as a counter-example for the correctness of the system. 
For the first semantics we show in Section 5 that the matching problem is unde- 
cidable. For the last two problems we provide algorithms and we show them to 
be NP-complete, see Section 4. In the special case of matching two single MSCs 
we provide a deterministic polynomial time algorithm, improving the result of 
[8], see Section 3. The complexity of related problems has been studied for pom- 
set languages [6]. In contrast, in [6] only finite pomset languages are studied 
(however, over a richer structure). 

The matching problem can also be represented as a decision problem for 
semi-traces [4]. A semi-trace is a set of words that is obtained from some word 
by means of (not necessarily symmetric) rewriting rules. These rules allow com- 
muting pairs of adjacent letters. A semi-trace language is a set of words closed 
under these given rewriting rules. We provide a natural transformation from 
MSCs to semi-traces. This allows explaining our decidability result as a deci- 
sion problem on rational languages of semi-traces. One surprising consequence 
of this translation is that it applies in the same way to two rather different com- 
munication semantics for a natural subclass of MSCs: that of asynchronous fifo 
communication and that of synchronous (handshake) communication. 

Work is in progress to add the proposed validation framework to a toolset 
that was developed for manipulating MSCs [1]. This paper concludes with several 
open problems and suggested work. 

2 C h a r t s  a n d  M S C  G r a p h s  

In this section, we introduce message sequence charts (MSC) and MSC graphs, 
as well as the matching problem. 
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D e f i n i t i o n  1 ( M S C ) .  A message sequence chart  M is a quintuple (E, <,  L, T, 7 ~) 
where E is a set of events, < C_ E x E is an acyclic relation, P is a set of 
processes, L : E -~ 7 ) is a mapping  tha t  associates each event with a process, 
and T : E --+ {s, r} is a mapping that  describes the type of each event (send or 
receive). 

The order relation < is called the visual ordering of events and it is obtained 
from the syntactical representation of the chart  (e.g. represented according to the 
s tandard syntax ITU-Z 120). I t  is called 'visual '  since it reflects the graphical rep- 
resentation of MSCs. We distinguish between two types of visual ordering as fol- 
lows. Wele t  <c -- {(e,e ' )  IT (e )  = s ,T(e ' )  = r and e ,e '  are the send and receive 
events of the same message} denote the message ordering. Furthermore,  for P E 
P let Ep  = {e [ e E E A L(e) = P} ,  i.e., E p  is the set of events tha t  belong 
to process P .  We define the relation < p  = < A (Ep x Ep)  t ha t  represents the 
ordering between events of P only. Then the visual order < is the union of these 
orders, i.e., < --- <c U (UPep  <P)" 

Thus, for two events e and f ,  we have e < f if and only if one of the following 
holds: 

- e and f are the send and receive event of the same message. In this case, we 
call e and f a message pair. 

- e and f belong to the same process P ,  with e appear ing before f on the 
process line. This imposes a total  order among all events of P ,  for every 
process P.  

In general, the visual order provides more ordering than  intended by the 
designer. Therefore we associate with every chart  a causal s t ructure providing 
the intended ordering. Causal structures are related to pomsets [11], event struc- 
tures [9], and traces [5]. A causal structure is obtained from an MSC by means 
of a given semantics. Formally, the causal s t ructure of an MSC M is a quintuple 
t r (M)  = (E,-~, L, T, P) ,  where the only component  tha t  differs from the defini- 
tion of an MSC is the relation -~, called the precedence order of events. For two 
events e and f ,  we have e -~ f if and only if event e must  te rminate  before event 
f starts.  The transitive closure -~* of -~ is called the causal order. Events which 
are not causally ordered can occur independently of each other. 

The precedence order of events is defined by a set of semantic rules. As the 
semantics used throughout  the paper,  we give below the set of rules for an archi- 
tecture with fifo queues. This means tha t  every one-directional communication 
between two processes is done through a fifo channel. For this architecture we 
have in the visual order for each message pairs e <c ] and e ~ <c f~ with e < p  e ~ 
and L ( f )  = L ( f ' )  = P'  also f ( p ,  f ' .  Then, for two events e and f ,  let e -~ f 
for the fifo semantics if one of the following holds: 

1. Two sends from the same process: 

T(e) = T ( f )  = s A e <v  f for some process P .  

2. A m e s s a g e p a i r : T ( e ) = s  A T ( f )  = r A e <c f .  
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3. Messages ordered by the fifo queue: 

T(e)  = T ( f )  = r A e <p  f for some p r o c e s s P A  

3e ~ , f f ( e  ~ < c e  A f ' < c f  A e ' < p ,  f f  for some processP~) .  

4. A receive precedes a send on the same process line: 

T(e)  = r A T ( f )  = s A e <p  f for some p r o c e s s P .  

Remark 2. For a causal structure O = (E, -~, L, T, :P) we use the usual notation 
e $ for the downward closure of an event e E E w.r.t, the partial order of (9, 
i.e. e $= {f  E E I f -~* e}. The notion of a minimal element e in O is also 
standard, meaning that  e ~ -~* e implies e t -- e. We denote by min(O) the set of 
minimal elements of the partial order of (9. 

Note that  the following relation between configurations associated to a mes- 
sage pair holds under the fifo semantics: 

L e m m a  3. Let e <c f be a message pair. Then we have under the fi]o semantics: 

f $ = e S U { f l E E [ T ( f l ) = r , L ( f l ) = L ( f )  and 

el < c f t  for el with et "~ e, T(ez)  = s, n(e l )  = n (e )} .  

2.1 T e m p l a t e s  a n d  t h e  M a t c h i n g  P r o b l e m  

An MSC M matches an MSC N (or is embedded in N) if the chart N respects 
the causal order on the events specified by M. (Clearly, matching is defined with 
respect to a given semantics.) The MSC M is called a template M S C  and it 
represents the specification, whereas the MSC N is called a system MSC. For 
matching M against N it suffices to consider the reduced partial order of M. 
Moreover, a template is viewed as a possibly partially specified execution of 
the system. The actual executions may contain additional messages, which may 
induce additional ordering. 

D e f i n i t i o n  4 ( M a t c h i n g  a t e m p l a t e  w i t h  an  M S C ) .  Under a given seman- 
tics, a template M with the causal structure t r (M)  = (EM, "~M, LM, TM,7~M) 
matches a chart N with the causal structure t r (N)  = (EN,-~N, LN,TN,TPN) if 
and only if ~OM C ~ g  and there exists an injective mapping (called embedding) 
h : EM --4 EN such that  

- for each e E EM, we have LN(h(e))  = LM(e)  and TN(h(e))  = TM(e) (pre- 
serving processes and types), and 

- if el -~M e2 then h(el)  -~N h(e2) (preserving the causal order). 

Let P = ( P 1 , . . .  ,Pn} denote the set of processes. For an event e E E we are 
often interested in its 'message type '  msg(e) and we let msg(e) = sij, if e is a 
send event from Pi to Pj,  and msg(e) = rij if e is a receive event of Pj from Pi, 
respectively. Let msg(M) = {msg(e) t e E EM}.  



230 

Note that under the fifo semantics the injectivity of the embedding is already 
implied by the two other properties in the definition above. Moreover, under this 
semantics we have a simpler characterization of embeddings, which takes into 
account just message types: 

L e m m a  5. Let M, N denote two MSCs and let h : M ~ N be a mapping. Then 
h is an embedding from M to N if and only if the following conditions hold for 
any two events e, f E EM : 

1. If (e, f )  is a message pair, then (h(e), h ( f ) )  is also a message pair between 
the same processes. 

2. Let e "~M f such that (e, f )  is not a message pair (thus, e, f are on the same 
process). Then msg(h(e)) = msg(e), msg(h(f))  = msg(f)  and h(e) <N h( f )  
holds in the visual order <g of N .  

Let J~4 denote the class of finite message sequence charts. Let Mi = (Ei, <~ 
, Li, Ti, 7~i) be two MSCs, i = 1, 2. The (syntactic) concatenation of M1 and M2, 

denoted M1M2, is defined by letting M1M2 = (El tJ E2, <, L,T ,  Pl U P2) with 
LIE, = Li, TIE, = T~ and < = <1 tA <20{(e,e ' )  [ e E El ,e '  E E2,L(e)  = L(e')}. 

Here, E1 U E2 means the disjoint union of the event sets of M1 and/1//2. The 
concatenation of an infinite sequence M1, M2,. . .  is defined in an analogous way. 
Message sequence graphs (MSC graphs, sometimes called high-level MSCs [7]), 
are used to compose MSCs to larger systems. Equivalently, one can compose 
MSCs using rational operations, i.e. union, concatenation and iteration. MSC 
graphs are finite directed graphs where each node of the graph is associated 
with a finite MSC [1]. 

Def in i t ion  6 (MSC graph) .  An MSC graph N is a quadruple (S,T, So,c) 
where (S, T, SO) is a finite, directed graph with states set S, transition relation 
T C_ $ x S and starting state So E S. The mapping c : S ~ .A4 assigns to each 
node a finite MSC. 

Let ~ = Sl ,S2, . . .  be a (possibly infinite) path in N, i.e. (si,si+l) E T for 
every i. The execution (MSC) defined by ~ is given by c(~) -- C(Sl)C(S2) . . . .  

In order to distinguish MSC graphs from finite MSCs we denote throughout 
the paper a finite MSC (not bounded to any MSC graph) as a single MSC. 

In an MSC graph N = (S, T, SO, C), a path ~ is called maximal if it begins with 
the starting state so and it is not a proper prefix of another path. Notice that a 
maximal path can be either infinite or finite. Let also msg(N) = Usesmsg(c(s)). 

Fig. 1 shows an example of an MSC graph where the state in the upper left 
corner is the starting state. Note that the executions of this system are either 
finite or infinite. Also note that the events of receiving messages of fail and report 
are not causally ordered. 

Def in i t ion  7 (Match ing  paths) .  Let ~1 and ~2 be two finite or infinite paths 
in some MSC graphs. Then ~z matches ~2 if c(~l) matches c(~2). 
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Fig. 1. A system MSC graph. 

A strongly connected component C of a directed graph (S, T) is a subset 
C C_ S such that  for any u ,v  e C, there is a nonempty path from u to v. 
A maximal strongly connected component is a strongly connected component 
which is maximal w.r.t, set inclusion. 

3 Matching a Template 

In this section, we consider the problem of matching a single template MSC with 
an MSC graph. As a first result, we show that  we can check whether a template 
can be embedded into a single MSC in polynomial time. (Recall that  we assume 
that  the fifo semantics is used.) This algorithm refines the result of [8], where a 
PSPACE algorithm was exhibited without specifying the semantics. The present 
matching algorithm is based on the simple observation that  it suffices to match 
a suitable minimal send event and the corresponding receive event with the first 
occurrence of a message pair of the same type. 

Proposition 8. Let M = (EM, <M, LM, TM, 7~M), N = (EN, <N, LN,TN, PN) 
be single MSCs. For each event e E min(tr(M)) which is minimal w.r.t. "<*M let 
#(e) E EN denote the first event in N with msg(e) = msg(#(e)).  Choose eo E 
min(tr(M)) be such that/~(eo) is minimal within the set {#(e) ] e E min( tr( M ) ) } . 
Let fo, resp. f~, denote the corresponding receive events of co, resp. #(co). Let 
M'  = M \ {co, fo} and N '  = N \ {g' e EN I g' "<*N ]~}. Then M matches Y if 
and only if eo is well-defined and M I matches N' .  Moreover, if h ~ : M ~ -+ N ~ is 
an embedding of M I into N' ,  then h' U {Co ~-~ #(Co), fo ~-~ f~} is an embedding 
of M into N .  
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Proof. Note first that  all minimal elements of t r (M) are send events. Suppose 
that  M matches N via h : M --~ N,  where h(eo) r #(eo) (hence, h(fo) ~ f~). 
Let e~ :--- #(eo) and let h be given by h(eo) = e~o, h(fo) = f~ and h(g) = h(g) 
for every g it {e0, f0}. Now, if eo -~M g, then h(eo) -~N h(g)and  hence also 
e~o -~g h(g), since e~o "~N h(eo) and e~, h(eo) have the same message type. A 
similar argument holds for fo "~M g, which shows that  h is again an embedding 
from M to N. In order to show that  M ~ matches N ~ it suffices to show that  
s n {g' e EN I g' "~*N fO} = {elo, fo}" Assume the contrary, i.e. there exists 
g E EM such that  h(g) "<~v f~ and h(g) it {e~, f~}. Since every receive event is 
preceded by its corresponding send event, we may assume that  TM(g) = s, i.e. g 
is a send event. Let et e min(tr(M)) be a minimal event with et -<~ g, then 
s -<~v s -~v f~. By Lemma 3 we obtain that  s "~v e~, since el is a 
send event. By the definition of # we have #(el) "~v h(el), hence #(el) "~v e~. 
Thus, by the choice of eo we obtain ~(el) -~ e~. Therefore, e~ -<~v h(g) "<~v f~, 
which yields e~ = h(g) due to Tu(g)  = s, contradiction. 

Suppose finally that  M ~ matches N ~ via h ~ and consider some event g in M ~. 
If e0 "~M g, then we also have e~o "<N ht(g), since h ~ preserves message types 
and h'(g) E EN,. Similarly, f0 "~M g implies e~ "<N h'(g), which shows that  
h ~ U {eo ~+ e~, fo ~ f~} is an embedding of M into N. 

Remark 9. Proposition 8 yields an embedding algorithm, mapping the events of 
M in such a way that  minimal events are mapped first, to the first event with 
the same type. This algorithm is of linear complexity if we keep min(tr(M)),  
resp. {#(e) ] e e min(tr(M))} in two lists. More precisely, note that  on each 
process of M, resp. N,  there is at most one event e E min(tr(M)),  resp. #(e). 
Moreover, we will record for each process of N the event on that  process line 
which is of the form ~(e) for some e E min(tr(M)),  if there is one on that  process. 
This additional information is needed in order to update the set of minimal 
elements of {#(e) I e E min(tr(M))} in constant time. For the complexity of our 
algorithm note first that  min(tr(M~)) can be updated in constant time, since 
at most two new minimal events can occur on L(eo) and L(fo). Moreover, for 
el E min( t r (M' ) ) \min( t r (M))  we can check whether #(el) is minimal in {#(e) I 
e E min(tr(M*))} in constant time, using the additional information mentioned 
above. This suffices, since p(el) is a send event and every event preceding it in 
the visual order is a predecessor in the causal order, too. Hence, #(el) is not 
minimal within {#(e) I e E min(tr(M~))} if and only if its process contains an 
event p(e2), e2 E min(tr(M~)), such that  #(e2) <N' #(el).  

Note also that  the embedding h suggested by Proposition 8 is actually unique. 
It is not difficult to show that  an event e E EM is mapped by h to e ~ E EN if 
and only if e ~ is the minimal event w.r.t. "~v such that  e $ matches e ~ $. 

In the remaining of this section we consider the exact complexity of matching 
a template MSC with an MSC graph. 

Defini t ion  10 (Matching  a t empla te  wi th  an M S C  graph).  A template 
MSC M matches an MSC graph N if M matches some maximal path of N. 
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Matching a template against an MSC graph actually requires only paths of 
bounded length to be checked: 

P ropos i t i on  11. Let N be an M S C  graph and let M be a single template M S C  
such that M matches N .  Then there is a path in N that embeds M and has length 
at most rod, where m is the number of messages in M and d is the maximal length 
of a simple path in N (i.e. of a path where no node appears twice). 

Proposition 11 yields a non-deterministic algorithm for matching a template 
with an MSC graph which guesses a path in N and verifies that the template 
matches the graph. The algorithm is polynomial in the size of the template and 
the number of nodes in the graph. The proposition below shows that matching 
is also NP-hard. 

Proposition 12. Matching a single template M S C  with an MSC graph is NP- 
complete, even if the graph is acyclic. 

Proof. It suffices to show that matching is NP-hard. For this, we reduce the 
satisfiability problem for formulas in conjunctive normal form (CNF-SAT) to 
the MSC matching problem. 

Consider a formula ]~=1 Cj with clauses (disjunctions) Cj over the variables 
x l , . . .  ,xl. For each clause Cj we take two processes, Pj and Rj. Let m ( j )  
denote a message from Pj to Rj. Note that the events of different messages 
m ( i ) , m ( j ) ,  i ~ j ,  are not causally ordered. Then the template M is given as 
M = m(1) �9 �9 �9 m(k) .  The system graph N = (S, T, SO, C) contains for each variable 
xi three states denoted as oi,pi and ni, i.e. S = {oi ,pi ,ni  I 1 < i < l}. Let so = 
ol. The edge set is given by r = {(oi,pi), (oi,ni),  (pj, oj+l), (n j ,o j+l)  I 1 < i < 
l, 1 _< j < l}. The assignment of MSC to states is as follows: for every i, c(oi) = 0, 
c~ i )  = {re(j) I xi occurs in Cj} and c(ni) = {re(j) [ ~i occurs in Cj}.  That is, 
c(pi) contains messages associated to all clauses satisfied by xi := true, whereas 
c(ni) contains messages associated to all clauses satisfied by xl := false. Thus, 
a maximal path in the MSC graph N corresponds exactly to an assignment of 
the variables. The single MSC M matches a maximal path of N if and only if 
the assignment given by the path satisfies all clauses. 

4 M a t c h i n g  M S C  G r a p h s  

In this section, we discuss our extension of the matching algorithm to deal with 
MSC graphs. Adopting the same convention for matching two single MSCs, we 
call one of the MSC graphs the template (MSC) graph. The other graph is called 
the system (MSC) graph. 

The template graph represents a collection of properties (behaviors), each 
defined by one of its maximal paths. Then for the or-semantics as defined below, 
the template corresponds to a non-deterministic choice among these behaviors, 
so an execution of the system needs to contain at least one of the executions 
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Fig. 2. A template MSC graph. 

described by the template. For the and-semantics an execution of the system 
matches the template if it contains all the executions of the template MSC 
graph. 

Def ini t ion 13 (Match ing  a t e m p l a t e  graph wi th  a s y s t e m  graph) .  Let 
M and N be two MSC graphs. 

1. M or-matches N if there exists a maximal path ~ of N and a maximal path 
of M which matches ~. 

2. M and-matches N if there exists a maximal path ~ of N such that all 
maximal paths ~ of M match ~. 

Consider the and-graph template in Fig. 2. This template matches the system 
of Fig. 1, since the system may alternate infinitely often between Connect and 
Fail. 

The next lemmas present some fundamental properties of matching paths of 
MSC graphs. A subpath ~ of a path ~ = So, s l , . . ,  in some graph G is a path of 
G of the form ~ -- Sio, siz, si2,..,  with i0 < il < . . . .  In this case, we denote 
a superpath of ~. 

L e m m a  14. Let M, N be two MSC graphs and let ~1, ~2 denote paths in M,  N,  
resp. Let ~1 match ~2. Then for every subpath ~ of ~1 and every superpath ~ of 
~2, ~11 matches ~ .  

P r o p o s i t i o n  15. Let M, N be two MSC graphs and consider an infinite path 
in M such that every state from ~ occurs infinitely o~en in ~. Let C be the 

strongly connected component of M induced by the states from ~. Consider also 
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an infinite path X in N and let C ~ denote the strongly connected component of 
the states occurring infinitely often in X. Then the following holds: 

1. ~ matches X if and only if msg(C) c_ msg(C').  
2. Let K denote a simple cycle within C and suppose that ~ matches X. Then 

K ~ matches X, too (here, K ~ denotes the infinite path K K . . . ) .  
3. Let K be a cycle containing all states from C ~. Then ~ matches X if and only 

if ~ matches K~ .  

Proof. Suppose first tha t  ~ matches X- Then, since embeddings preserve message 
types, it is easily seen that  msg(C) c_ msg(C').  For the converse let X = XoX1 . . . ,  
with Xi finite paths such that  every Xi, i > 1, contains all states from C ~. Also, 
consider a linearization e l e2 . . ,  of tr(~) satisfying the property that  for each i, 
(e2i-1, e2i) is a message pair. We define an embedding h inductively by mapping 
(e2i-l ,e2i) to events from Xi, i > 1. More precisely, h maps e2i-1 to the first 
event e ~ occurring in e(Xi) satisfying msg(e2i_l) = msg(e*). Then, e2i is mapped 
by h to the corresponding receive event of e ~. By Lemma 5 it is easy to check 
that  h preserves the causal order. 

The second assertion of the proposition is obtained directly from Lemma 14, 
whereas the last assertion is a consequence of the first one. 

4.1 The Complexity of OR-Matching 

The next theorem shows that  for or-matching two MSC graphs only finite paths 
have to be considered for an embedding. More precisely, for the recurrent part  
of a path only the message types of events are relevant. For a strongly connected 
component C and a state s we denote below a path from s to some node in C 
as a path from s to C. 

Theorem 16. Let M = (S, % So, c) be a template graph and N = (S  I, T ~, S~o, c ~) 
be a system graph. Then M or-matches N if and only if either there exists a 
finite maximal path of M which matches N ,  or there exist 

- a simple cycle K in M and a simple path ~ from so to K ,  
- a strongly connected component C ~ of N and a path X from S~o to C ~, 

such that ~ matches X and msg(K) C msg(C) .  

Proof. Suppose that  M or-matches N via an infinite maximal path. Then, by 
Lemma 14 and Proposition 15(2) we also obtain a path of M of the form ~ K K . . .  
which matches N,  where K is a simple cycle and ~ is a simple path from So to 
K.  Let p denote a path in N such that  ~K ~ matches p. Moreover, let X be 
a minimal prefix of p such that  ~ matches X and the corresponding suffix is a 
strongly connected component of N.  Then, by applying Proposition 15(1), we 
obtain the result. 

For the converse we may use again Proposition 15(1) in order to extend the 
embedding of ~ into X to an embedding of ~K W into a path in N starting with 

X. 
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First note tha t  in Theorem 16 the path X is in general not simple. But  by 
Proposition 11 its length is bounded by size(~) �9 n, with size(~) denoting the 
number of messages in ~, and n denoting the number of states in N.  Note also 
that  we can require above that  C ~ is a maximal strongly connected component,  
due to Lemma 14. Hence, an algorithm based on Theorem 16 would first com- 
pute in linear time all maximal strongly connected components of N.  Then, for 
each maximal strongly connected component C ~ consider the states s of M with 
msg(c(s)) c_ msg(C)  and the subgraph Me, induced by these states. The al- 
gorithm checks whether there is some simple path ~ from So to some strongly 
connected component of Mc, which matches a path X from s~ to C'. (The length 
of X is bounded by a polynomial in the size of ~ and the size of N.)  

The complexity of the above algorithm basically derives from two problems: 
one consists of finding all simple paths from the initial node to a given subgraph, 
and the second one is the problem of matching a single template MSC with 
an MSC graph. Clearly, Theorem 16 directly yields an NP-algorithm for or- 
matching. Moreover, by Proposition 12 already the case where the template 
graph is a single node is NP-hard. Hence, we obtain: 

C o r o l l a r y  17. The or-matching problem for MSC graphs is NP-complete. 

4.2 The Complexity of AND-Matching  

For the and-matching problem we need to deal not only with strongly connected 
components, but  also with states reachable from some strongly connected com- 
ponent. The reason is that  some of the events in such states have to be mapped 
to events belonging to recurrent states in the system graph. 

For an MSC graph M = (S,T, so,c) let Sc C_ S denote the set of nodes 
belonging to some strongly connected component of M. For each state s E 8 
let us parti t ion the events belonging to the single MSC c(s) associated with s in 
two sets cf(s),c~(s) as follows. For each event e E e(s) let e e c~(s) if and only 
if there exist some state s ~ �9 So, some event e t in c(s t) and a path ~ from s t to s 
with e t -~  e for the causal order -~  associated to the execution of ~. We denote 
by Ew the set of events {e I e �9 co,(s), s �9 $}. The set Eo, can be computed in 
polynomial time as follows: let E~ := {e' ] e' �9 c(st), s' �9 So}. Then for every 
e ~ E~, e �9 c(s), test whether there is some event e t �9 E~,, e t �9 c(s~), such that  s 
is reachable from s t through a path ~ and e ~ -~  e for the execution of tha t  path. 
Note that  e t -~  e holds if and only if e ~ -~x e holds for any other path X from s t 
to s. Moreover, by Lemma 3 the condition e ~ -~  e can be checked by examining 
the message types of e, e ~. If the test is positive, then let E~ -- E~, U {e}. This 
step is repeated until no more events can be added. Note also that  for every 
e �9 e~(s) and e ~ �9 c(s) with e -~*(s) e~, also e ~ �9 co,(s) holds. Moreover, for 
every message pair el <c e2 in e(s) we have el �9 cf(s)  if and only if e2 �9 cf(s)  
(this is easily checked using Lemma 3.) The set c I (s) together with the visual 
order inherited from c(s) is thus a single MSC which we also denote by ci(s ) 
(analogously for co,(s)). By the previous remarks we have that  the causal order 
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of c(s) is the same as the causal order of cf(s)cw(s).  Finally, for s E 8c we have 
e(s) = 

T h e o r e m  18. Let M = (S,v, s0, c) be a template graph and N = (St,T',S'o,e ') 
be a system graph. Define a mapping ~ : S -+ A4 by letting ~(s) = e l ( s  ). Let 
1~I = (S, ?, So, ~) denote the M S C  graph with states set ~ = {s E S I 5(s) 
0} U {So} and (s ,s ' )  E ~" if and only if s ,s '  E S such that -~(s = s' = so) and 
there is a path s = S l , . . .  ,Sk = s t in M satisfying 5(si) = O ]or all 1 < i < k. 
Then M and-matches N if and only if there exists a subgraph C' of N and a 
path X from s' o to C' such that 

I. All paths in )~I match X. 
2. I f  M contains cycles then msg(Eo~) C_ msg(C') and C' is a strongly connected 

component of N .  

Proo]. First, note that  the MSC graph 2t7/is acyclic (since the only possible loop 
would be a self-loop of so, which has been excluded by definition). 

Suppose that  M and-matches N and consider a path p in N such that  all 
maximal paths in M match p. If M is acyclic, hence M = M, then we are done 
by choosing an appropriate finite prefix X of p. So suppose that  3c ~ 0, then p 
must be infinite. Let C t be the strongly connected component containing^exactly 
the states occurring infinitely often in p. Let ~ be a (finite) path from M. Then 
it is easy to verify that  there exists a path a in M such that  the causal order of 
the execution of ~ is a prefix of the causal order of the execution of a. Hence, 
matches p, too. Let X be a finite prefix of p such that  all (finite) paths from M 
match X and the corresponding suffix is a strongly connected component of N. 
Finally, consider an event e in some c~(s), for some state s. Then there exists 
for each n _> 0 a path ~ from so to s such that  the configuration e $ of the 
occurrence of e in the last node of ~ contains at least n events. Hence, there is 
some state s t occurring in p infinitely often, such that  msg(e) = msg(e r) holds 
for some event e t in s'. This concludes one direction of the proof. 

Conversely, suppose that  M has cycles. Let ~ = so , s1 , . . ,  be a maximal 
(finite or infinite) path in M. Note that  the causal order associated to the ex- 
ecution c(~) of ~ is identical to the causal order of ci(~)c~(~), where ci(~) = 
c l ( s o ) c l ( s i ) . . ,  and c~(~) = c~(8o)Cw(81) . . . .  Moreover, c l ( s o ) c l ( s l ) . . ,  is a fi- 
nite MSC since there can be only a finite number of nodes si with ei(si  ) ~ 0. 
Also, c] (so)c$(s l ) . . ,  is the execution of a finite path in 2t3/, thus it matches X. 
Since msg(Ew) C_ msg(C t) we obtain similarly to Proposition 15 that  the MSC 
e~(so)c,~(Sl). . ,  matches / (~ ,  for some fixed cyc le /~  containing all the states 

^ 

from C'. Thus, ~ matches X K~,  which shows the claim. 

By the previous theorem we have to consider the problem of and-matching 
a single MSC against an aeyclic MSC graph. The next proposition shows that  
for and-matching an acyclic graph it suffices to look for a mapping which is an 
embedding for all the paths (instead of embedding each path separately). 
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Proposition 19. Let M be an acyclic MSC graph and let N be a single MSC. 
Then M and-matches N if and only if there exists a mapping g : M --~ N which 
is an embedding for all paths in M.  

Proof. Suppose that  M and-matches N and let g~ denote an embedding of a 
maximal path ~ of M in N.  Let ~ denote the set of all maximal paths of M. De- 
fine a mapping g : M ~ N by letting g(e) = max{g~(e) I ~ E S ,  e occurs on ~}. 
Note that  for a fixed event e the set {gr ] ~ E ~ ,  e occurs on ~} is totally 
ordered w.r.t. "~v. This is due to the fifo semantics, since for each e, e ~ with 
msg(e) = msg(e') we have either e _ e' or e' ~ e. 

We show that  g is an embedding for every path ~ E ~.  If e <c S is a message 
pair in M, then g(e) <c g( f )  holds, due to the fifo semantics. Thus, suppose 
that  e -~  f and e ~c f both hold, where -4~ denotes the causal order associated 
to the execution of ~. Let X E S be a path also containing e, f .  Note that  we 
have e "~x f due to M being acyclic. Hence, gx(e) -~N gx(S). By the definition 
of g we finally obtain g(e) "~g g(f)" 

The previous proposition shows that  there exists a mapping g for matching 
all paths in M with N. This yields an NP-algorithm for matching an acyclic MSC 
graph M with a single MSC (note that  after guessing the mapping g we test the 
embedding property for every pair of events e, f with e -~  f for some path ~). 
We now show that  we can even find a canonical mapping deterministically in 
polynomial time (similar to Proposition 8). 

Proposition 20. Let M = (S, v, so, c) be an acyelic MSC graph and let s E S be 
a source node, i.e. a node without predecessors. Let N = (EN, <g,  LN, TN, 7JN) 
be a single MSC. Assume that M and-matches N and let h : c(s) -+ N be defined 
by 

h(e) = e ~ if e' is minimal w.r.t. "~*N such that e $ matches e ~ $ 

Let g : M --~ N be a mapping which is an embedding for all paths from M in 
N .  We define a mapping g~ : M --+ N by letting g'ic(s) = h and g~(e) = g(e) for 
every e ~ c(s). Then g~ is also a mapping which embeds all paths of M into N .  

Proof. It can be easily verified that  for every event e E c(s) and every mapping 
g : M --+ N which is an embedding for all paths in M (in particular for c(s)) one 
has h(e) ~N g(e). Therefore, if e -~  f holds for the execution of a nonempty path 

from s to s' for two events e, f with e E s and f E s', then also h(e) "~g g( f )  
holds. 

Proposition 20 yields a polynomial-time algorithm for matching an acyclic 
and-graph with an MSC defined by a path. We first determine for each node s 
and for each event e E c(s) the immediate predecessor events of e (w.r.t. the 
causal order) located in s and in the nodes preceding s. Then we embed a source 
node s of M and iterate this procedure with M \ {s}. When processing the 
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current node s events in c(s) are mapped according to the partial order (starting 
with minimal elements) as suggested by Proposition 8. That  is, a suitable event 
e E min(tr(M)) is mapped to the minimal event e ~ of the same type in N,  such 
tha t  e ~ $ contains all events to which the immediate predecessor events of e were 
mapped to. 

Together with Theorem 18 we obtain an NP-algorithm for the and-matching 
problem by first guessing a subgraph C ~ of the system graph N and a path X 
from the starting node of N to some node in C .  Then we verify deterministically 
that  the acyclic MSC graph M defined in Theorem 18 and-matches the single 
MSC corresponding to X. Note that  due to Proposition 19 we can bound the 
length of X by a polynomial in the number of messages in M and the number of 
nodes in N. Together with Proposition 12 we obtain: 

C o r o l l a r y  21. The and-matching problem for MSC graphs is NP-complete. 

5 A n  U n d e c i d a b l e  P r o b l e m  

The matching problems considered previously were based on the paradigm that  
templates represent partial specifications of system behaviors. We show below 
that  if we require that  templates represent exact behaviors, then the or-matching 
problem is undecidable. 

For the fifo semantics considered in this paper we show first that  considering 
a message pair as a single letter we obtain an isomorphism between the causal 
orders of a natural subclass of message sequence charts and partial orders of semi- 
traces. Semi-traces are objects known from the algebraic study of concurrency 
(for a survey on semi-traces see Chapter 12 in [5]). 

Formally, assume that  7 ~ = {P1, . . .  ,Pro} is the set of processes. We asso- 
ciate an alphabet ~ = {mij I 1 <_ i ~ j < m} and a non-commutation relation 
SD C 2~ x E,  SD = {(mij, mik) [ j ~ i ~ k} U {(mij, mj~) [ i ~ j ~ k}. The idea 
underlying SD is to consider in the precedence order the order between sends 
on the same process and receives ordered by the fifo condition (mij,mik), and 
receives followed by sends on the same process line (mij, mjk). The complemen- 
tary relation, SI = (2Y x ~)  \ SD, called semi-commutation relation, yields a 
rewriting system {ab --+ ba [ (a, b) E SI}, which will be also denoted by SI. A 
semi-trace [w] is a set of words, [w] -- {v e Z* [ w -5~si v}. The concatenation of 
two semi-traces [u], [v] is defined as [u][v] = [uv]. It is an associative operation 
and the set of all semi-traces over (Z, SI) together with the concatenation is a 
monoid with identity 1 = [e], which is denoted (M(Z, SI),., 1). Note also that  
the relation SD is reflexive. Moreover, [w] = [w'] holds if and only if w can be 
rewritten into w ~ by using symmetric rules only. 

In the next proposition we show that  a naturally arising subclass of MSCs can 
be identified with semi-traces. We restrict our consideration to MSCs satisfying 
the condition that  in the visual representation no two message lines intersect. 
We denote this subclass as ordered MSCs. Clearly, ordered MSCs satisfy the 
fifo condition on the visual order. Note also that  the syntactic concatenation of 
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MSCs induces a concatenation operation for the associated causal orders, which 
is associative. 

P r o p o s i t i o n  22. Let JMo denote the set of ordered MSCs over the set of processes 
79 = {P1, . . .  ,Pro} and let ( E , S1) be defined as above. Then the monoid of causal 
orders over ./M is isomorphic to (M(E, S/), . ,  1). 

Proof. Let M = (E, <,L ,T ,79)  and define a homomorphism h : E ~  --+ E* by 
letting h(e) = m~j, if e is a send event from Pi to Pj,  and h(e) = )~ if e is a 
receive event. To M we associate a language tM over ,U*: 

tM - - ~  {h(z) I z E E ~  is a linearization of - ~ }  

Then we can show that  tM is a semi-trace over (~,  SI). For this, we first define 
a linearization z0 E E ~  of M inductively by choosing some message pair (e, f )  
of M satisfying 

- e is minimal w.r.t, the visual order < in M 
- for every g E EM: g < f r g = e 

and letting z0 = efz~, where z~ is defined accordingly for M ~ := M \ {e, f} .  
(Note that  the existence of e, f as above is due to M being an ordered MSC.) 
Then we claim that  tM = [h(z0)], i.e. tM is the semi-trace associated to h(zo). 
We show this by induction on the length of tM. For lack of space, the details are 
left to the full version of the paper. 

Traces [5] result from in symmetric rewriting rules, i.e. both SI and SD are 
symmetric relations. For the trace monoid given by the rules ab = ba, cd = dc it 
is known that  one cannot decide for given regular languages L1, L2 C {a, b, c, d}* 
whether [L1] n [L2] is empty [3], where [L] = UueL[U] denotes the closure of L 

under --~sI- 

P r o p o s i t i o n  23. Let M,  N be two MSC graphs. Then it is undecidable whether 
there exist two maximal paths ~1 in M ,  ~2 in N such that the associated MSCs 
m l ,  m2 have the same causal order under the fifo semantics. 

Proof. We consider four processes, 79 = {P1, P2, P3, P4} and we denote by Sa, ra 
a message pair from P1 to P2, resp. by sb,rb a message pair from P2 to P1. 
Dually, so, rc denotes a message pair from P3 to P4, whereas sd, rd is a message 
pair from Pa to P3. Then we associate to each letter a, b, c, d an MSC as given 
by the mapping h, with h(x) = sxr=, for x E {a,b,c,d}.  Moreover, h induces a 
homomorphism from {a, b, c, d}* to A4. 

Note that  for any word u over {a, b, c, d} the partial order tr(h(u)) consists of 
two totally ordered sequences, one over events between processes P1 and P2, the 
other over events between P3 and/)4. Moreover, these total orders are completely 
independent. Viewed as a mapping from M(2~, SI) to tr(Ad), h is injective. This, 
together with [3], concludes our proof. 
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Let us comment our results in the context of semi-trace languages. One can- 
not decide the emptiness of the intersection of two MSC graphs since given 
two regular languages L, K c_ ~w and a semi-commutation relation SI over ~,  
the question whether the intersection ILl N [K] is nonempty is undecidable. In 
contrast, the or-matching problem of Section 4.1 can be expressed as a very 
particular instance of the above problem. Before going into some details, let us 
fix notations. For a language L _C ~*, we denote by LUAE* the shuffle of L and 
~*, i.e. the language {ulvlu~v2""unvn I ulu2"" "un E L, vi E E*). The shuffle 
LUAX ~ for L C_ 2Y* U Xo, is defined analogously. 

Formally, the or-matching problem for the semantics with gaps is equivalent 
to the question whether the intersection [LUA~ ~] N [K] is empty or not, for regu- 
lar languages L, K C_ ~ .  The crucial point now is that [LLU~U w] has a very par- 
ticular form. Suppose without loss of generality that L = UV ~, with U, V C ~* 
regular languages such that every element of V has the same alphabet A C ~.  
Then VY~ ~ = (UUA~*) Inf(A), with Inf(A) = {u �9 E ~ [[u[a = oo, Va �9 
A}. Moreover, [UV~UJE ~] = [(UUA~*)] Inf(A). But it is easy to check that 
UUJ~* is a very simple regular language, a finite union of languages of the form 
E*alE*a2~*. . .  akZ* for some letters ai �9 ~.  (This family of languages corre- 
sponds exactly to level '1/2' in the concatenation hierarchy of Straubing-Th~rien 
[10]). Finally, [~*alZ*a2E* �9 �9 �9 ak~*] = Ua,1 ...a,k e[al...ak],U*ail ~ * " "  ai~ ~*. 

6 C o n c l u s i o n  

In this paper we presented specification and verification methods for MSCs, 
which employ languages of partially ordered executions. We were interested in the 
problem of deciding whether there is an execution of the given MSC system that 
matches the specification. We considered three alternative semantics and showed 
that the matching problem under both the or-semantics and the and-semantics 
is NP-complete. Under a semantics which allows no gaps in the specification the 
matching problem becomes the intersection of two MSC graphs. We showed that 
this problem is undecidable. Some open directions for further research include 
extending the framework by allowing and/or-graphs and negation, expressing the 
finite occurrence of certain events, and obtaining complementable specification 
formalisms. 
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