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A b s t r a c t .  We study authentication codes (A-codes) where it is assumed 
that the enemy has access to the content of the intercepted cryptogram. 
This is similar to plaintext attack in secrecy systems. Enemy's success 
is defined in two ways. The first is as in Simmons' model. We will also 
consider chosen-contentattacks in which the success is by constructing a 
fraudulent cryptogram with a given content. We will obtain information 
theoretic bounds, define perfect protection and obtain lower bounds on 
the number of encoding rules for codes with perfect protection against 
chosen-content impersonation and chosen-content plaintext substitution. 
We characterize these A-codes when the number of encoding rules is min- 
imum. We give methods for ma.ldng an" A-code resistant against plaJntext 
and chosen-context plaintext attack. 

1 Introduct ion 

A basic assumption in secrecy and authenticity systems is that  the encoding 
procedure and probabil i ty distribution of the source and key space is known 
to the enemy. In secrecy systems the extra information available to the enemy 
is used to classify the severity of attacks, so that  the ciphertext only at tack 
is the easiest, followed by the plaintext and chosen plaintext at tack which are 
the more stringent ones. In authenticity systems the same approach can be used. 
However a second crucial factor in this classification is the way success is defined. 
In Simmons '  model  of authentication [1, 2], the enemy succeeds if he/she can 
construct a c ryptogram acceptable to the receiver. A more demanding type of 
success is when the receiver is deceived by a cryptogram with a given content. 
This is called chosen.content attack. This model of a t tack is also mentioned in 
[13] but  no analysis of the model is given. An example of such at tack is when 
the value figure of a financial transaction is substi tuted by a value chosen by 
the opponent .  Table 1 gives a classification of attacks in A-systems for various 
degrees of the enemy's  power and the two types of success mentioned above. 
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Table 1. Attacks in A-systems 

Type of Information available 
success No information ctext Chosen ctext ptext Chosen ptext 

Simmons' model Impersonation Substitution Johansson et al. ~/ 
Chosen-content x/ x/ 

where ctext = ciphertext and ptext = plaintext. 
In this table columns, from left to right, correspond to the increasing degree 

of the enemy's power while rows, from top to bottom, correspond to the increased 
difficulty of success in the attack. The following is a glossary of the labels used 
for the table's columns: 

- No informafion: enemy has no extra information. 
- Ciphertext: enemy has access to a cryptogram (ciphertext only attack ); 
- Chosen ciphertezt  : enemy can choose the valid cryptogram sent in the chan- 

nel; 
- Plaintext  : enemy has intercepted a cryptogram and knows its content; 
- Chosen plaintext: enemy can choose a source state and will be given the 

corresponding cryptogram. 

It is noted that the enemy's power and the type of success are independent 
attributes of an attack and hence each cell of the table represents a possible 
type of attack. Simmons' impersonation and substitution correspond to cells 
(1, 1) and (1, 2) of the table respectively and the way probability of deception is 
calculated by :Iohansson et al [12] corresponds to cell (1, 3) of the table. We use 
P0 and P1 to denote probability of success in impersonation and substitution 
attack in Simmons' model of attack. 

In this paper we will consider attacks corresponding to the cells (2, 1), (1, 4), 
(2, 4) of the table. We call them chosen-content impersonation, plaintext, and 
chosen-content plaintext respectively and use P~, P1 p, P~P to denote probability 
of success in each case. We obtain information theoretic bounds on probability 
of deception and define A-codes that provide perfect protection. We will show 
that perfect protection for plaintext attack is closely related to perfect one- 
fold secrecy and use a transformation, on an arbitrary A-code, to increase its 
resistance against plaintext attack. It is known, [3], [6], that optimal perfect t-fold 
secrecy codes are equivalent to perpendicular arrays (PAs). Our transformation 
uses PAl( l ,  k, k)s to increase P~ of an A-code without affecting P1 and P0 
of the code. Codes that provide protection against chosen-content attacks are 
related to ordered designs (ODs). We give a second transformation, using ordered 
designs, that increases resistance of A-codes against chosen-content attacks. The 
two transformations, mentioned above, produce A-codes with the best P1 p and 
P i  p, respectively, for the given P1. We will show that A-codes with perfect 
protection against chosen-content impersonation and chosen-content plaintext 
and minimum number of encoding rules are equivalent to ODs. Stinson [7] has 
proved similar types of results for cartesian A-codes and A-codes with secrecy 
for Simmons' model of attack. 
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It is interesting to note tha t  the lower bound on P~P is always greater than 
the lower bound on P i  p and so for codes that  satisfy these bounds substitution 
is always the better  game to play. 

Finally we use a composition method used by Bierbrauer and Edel [10] for 
authentication PAs, to combine ODs and obtain more efficient A-codes. 

Let A be an (M, k, E)  A-code with probability of substitution equal to P1- 
The main results of this paper include: 

- construction of an (M, k, kE) A-code, using PAs, with P~ = P1; that  is, an 
A-code for which the knowledge of the cryptogram content is not useful to 
the enemy and for the given P1, P1 p has its lowest value; 

- construction of an (M, k, k(k - 1)E) A-code, using ODs, with the same P1 

and having P~P P1 Again this is the best possible value of P~P (for the 
- k - - l "  

given P1) and corresponds to the case when the knowledge of cryptogram 
content is not of assistance to the enemy. The construction is possible only 
if k is a prime power; 

- a bound on the number of encoding rules for A-codes that  provide perfect 
protection against impersonation and plaintext substitution and a similar 
bound when chosen-content attack is used; 

- a characterisation of A-codes that  provide perfect protection against chosen- 
content impersonation and chosen-content plaintext substitution with mini- 
mum number of encoding rule; 

- information theoretic and combinatorial bounds on P1 p and P~P. 

2 Prel iminaries  

We consider an authentication scenario with three participants: a transmitter  
and receiver (communicants) who want to communicate over a publicly ex- 
posed channel and an enemy who tries to deceive the receiver into accepting 
a fraudulent message as genuine. We are only concerned with honest commu- 
nicants. An (M, k, E) authentication code (A-code) is a collection s [El = E, 
of mappings called encoding rules, from the set S, IS] = k, of source states 
into the set A,t, I.h,4l = M, of codewords. The code provides protection only if 
k < M. The encoding matrix of the code is an E x M matrix, denoted by B 
in this paper, whose rows and columns are labeled by the elements of E and 
2vt and B(e, m) is the source state s with e(s) = m and zero otherwise. We 
denote by E(m) the subset of keys that  are incident with the cryptogram m, by 
g(m,  s) the subset of keys that  map the source state s into the cryptogram m, 
i.e, E(m, s) = {e; E E[a,~,j = 1}, and by E((m, s), m') the subset of keys that  
map the source state s to the cryptogram m and are incident with cryptogram 
m'. Also .~4(e) is the subset of cryptograms that  are valid for the encoding rule 
e .  

For a set 9:" we use X to denote its cardinality. For example E(m, s) is the 
cardinality of the set E(m, s). The incidence matrix of an A-code is a binary 
matr ix  A = [a(ms),e] whose rows are labeled by the elements of the set A~ x S 
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and whose columns are labeled by the elements of s and am,~ : 1 if e(s) : m 
and zero otherwise�9 We note that  E(m, s) might be zero for some pairs (m, s) 

and so ~-,f=l arnsj = 0. We consider A-codes without splitting. In such A-codes, 
an encoding rule is a one to one mapping from the set S of source states to the 
subset .s of A~ and so ~-]rne.~ ~'~,es arn,i = k and ~,,es am,j = 1 or 0. 

The communicants choose an encoding rule (key) according to the probability 
vector r = ( r l ,  ..., rE).  The enemy uses a plaintext attack or a chosen-content 
plaintext attack. Both of these attacks are variations of the substitution attack. 
We have also considered the chosen-content impersonation attack. 

3 P l a i n t e x t  A t t a c k  

Plaintext attack is a substitution attack in which the content of the cryptogram 
is known to the enemy. For cartesian A-codes this is the same as traditional 
substitution. However for A-codes with secrecy knowledge of the content of the 
cryptogram is extra information available to the enemy and hence: 

P~ >_ P1. (1) 

Let P(m, s) denote the probability of a source state s being mapped into 
E 

a cryptogram m. We have P(m,s) = Ps(s) • E r j am, j ,  where Ps(s) is the 
j=l 

source probability distribution�9 Probability of the enemy's success if he/she in- 
tercepts cryptogram m, knows the corresponding source state s, and introduces 
a fraudulent message m' into the channel, is given by payoff((m, s), m'), 

payoff((m, s), m')  = P(m' valid [(m, s) received ), 
E 

Es'E,.q\s E j=I  ~rjamsjarn,s , j  
: E ( 2 )  

Ej=I  71"j arnsj 

The enemy's strategy q can be represented as a collection of probability vectors 
q : {qm,S}, where, 

qmS = (q~:,.. , ms mi m, > o, E ms =1. �9 qrnM--a), ~ m, qm, _ q,~, 
i 

The probability of the enemy's success when the enemy has intercepted a 
pair (m, s) and uses the best strategy is 

P r =  E E E E rjamsjam,,,jq,~fPs(s) (3) 
mE.A,4 sE8 rn'EA4\rn s'E,S\s 

= ~ P(m, s)Mazm, (payoff(re', (m, s))) (4) 
tT~j$ 
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3.1 B o u n d s  a n d  pe r f ec t  p r o t e c t i o n  

An A-code provides perfect protection against plaintext attack if the enemy's 
best strategy is uniform, i.e, q~f = 1 / ( M  - 1) for every pair (m, s) for which 
E(rn, s) > 0. Note that  we do not require E(m,  s) # 0 for all pairs (m, s); rather 
it is required that  the strategy be uniform for all (m, s) with P(m,  s) > O. 

Similar to the usual authentication scenario we have: 

P r o p o s i t i o n  l .  An A-code provides perfect protection against plaintext attack 
if  and only if, 

k - 1  
p a y o f f ( ( m ,  s), m ' )  - M - 1' 

k - 1  
for every pair (m, s) with P (m ,  s) > O. In this case P~ = M - 1" 

Let C denote the set of pairs (m, s) with P(m,  s) > O. C is the number of 
non-zero (with at least one non-zero element) rows of matrix A. 

k - 1  
P r o p o s i t i o n 2 .  Let P~ -- M -- 1" Then 

2 M  <<_ C < kM. 

Equality in the right hand side is i f  P(m,  s) > 0 for all m E M and s E S.  In 
this case C = kM.  

Using a simple counting argument it is easy to show that  if an A-code provides 
perfect protection for plaintext attack then the number of encoding rules is lower 
bounded by the following expression, 

C ( M -  1) 
E >  k ( k - 1 )  " (5) 

Expression 5 shows that  the minimum number of encoding rules for an A-code 
that  provides perfect protection for plaintext attack is at least twice the corre- 
sponding number for Simmons' model of attack. 

T h e o r e m 3 .  Let P~ = ( k -  1 ) / ( M -  1), C = k M  and let E satisfy bound 5 
with equality. Then Po = k / M  and the code provides perfect one-fold secrecy. 
The communicants'  best strategy is uniform. 

Theorem 3 leads to a construction of A-codes, with perfect protection against 
plaintext attack. The construction was originally used by Stinson (theorem 
4.2,[6]) to construct codes that  provide 1-fold secrecy and are 1-fold secure 
against spoofing. In section 3.2 we generalize this construction to a transfor- 
mation on an arbitrary A-code to make it resistant against plaintext attack. 

The main information-theoretic bound on P1 is due to Pet and Rosenbanm 
[9, 11]. Similar result can be proved for PIP: 
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T h e o r e m  4. 

Pf  > 2-(H(eI-MS)-H(eI'MZS)) (6) 

and equality holds if and only if 

(i) P~ = payoff((m, s), m') = const for all (m, s) and m' such that 
E((m, s), m') > O; 

(it} the conditional probability P(mqe, (m, s)) that rn' is the next cryptogram sent 
by the transmitter, given that e is the actual encoding rule and pair (m, s) 
has already been sent, is constant for all e E g((m, s), m'). 

Equality in bound 6 implies that  

k - 1  
y ' 

where for any (m, s), V is the number of m' E 3/I with S(m') N g(m, s) r 0}, 
and is independent of (m, s). 

3.2 C o n s t r u c t i o n  o f  A-codes  r e s i s t a n t  aga i n s t  p l a i n t e x t  a t t a c k  

A perpendicular array PAx(t,  k, v) is a b • k array of elements of a v-set V such 
that  each row of the array consists of k distinct elements of V and a set of t 
columns contains .every t-subset of V, ~ times. 

T h e o r e m 5 .  Consider an (M,k ,E)  A-code with uniform source and Px = e. 
Then we can construct an (M, k, kE) A-code, with kE encoding rules, and P~ = 
PI ~( . .  

If the enemy knows the content of the cryptogram he/she is in a more pow- 
erful position compared to the Simmons' model of attack. However theorem 5 
shows that  it is always possible to transform an arbitrary A-code to one with 
P~ = P1, that  is, one for which the knowledge of the content of the cryptogram 
is not useful to the enemy and his/her chance of success is not affected by this 
extra knowledge. The transformation substitutes a row ei of the encoding matrix 
by k rows, each with k non-zero elements, such that  restriction of these rows to 
M(ei) is a PAl( l ,  k, k). Using bound 1 it can be seen that  the code constructed 
in theorem 5 has the lowest possible P~ for the given P1. 

C o r o l l a r y  6. In theorem 5 if Po = k / M  the resulting code will have Po = k /M,  
P1 = P~ = e. The code will also provide perfect one-fold secrecy. 

It is shown [7] that  for an A-code with P0 = k / M  and P1 = (k - 1)/(M - 1) the 
number of encoding rules E is lower bounded by 

E > Eo - M ( M - 1 )  
k ( k -  1) 
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If  the code has E = E0 the t ransformation of theorem 5 results in an A-code for 
which E satisfies bound 5 with equality and hence has the min imum number  of 
encoding rules for A-codes with P0 = k /M and P~ = (k - 1 ) / (M - 1). 

We note that  for codes with P0 = k /M the increase in the number of encoding 
rules, due to the construction given in theorem 5, may  contribute to providing 
secrecy, protection against plaintext attack, or in general both. We consider two 
extreme cases. If  the code originally provides perfect secrecy but does not provide 
any protection against plalntext attack, increasing the number  of encoding rules 
will only increase protection against plaintext at tack (see example 1). On the 
other hand codes without  secrecy always provide protection against plaintext 
at tack.  Thus increasing the number  of encoding rules only results in perfect 
secrecy (see example 2). 

Example 1. Consider the following A-code with P0 = k/M, Pt = ( k -  1 ) / ( M -  1) 
tha t  provides perfect one-fold secrecy, but  has P~ = 1 

E / M  0 1 2 3 4 5 6 
0 Sl 0 s~sa  0 0 0 
1 0 st 0 s2s3 0 0! 
2 0 0 Sl 0 s2s3 0 
3 0 0 0 st  0 s 2 s 3  
4 s3 0 0 0 Sl 0 s2 
5 s2s3 0 0 0 st  0 
6 0 s2s3  0 0 0 st 

Applying the t ransformation of theorem 5 results in an A-code with the same 
values of P0 and P1, which provides perfect one-fold secrecy and has P~ = P1- 

IE/M 0 1 2 3 4 5 6 
0 Sl 0 s2s3  0 0 0 
1 s2 0 SSSl 0 0 0 
2 s3 0 s t s 2  0 0 0 
3 0 st  0 s2s3  0 0 
4 0 s2 0 s s s l  0 0 
5 0 s3 0 s i s 2  0 0 
6 0 0 Sl 0 s2s3  0 
7 0 0 s2 0 S~Sl 0 
8 0 0 s3 0 s i s 2  0 
9 0 0 0 st  0 s2s3 

E / M  0 1 2 3 4 5 6 
10 0 0 0 s2 0 s s s l  
11 0 0 0 s3 0 s i s 2  
12 s3 0 0 0 Sl 0 s2 
13 st 0 0 0 s2 0 s3 
14 s2 0 0 0 s3 0 sl 
15 s2s s  0 0 0 st 0 
16 s a s l  0 0 0 s~ 0 
17 st s2 0 0 0 s3 0 
18 0 s2s s  0 0 0 st 
19 0 SSSl 0 0 0 s2 
20 0 s i s 2  0 0 0 

Example 2. Consider an A-code without secrecy 

E / M  0 1 2 3 
0 81 S2 0 0 
1 Sl 0 s2 0 
2 0 s2 0 st 
3 0 0 s2 sl 

with P0 = Pt = 

83 

e~ = klM.  

[] 



261 

After t ransformat ion the A-code will have Po = P1 = P~ = k/M and the code 
also provides perfect one-fold secrecy. 

E /M 0 1 2 3 
0 S 1 S2 0 0 

1 s2 sl 0 0 
2 sl 0 s2 0 
3 s2 0 sl 0 
4 0 s~ 0 Sl 
5 0 Sl 0 s2 
6 0 0 s2 sl 
7 0 0 sl  s2 

[] 

4 C h o s e n - c o n t e n t  a t t a c k s  

In these types of at tacks the enemy succeeds if he/she can construct a valid 
c ryp togram for a particular source states. In impersonation at tack the enemy 
sends the cryptogram m into the channel and expects that  it will be decoded 
to the source state s. For substitution we only consider a plaintext attack, that  
is, the enemy intercepts a cryptogram m, knows its corresponding source s tate  
s, and wants to substi tute it with a valid cryptogram m '  ~ m which will be 
decoded to a particular source state s '  ~ s. 

The  enemy's  impersonation strategy is represented by a k • M dimensional 
probabil i ty vector q -- (qm,,1," " ", qmMsk) and probabili ty of deception is given 
by 

P~= Z Z~rja,~sjqm,. 
(r,,,) j 

4.1 B o u n d s  a n d  p e r f e c t  p r o t e c t i o n  

An A-code provides perfect protection against chosen-content impersonation at-  
tack if the enemy's  best s trategy is random selection among all pairs (rn, s) E 
A4 • S and q(m,) = 1/(kM). It  is easy to see that  if an A-code provides per- 
fect protection against chosen-content impersonation it provides one-fold secrecy. 

P r o p o s i t i o n  7. 

P~P > 1/M, 

and equality holds if and only if the code provides perfect protection against 
chosen-content impersonation attack. In this case the code provides perfect one- 
fold secrecy. 
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In substitution the enemy intercepts a pair (m, s) and introduces a cryptogram 
m' for a chosen source state s'. In .this case payoff((m, s), (m', s')) is the prob- 
ability of enemy's success. 

payof f (  (m, s), (m' , s') ) = P( (m', s')valid)l(m, s)reeeived), 

_ (7) 

Summing over all possible m' E .&4\m and g E S \ s  it is easy to show that,  

payoff((m,  s), (m', s')) > 1/(M - 1). 

The enemy's strategy q can be represented as collection of probability vectors 
{qm,}, where qmS is a (k - 1) • (M - 1) dimensional vector and qmS, s, is the 
probabili ty of choosing (m', s') when (m, s) is received. The probability of the 
enemy's success in this case is, 

P~P= E E E E 7rjamsjam's'J qr~'~'P~(s)' 
rnE2~ s6,-g rn'E2~\m s'ES\s 

= E E P(m,s)Maxm, s ,payoff((m' ,s ' ) , (m,s)) ,  
m $ 

(8) 

(9) 

An A-code provides perfect protection against chosen-content plaintext attack 
if and only if for any intercepted pair (m, s) the enemy's best strategy is random 

1 
selection from all pairs (m', s'), m' r m, s' r s, i.e., q~n,~s, = (k - 1)(M - 1)" 

P r o p o s i t i o n  8. 

1 
P~P -> (M - 1) 

and equality holds if and only if 

1 
payoff((m,  s), (m', s')) = (M - 1)' (10) 

for all (m, s) with P(m, s) > 0 and (m', s'), m' # m, s' # s. Also if C = kM, 
we have P~ = 1/M. 

It is easy to see that  P0 _> P~. However the relation between P1 and P~P is 
not so obvious. In example 1 we have P1 = 1/3 but  if the content of a cryptogram 
is known the encoding rule is uniquely determined and we have P i  p = 1 > P1- 
On the other hand for cartesian A-codes P1 cp is a more restricted attack than 
traditional substitution and P~P < P1. 
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P r o p o s i t i o n 9 .  For an A-code with probability of deception in impersonation 
and substitution equal to Po and P1 respectively, we have 

Po < p ~  < Po (11) 
k - -  

P1 < P; < p:,, < (12) 
k - l - k - I -  

It is interesting to note that  for an A-code that  provides perfect protection 
against chosen-content impersonation and chosen-content plaintext, substitution 

1 1 
is always the better game as P i  e - M----~ > p~v _ M"  Theorem 10 shows that  

the number of encoding rules in this case is quite large. We need the following 
definitions. 

An ordered design ODx(t, k, v) is a b x k array of ordered k-subsets of a v-set 
V, such that  every set of t columns contains every ordered t-subset of V exactly 
A times. 

Encoding rules of an A-code can be written as a E x k matrix, denoted by D, 
whose rows are indexed by encoding rules and columns indexed by source states. 
Entries of matrix D are cryptograms and we have D(e, 8) = m if e(s) = m. 

T h e o r e m l 0 .  Let p~V = 1 / ( M -  1) and C = kM. Then E > M x ( M -  
1) and equality holds if and only if matrix D of the code is an ordered design 
ODI(2, k ,M) .  In this case p~v = 1/M and the code provides perfect one-fold 
secrecy. 

Theorem 10 is an interesting characterisation of A-codes with perfect protec- 
tion and the minimum number of encoding rules in terms of known combinatorial 
structures. Stinson [7] has proved similar results for cartesian A-codes and codes 
with secrecy for Simmons' model of attack. 

Theorem 11 gives the main information theoretic bound on P~v. 

T h e o r e m  11. 

p~v > 2-(H(eI~S)-H(eI~*I2S~)), (13) 

and equality holds if and only if 

(i) p:v = payoff((m, s), (m', 8')) = const for all (m, s) and (m', s') for which 
P((m,  s), (m', s')) > 0; 

(i) conditional source probability P((m', s')[e, (m, s) is independent of ei, where 
e, E s s), (m', s')) for two arbitrary pairs ((m, s), (rn', s')) for which 
P((m, 8), (m', 89) > 0. 

In the case of equality we have 

p i p =  k - 1  
U ' 

where for any (m, s), with P(m, s) > O, U is the number of (m', s'), m' E A4, s' E 
S with s  s) N s  s') # 0} and is independent of (m, s). 
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4.2 C o n s t r u c t i o n  o f  A - c o d e s  t h a t  p r o v i d e  r e s i s t a n c e  a g a i n s t  
c h o s e n - c o n t e n t  p l a i n t e x t  a t t a c k  

In chosen-content plaintext enemy has more information (knows the content of 
the cryptogram) but  a more difficult goal to achieve. In proposition 9 we noted 

P1 
tha t  P~P > k-----~" Theorem 12 shows tha t  an arbi trary A-code can be trans- 

formed into one for which P~P is at its min imum and the enemy cannot benefit 
f rom the knowledge of the cryptogram content. The transformation replaces each 
row el of the encoding mat r ix  with k(k - 1) rows, in a way similar to the one 
briefly described for theorem 5, but this t ime the restriction of the k ( k -  1) rows 
to M(ei )  is an .ODl(2 ,  k, k). Such designs exist when k is pr ime power [8]. 

T h e o r e m l 2 .  Consider an (M, k, E)  A-code with P1 = e with a uniform source 
and let k be a prime power. Then there exists an (M, k, k ( k -  1)E) A-code with 
P~P - P1/ (k  - 1) = e/(k  - 1). / f  C - k M  then the code will have P~ - 1 / M  
and will provide perfect one-fold secrecy. 

C o r o l l a r y  13. In theorem 12 i f  Po = k / M  then the new code will have P~ = 
1 / M  and will provide perfect one-fold secrecy. 

An example of this construction is given below. 

Example 3. The original code is a code without 

E /M 0 1 2 3 4 

0 S 0 S 1 8 2 0 0 

1 so 0 0 s2 sl 
2 0 sl 0 s2 0 
3 0 0 s2 0 sl 

The new code preserves the properties of the 
perfect secrecy and P~ -- l / M ,  P~P = k / ( ( k  - 1)M). 

E / M 0  1 2 3 4 5  
0 s o s l s 2  0 0 0 
1 s t s 2 s 0  0 0 0 
2 s 2 s 0 s l  0 0 0 
3 st s0s2 0 0 0 
4 s o s ~ s l  0 0 0 
5 s ~ s l s 0  0 0 0 
6 so 0 0 s 2 s x 0  
7 s2 0 0 s i s 0 0  
8 sl 0 0 s 0 s 2 0  

0 s2 0 0 s o s 1 0  
so 0 0 sl  s2 0 

secrecy with P0 = Pt = k / M .  

5 
0 
0 
80 

S0 

original code but also provides 

E /M 0 1 
11 sl 0 
12 0 sl  
13 0 s2 
14 0 so 
15 0 s2 
16 0 sl 
17 0 So 
18 0 0 
19 0 0 
20 0 0 So 
21 0 0 sl 
22 0 0 s2 
23 0 0 so 

2 3 4 5  
0 s2 so 0 
0 s 2 0 s o  
0 so 0 sl 
0 sl 0 s~ 
0 81 0 SO 

0 so 0 s2 
0 s2 0 sl 
s2 0 s l  so 
sl 0 so s2 

0 s2 sl 
0 s~ so 
0 so sl 
0 sl s2 
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A-codes with P~ -- 1 / M  and P;P = 1 / ( M  - 1) and suitable parameters can 

be combined. The result is an A-code with the same values of P~ and P~P for 
a larger source and hence increased efficiency. The composition is based on a 
method used by Bierbrauer et al [10] for composition of perpendicular arrays. 
Proposition 14 gives the details of this construction. 

P r o p o s i t i o n l 4  [10]. I f  an ODx(2, k, M )  and an OD~(2,~, M - k )  exist, where 
g > 1 then there is an ODa•215 k + g, M ) .  

Hence having an (M, k, El )  A-code and an ( M -  k, g, s A-code that  provide 
perfect protection for chosen-content impersonation and chosen-content plain- 
text substitution implies existence of a (M, k + t ,  E)  A-code with P~ = 1 / M  and 
P~P = 1 / ( M  - 1) and for which S = k + i. We note that  P0 and P1 will increase 
for the new code. 
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