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Abstract
A new class of feedback register, based on ramified extensions of the 2-adic numbers, is described. An algebraic
framework for the analysis of these regi: and the seq they output is given. This framework parallels that

of linear feedback shift registers. As one consequence of this, a method for ¢cracking summation ciphers is given.

These registers give rise to new measures of cryptologic security.

1 Introduction

Pseudorandom sequences, with a variety of statistical properties (such as high Lnear spaa, low autocorre-
lation and pairwise cross-correlation values, and high pairwise hamming distance) are important in many
areas of communications and computing (such as cryptography, spread spectrum communicatioas, error
correcting codes, and Monte Carlo integration). Binary sequences, such as m-sequences, more general
nonlinear feedback shift register sequences, and summation combiner sequences, have been widely stud-
ied by many researchers. Linear feedback shift register hardware can be used to relate certain of these
sequences (such as m-sequences) to error correcting codes (such as first order Reed-Muller codes).

In this paper we describe a new type of feedback register, ramified feedback with carry shift registers
(or d-FCSRs, where d is the ramification). These relatively simple devices generate binary sequences
that have an algebraic structure that parallels the algebraic structure of linear feedback shift registers
(3] This algebraic structure is based on algebra over certain extensions of the 2-adic numbers. (See,
for example, Koblitz's book {7] for background on 2-adic aumbers). Furthermore, there is an analog
for d-FCSRs of the Berlekamp-Massey algorithm. The algebraic analysis of these sequences, together
with the Berlerkamp-Massey type algorithm, leads' to vulnerability of certain combiners with memory,
including the summation combiner [9]. These facts lead to the consideration of an analog of the linear
complexity - the r-adic span. This x-adic span is a new measure of cryptologic security that must be
large for any binary sequence to be secure. This work generalizes the construction in the unramified case
due to Klapper and Goresky [5].

2 Feedback Shift Registers with Carry

In this section we give a detailed description of the operation of d-FCSRs. In the simplest case, d = 1,
the contents (0 or 1) of the tapped cells of the shift register are added as integers to the carrent conteats
of the memory to form a sum, £. The parity bit (T (mod 2)) of £ is fed back into the first cell, and the
higher order bits ([T/2]) are retained for the new value of the memory. Any periodic binary sequence

may be generated by such a FCSR.
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More generally, we fix a positive integer d, and consider an addition operation in which the carry
jumps d bits. Thus if d = 3, then 1+ 1 = 1000. We will refer to this operation as addition with d-fold
carrv. It corresponds to addition in the integers with a positive real dth root » of 2 adjoined (z* = 2).
A register is obtained by replacing the integer addition in the preceding paragraph by this addition,
and allowing plus or minus ones as coefficients on the tapped cells. Such a register is called a ramified
feedback-with-carry shift register with ramification d, or simply a d-FCSR.

More precisely, let R = Z[r] be the integers with x adjoined. We have x = 2'/4 real and positive, so
R is a subset of the reals and the usual absolute value makes sense in R. Fix an odd integer ¢ € R. (Here
odd means that g is congruent to 1 modulo x.) Write ¢+ 1 = 7 + ¢ax3 + -« + ¢.x" with ¢; € {0, %1}.
The shift register will use r stages plus some additional bits of memory. The feedback connections will

be given by the coefficients {q1.¢2,...,9-}. We write go = —1 when convenient.

Definition 2.1 The d-FCSR with connection integer g is the register is o feedback register with r bits
of storage plus additional memory for carry. If the contents of the register at any given time gre
(8r-1,8ro2,...,81,80) and the memory is m, then the operation of the shift register is defined as fol-

lows:
A1l. Form the integer sum o = 3 1u; GiGr~k + M.
A2. Shift the contents one step to the right, outputting the rightmost bit ao.
A3. Place a, = ¢ (mod «) into the leftmost cell of the shift register
A4. Replace the memory m with (¢ - a,)/~.
We have the following analogs of LFSR theory.

1. For any binary periodic psendorandom sequence we may consider the smallest FCSR which generates

that sequence.

Definition 4.1 The size of the smallest d-FCSR which generutes the periodic part of an eventually
periodic sequence a is the x-adic span of the sequence a. Here, x¢ = 2.

2. There is an analog (due to Mandelbaum (8]) of the Berlekamp-Massey algorithm, which we discuss
in Section 4. For any periodic binary sequence and d > 1, this algorithm may be used to construct

a d-FCSR which generates the sequence.

3. If two periodic binary sequences are added with d-fold carry operation, then the r-adic span of the
resulting sequence is no more than the sum of the r-adic complexities of the original sequences.
In §4 we use this fact and (2) above to provide 2 cryptologic attack on the certain combiners with

memory, including “summation combiners™ described in [9].

4. The number g, which we call the connection number, is analogous to the connection polynomial
of a LESR. The period and other properties of the binary sequence are determined from number

theoretic properties of ¢.
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5. An {-sequence is a FCSR sequence with maximum possible period T = |(R/(g))"j. An f-sequence is
analogous to an m-sequence in LESR theory. In case d = 1, 50 x = 2, such a sequence is the cyclic
shift of the sequence formed by reversing the period of the binary expansion of the fraction 1/¢
and have been studied since the time of Gauss ({1, 2, 6}). They have remarkable distribution and
correlation properties and are generated by connection numbers ¢ for which 2 is a primitive root.

Suppose that a = {ag, 61, a3,...} and b = {bg, by, bs,...} are infinite periodic binary sequences and
that the sequence ¢ is obtained by adding the sequences a and b with d-fold carry operation. In other
words,

o = (sth)(mods),  m = (stlo-col W
a = {a+h+m)(mods), my = (qa+b+m-—a)lx
and so on. (Here, m; is the bit carried from stage j ~ 1 to stage j.)
We model this addition with carry operation by associating to the infinite binary sequence a the

formal power series
00
a= Z ax’ 2)
im0

and similarly associating 8 to b. These are the analogs of generating functions in LFSR theory, and there
are analogs of well known facts relating rationality of generating functions to periodicity of sequences, and
relating the denominator of a rational generating function to the connection polynomial of a LFSR which
outputs the sequence. Such power series over r do not converge in the usual sense but can be interpreted
as defining elements in the ring R = Z{[r]] of x-adic integers. This ring consists.of all formal power series
5%, sir’ with s; € {0,1}, and can be interpretted as the completion of R with respect to the =-adic
valuation. It has been studied extensively by mathematicians for many years. The main difference between
the two rings Z/(2)[[z]] and £ is that addition in R is performed by “carrying™ overflow bits to higher
order terms, so that »* + xi = 2x' = x+9, It follows that the formal power series v = co+¢;7 + c37% 4. - -
associated to the sum-with-d-fold-carry sequence ¢ is given by addition, y = a + 8 € R. In the r-adic
numbers, -1 is represented by —1 = 1+ xd + 7294 x3 4+ ... A z-adic number T a;x* bas a mrultiplicative
inverse if and only if ag = 1. Also, any x-adic number a can be written

d=1
a= 2 a;x’,
=0

If a € R = Z[x], then each a; is an ordinary integer.

These constructions may be made using ramified extensions of the p-adic numbers Z, (for any prime
) and all our results remain valid essentially without change. However, for the most part, we will restrict
attention to the case p = 2 because this is probably the most important case from the point of view of
applications.

If a = (ag,@1,03,...) is an eventually periodic sequence, then the associated »-adic number is a
quotient of elements of R, a so-called R-rational. If a is strictly periodic of period T, then the associated
R-rational number a is easily found. Set a = Y385 e;x’. Then

(X7 air)
o= s @

Theorem 2.2 There is g one to one correspondence between R-rational numbers a = p/q (whereq= 1
(mod #)) and eventually periodic binary sequences a. If d = 1, then a is strictly periodic if and only if
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0 £ -p < ¢. If p and q are relatively prime in R, and q is odd, then the eventual period of the bit sequence
for the x-adic ezpansion of a = p/q is T = ordy(x).

This partially explains how to generate any periodic binary sequence using a FCSR: express the
corresponding 7-adic number as a fraction p/q, then write ¢ = ~1 + g7 + ga%® + -+ + g, x", with
¢i € {0,£1} (every element of R which is congruent to one modulo r can be so written). The coefficients
€1:92..-.,¢r specify the multipliers on the taps of the FCSR. The numerator p determines the initial
loading of the shift register in a way that is described later in this paper, The r-adic span of the sequence
a is therefore one less than the number of bits in the smallest such expansion of ¢. (The memory requires
at most an additional 2[d - log,(1/(z - 1))] bits, where ¢ is the maximum of the number of 1s and the
number of -1s in the expansion of ¢.)

3 Analysis of FCSRs

According to the preceding sections, there are four different ways to view an infinite, eventually periodic
binary sequence: (1) As a binary sequence a; (2) As an element a of the 2-adic integers Z3; (3) As a
rational number p/q; (4) As the output stream of a FCSR. We have already identified representations (1)
and (2) by associating the binary sequence a with the coefficients in the formal power series expression
for a. The translation between representations (2) and (3) was explained in Theorem 2.2. In this section
we show how to translate between representations (3) and (4).

Suppose we fix a FCSR with connection number ¢ = ~1 + g7 4 %2 + -+ + ¢, 7" and some initial
loading of the memory and the register. The register will generate an infinite, eventually periodic sequence
a = @p, 01,83, ... of bits. Let a be the associated r-adic number, which we call the x-adic value of the
FCSR (with its initial loading and initial memory).

Let us consider the transition from one state of the shift register to the next, Suppose that, for some
given state, the value of the memory is mem = m,_; and that the contents of the register is given by the
7 Bits Gpet,@ne2e. ..y Guer (With @,y the leftmost bit and a,.., the rightmost bit, and where the register
shifts towards the right). The next state is determined by calculating ([Al)) 05 = ma-y + Loy €i8n-is
writing the new contents of the leftmost cell as ¢, = #x(mod r), and writing the new memory contents
as m, = (0 = a,)/7 (see [A3] and [A4]). (The remaining bits are shifted once to the right.) These
equations may be combined into the expression o, = xm, + a,. It follows that

Gn = Y GiGnei + (Mg = 7my) (4)
=)

provided n > r. Suppose the initial loading of the register consists of memory mem = m,.; and with
register bit values a,._;,8,-3,...,81,80. Now substitute (4) into the expression (2) for a to obtain,

a

id
GotaT+- -+ + ) aar”
n=sy

r=1 e r o
T ar + Y (Y Gitani)F + 3 (Mamy — Fma )" (5)
=0 nm=r n=mr

=1

This equation gives . .
M8 — Tioe j;a" axa;x? )

1- :;sl q‘l'”l.
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Thus we have proven

Theorem 3.1 The output, a, of a d-FCSR with tion integer q, initial m v value m,_;, and
initial looding a..y,8,.32,...,81,00, is the bit sequence of the w-adic representation of a rational number
(eq. (6)) a = ~p/q with denominator g.

Initial Loading of a FCSR

Now let us show how to construct a FCSR which generates the bit sequence for a given rational p/¢. For
this purpose we fix an odd connection integer ¢ = Y7xo ¢:%* With go = —1 and ¢ € {0, %1} for i > 0. Fix
P € R. An initial loading of the FCSR is defined as follows:

B1. Set m. =p.

B2. For each i = 0,1,...,r - 1 compute the following numbers:

i-1

o = Y GiekGk+mi €2 N
k=0

a; = o;(mod x)€ R/(x) (8)

m = LS )

Proposition 3.2 If we use the initial loading (Gr—1,8r.3,.. .,81,80), and initial memory m,_; € R, then
the resulting d-FCSR outputs the x-adic ezpansion of p/q.

If p is relatively prime to g, then the period of the sequence is T' = ord,(2). However if p and ¢ have
a common factor then the period may be smaller but at least it will divide ordy(2).

Fact 3.3 Adding b to the initial memory changes the x-adic value of the shift register by ~bx"/q.

Let ¢ be the maximum of the number of g equal to 1 and the aumber of ¢; equal to ~1,i=0,...,7.
If m is the initial memory value, we can write m = mi!} = m(?), where the expansion of each m!i) has all
nonnegative coefficients. If for each i we have m(¥) < t/(r — 1), then the same will be true for all later
values of the memory. We will therefore need at most 2[d - log;(t/( ~ 1))] bits of memory. Moreover,
if we initialize a FCSR with m{) > ¢/(x = 1), then the memory will decrease so that after at most
d - loga(m{ — t) steps, m() will be at most . In particular, if the expansion of p/q is strictly periodic,
then there is an initial loading of the register with each m{¥) < t/(x — 1). By Fact 3.3, there is a unique
initial memory for a given p/q. Therefore, if p/q is periodic, the initial memory derived by (C1) and (C2)
satisfies this bound and the register requires at most 2[d - log,(t/(x — 1))] bits of - memory throughout it
the execution of the register.

If d = 1, then it can be shown that p/g is strictly periodic if and only if 0 £ -p < ¢, and the
expansion of p has all nonnegative coefficients. In this case it turns out that m(?) = 0. The memory is
always nonnegative and requires only [loga(t)] bits.

Hweletz = Z:;‘é a;7', then the double sum occurring in equation (6) is the portion of the binary

expansion for the product
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g-z= iqﬁ"z‘cﬂj
1=0 =0
which is obtained by removing ail terms involving powers of z* or higher. Therefore, the numerator p is
congruent to ¢ -  modulo x. It is possible to invert this and to give a formula for the initial loading in
terms of the fraction a = p/g (whether or not p and ¢ are relatively prime).

Theorem 3.4 Suppose a FCSR with r stages and connection integer q generoles a sequence given by the
x-adic_ezpansion of the number a = pfq. Let T = ordy(x) and set 5 = (x7 - 1)/q (mod ="). Then the
initial loading is the binary ezpansion ofthe number z = p-s (mod x*).

Despite Fact (3.3), we do not know a similar simple formula for determining the initial memory value
directly from the rational number a = p/q.

Exponential Representation of FCSR Sequences

One of the most powerful technigues for the analysis of shift register sequences is its exponential repre-
sentation using trace functions and primitive elements of finite fields. There is a similar representation
for periodic sequences obtained from d-FCSRs. To describe this we need a lemma.

Lemma 3.5 Ifq € R is odd, then S = {p : p/q has a strictly periodic x-adic ezpansion} is a complete
set of residues modulo g. That is, every p’ € R is congruent modulo g to precisely onep € S.

Theorem 3.8 Suppose a periodic sequence & = (Gg,81,83,...) is generated by a FCSR with connection
integer q. Let v = x=1 € Z/(q) be the inverse of 2 in the cyclic group of integers modulo q. Then there
ezists A € Z/(q) such that for all i = 0,1,2,... we have,

a; = Ay’ (mod g)(med x)

Here the notation (med g)(mod 2) means that first the number A7’ should be reduced mod g to give
a number in 5, and then that number should be reduced mod r to give an element of R/(x) = {0,1}.
(Notice that there is no homomorphism R/(¢) ~ R/(2) if ¢ is odd, so the notation (mod ¢)(mod 2) needs
a precise definition.)

It is desirable to generate psendorandom sequences with large periods using simple shift register
hardware. In the case of linear feedback shift registers, the subject of maximal period sequences has been
studied for many years. The simplest way to obtain sequences of maximal leagth is to use a primitive
connection polynomial (and the resulting sequences are called m-sequences.) One may ask the same
question for FCSR. sequences. By Theorem 3.6, the maximum period for a FCSR with connection integer
qis T = |R/(q) - {0}] (note that R/(g) is always finite). Accordingly, we make the following definition.

Definition 3.7 An l-sequence is a periodic sequence of period T = {R/(g) ~ {0}| obtained from a d-FCSR

with connection integer q.

By Theorem 3.6 an {-sequence is generated whenever g is chosen so that ord,(x) = |R/(q) - {O}]. The
search for primes ¢ such that = is a primitive root, is related to a large body of contemporary number
theory. It is believed that there are infinitely many primes g with this property [4].
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4 Cracking d-Fold Summation Ciphers

As mentioned in the introduction, our analysis has important consequences for the summation cipher
[9). In this cipher, two m-sequences a; and ag are combined using “addition with carry”. The resuiting
sequence is used as a pseudo-one-time-pad. These sequences have generated great interest since they
appear to be resistant to certain types of cryptologic attack. If the constituent sequences a; have period
T; then the resulting sequence has linear span which is close to the product T3 73, assuming the constituent
sequences were chosen appropriately. In practice, many m-sequences, ay,az,...,ay are added with carry
operation and the resulting linear span approaches the product Ty - 13-+ T}

However, we observe that the addition with carry operation corresponds to adding the sequences as
if they were 2-adic integers. This leads us to be able to synthesize a FCSR that generates the resulting
sequence when only a relatively small pumber of bits are known. To properly describe this weakness, we
need an analogue of linear span for FCSRs.

Let a = {ag,ay,...} be a binary, eventually period sequence.

Definition 4.1 The 7-adic span of a is the number of stages r in the smallest d-FCSR whose output
coincides with the periodic part of the sequence a.

Ifa=32ar = pfqgis the corresponding rational number, reduced to lowest terms, with ¢ =

Tiez0¢.7", then the w-adic span is 7'since, by Theorem 3.1, ¢ is the connection integer of the desired

FCSR.

Theorem 4.2 Suppose a and b are periodic binary sequences with x-adic span r and s respectively. Let
¢ denote the binary sequence obtsined by adding the sequences a and b with d-fold carry (see [9] for the
d =1 case). Then the x-adic span of c is less than or equal to r + 5.

We return to the situation in which two m-sequences, 2y and az, of period T} and T, respectively, are
combined using addition with carry. If d = 1, this is precicesly the situation of a summation combiner,
but for larger d, this corresponds to a different combiner with memory (requiring d bits of memory).
The preceding theorem shows that the r-adic span of the resulting sequence is bounded by T + T3
and it may be much smaller if the »-adic span of the constituent sequences is small. More generally, if
many m-sequences, &1,82,...,ak, Where a; has period T, are added with carry, the »-adic span of the
resulting sequence is no more than the sum Ty + T3 4 -+- + T} It follows that Mandelbaum’s variant of
the Berlekamp-Massey algorithm [8] (which we refer to as the MBM algorithm), as described in detail in
the next subsection, can be used to synthesize a FCSR that generates the sequence when only a relatively
few bits are known. This throws considerable doubt on the security of these stream ciphers.

One is thus Jed to the rather interesting problems of identifying the r-adic span of an m-sequence and
of identifying the linear span of an f-sequence. Although we do not know the answer to these questions,
when d = 1 the following resuit gives a sufficient condition for an m-sequence to have maximal 2-adic

span.

Theorem 4.3 Suppose a is a periodic sequence with period T = 2V ~ 1. Suppose that 2T — 1 is prime.
Then the 2-adic span of a is equal to the period T.
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More generally, the 2-adic span of any periodic sequence of period T is greater than or equal to the
smallest prime divisor of 27 — 1.

The Berlekamp-Massey algorithm for synthesizing linear feedback shift registers has been modified by
Mandelbaum for use with binary expansions of positive real numbers less than one [8]. Essentially the
same algorithm works in the setting of r-adic aumbers. If r is the x-adic span of a, there is experimental
evidence that the MBM algorithm converges in O(r) steps to a d-FCSR that generates a. As with
Mandelbaum'’s algorithm for rational approximation to real numbers, whether this actually holds is an

open question.

5 Conclusions

Feedback-with-carry shift register sequences are entirely parallel to linear feedback shift register sequences.
However, techniques of number theory rather than Galois theory appear to be needed for their analysis.
For d = 1, maximal Jength d-FCSR sequences have appeared in a diverse array of circumstances over the
last twenty-five years, and it has often been observed that their behavior is similar to that of m-sequences.
The use of the x-adic numbers provides a framework in which these similarities can be formalized and
studied systematically. One consequence is that the summation cipher, when analyzed from this point
of view, no longer appears to be secure. Perhaps the most important cryptogr;phic result of these
observations is that we have a new measure of security that must be considered whenever we design
stream ciphers. The sequences we use must have large x-adic span, at least for small values of 4.
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