
Dis tr ibuted Print on D e m a n d S y s t e m s in the
X p e c t Framework

Jean-Marc Andreoli and Francois Pacull

Xerox Research Centre Europe, Grenoble
6 chemin de Maupertnis, Meylan, France

{j ean-marc.andreoli,francois.pacull} @xrce.xerox.com
Tel: +33 4 76 61 50 21, fax: +33 4 76 61 50 99

Abst rac t . The Internet is an extremely rich source of online information
and services. However, complex client requests, involving and combining
several types of services, are difficult to handle without some form of sup-
port. This is particularly true in the case of electronic commerce, where
complex transactions may involve several independent good providers,
bankers, delivery services, etc. Hence the need for "brokering" services,
whose offers combine in the best possible way offers coming from existing,
specialized services publicly available on the Net, in order to match cus-
tomers' constraints. The XPect framework for electronic commerce has
been developed for that purpose. In this paper, we illustrate it through
a case study in the context of distributed print-on-demand. We propose
an architecture and implementation of the case study based on CLF, a
distributed application development tool relying on a rich object model
and its corresponding coordination scripting facility.
Keywords: Print-on-demand, multi-agent negociation

1 I n t r o d u c t i o n

The Internet is a fast growing infrastructure which tends to make available on-
line on most desktops a tremendous number of independent services. However,
finding and accessing such services is a major task for a non expert user of the
Web, and combining them together in order to satisfy complex requests is an
even bigger challenge. Hence the need for "brokering" services, helping the user
perform complex tasks involving and combining several complementary or com-
peting services. Typically, brokers do not implement the services they combine,
but make use of publicly available ones in order to provide users with combina-
tions which best match users requirements.

Electronic commerce is a typical domain where such brokering facilities are
essential. The challenge here is to combine existing services such as good providers,
bankers, delivery facilities, etc. within a single, high-level service directly avail-
able to customers through a standard Web browser. For this purpose, we have
developed the Xpect framework [2], which provides support for the coordination
of various actors in the electronic commerce field. We illustrate it here by a case
study in the domain of distributed print-on-demand systems.

142 Jean-Marc Andreoli and Franqois PacuU

Xpect quite naturally models each electronic commerce actor as an object
offering specific interfaces, thus abstracting away how each individual service is
implemented. The point here is in the coordination of the various services, not
their implementation. However, the object model on which Xpect relies is richer
than the traditional one, which only supports the basic invocation-reply pro-
tocol. Xpect is built over the Coordination Language Facility [1] (CLF), which
defines a rich object interaction protocol together with a high level scripting lan-
guage specifying coordination behavior among objects supporting this protocol.
In particular Xpect makes use of two crucial features of the CLF model:

D y n a m i c i t y : a service, defined in the interface of an object, can dynamically
propose new offers, even after it has been invoked. For example, it may offer
several ways to perform a task, with different completion date and prices
(e.g. "I can do this by tomorrow for $100, by the day after for $60, and in
one week's time for $40"). These different offers may occur asynchronously
any time after the invocation. The CLF protocol contains features, at the
basic object level, supporting such kind of interactions.

M u l t i - p a r t y n e g o t i a t i o n : typically, a customer request results in a negotia-
tion with multiple services, so as to achieve the best agreement. For example,
the customer may gather offers from different providers and delivery facil-
ities, and possibly choose an item from a more expensive provider if the
incurred cost of delivery is lower. The CLF coordination scripting language
typically supports such behaviors.

Section 2 describes an electronic commerce scenario in the context of "print-on-
demand" books. Our goal is to design the architecture of an electronic commerce
application supporting such a scenario, and, in particular, including a broker ca-
pable of processing complex print-on-demand requests. Section 3 gives a quick
overview of the CLF, the tool used in our Xpect framework to design and im-
plement such an architecture, described in Section 4.

2 Case Study: A Distributed Print on Demand System

As a case study, we consider a distributed print on demand scenario that goes
beyond the traditional centralized scheme where only one entity is responsible
for the brokering, the storage, the printing, the delivery and the payment man-
agement. Indeed, all these services require a high level of competency which
cannot be realistically handled by a single service provider.

Consider a customer living in London, who would like to offer to her daughter,
for her birthday, two French books: "Le Petit Prince" by A. de St Exupery and
the French version of "Jonathan Livingston Seagull" by R. Bach. The birthday is
in three day and, if it is not possible to obtain both books on time, the customer
would probably have to find another gift.

Being used to shopping on the Web, the customer first contacts a digital
library broker in order to find one or more digital libraries owning such titles. As
a result, three libraries return offers (all in digital form). Library libA offers both

Distributed Print on Demand Systems in the Xpect Framework 143

books, libB only the first one and libc only the second. More specifically, booka
(i.e. '%e petit prince") provided by libA contains color pictures inside, while
libs provides only a black and white version. The book bookb (i.e. "Jonathan
Livingston Seagull") only contains black and white pictures in both offers from
libA and libc. Libraries libA is the most expensive in both cases, but it is also
the only one to propose a color version of booka. Finally, the customer decides
to buy books from libA and bookb from libc.

The second step is to find print shops able to print the two books. The time
constraint (2 days before the birthday) implies that either the books have to
be printed near London or at a location from where it is possible to have them
delivered in 48 hours by a fast courier company. The print shop broker is first
asked for printing facilities around London for both books and bookb. We assume
that only one print shop PSA makes an offer. It is located near the City but
proposes only black and white printing facilities and has no color facilities. It
could therefore handle bookb, but not booka. The broker then is asked to enlarge
the search to other print shops offering color facilities for bookb. A print shop
PSs located in the USA makes an offer, together with another print shop PSc
located in France. The latter is more expensive, but closer.

The third step is to collect offers for the delivery of bookb either from the USA
or from France, and to combine them with the print offers in order to respect
the 48 hours time constraint. The courier companies delA and delB offer delivery
from both USA and France. We end up with four distinct solutions for bookb:

- Print from PSB and deliver by delA (from USA)
- Print from PSB and deliver by delB (from USA)
- Print from PSc and deliver by delA (from France)
- Print from PSc and deliver by delB (from France)

Finally the chosen solution is to print the book at PSc and to contract delivery
with dels.

As a final result, the financial transaction involves libc, PSA for bookb and
libA, PSc and delB for booka . The last step, but not the least, is to combine
the different payment systems the providers accept and the customer would
use in order to finalize the commercial transaction. If, for any reason, one of
the partners in this transaction fails to support its offer, the whole transaction
should abort.

This whole scenario could of course be executed manually by the customer,
who would then have to access each service separately. The purpose of a generic
brokering service is precisely to relieve the customer from this burden, and to
offer a high-level service which coordinates all the others according to the cus-
tomer requirements (and under her control). To implement such a service, we
assume an infrastructure based on the CLF, described below.

3 Q u i c k O v e r v i e w o f t h e C L F

The CLF ("Coordination Language Facility") is an object-based distributed ap-
plication development tool. It has been described in details in [1], and the purpose

144 Jean-Marc Andreoli and Frangois Pacull

of this section is only to give a quick overview of its functionalities so as to make
the paper self-contained. CLF assumes an object model in which objects are
autonomous agents which may engage in more sophisticated interactions than
in the traditional object paradigm.

3.1 T h e C L F O b j e c t P a r a d i g m

Inquire service

offer ol v

~t =f__er 02

~ g r a n t e d / r e j e c t e d ~

client server
Confirm/Cancel ~2

r

~ .Insert service
extension v ~

client server

Fig. 1. The CLF interaction model

In the traditional paradigm, a client object A invokes a method on a (possibly
remote) server object B which executes the method and returns the reply to
object A. Object A,may suspend its activity while object B processes the request,
or may spawn a thread waiting for the reply while normal execution goes on,
with the possibility of joining the spawned thread and waiting for the reply.

In the CLF paradigm (figure 1), agents are seen as service providers. Three
modes of interaction are supported by services and can be combined:

N e g o t i a t i o n : A client agent A retrieves service offers matching a certain pro-
file from a server agent B (operation Inqu i r e) . Agent B returns a handle
representing a possibly infinite stream of answers, each of them specifying an
offer. Agent A may then retrieve individual offers from the handle (operation
N e x t) . Agent A may asynchronously terminate an inquiry, meaning that it
is not interested any longer in a service profile it requested (operation Kil l) .
Agent A may also asynchronously check whether an offer it received is still
valid (operation Check) .

P e r f o r m a n c e : A client agent A requests the execution of a service on a server
agent B, according to an offer returned during a negotiation, as explained
above. This performance phase is in fact decomposed in several steps. Agent
A first reserves, if possible, the resources required to execute the service
as described in the offer (operation Rese rve) . A reservation may be either
accepted by B or rejected. In the latter case, rejection may be hard, meaning
the offer is no longer valid, or soft, meaning the offer is temporarily disabled,
but may be retried later. Accepted reservations may then be either confirmed
or cancelled by A (operations C o n f i r m / C a n c e l) .

Distributed Print on Demand Systems in the Xpect Framework 145

N o t i f i c a t i o n : A client agent A requests the modification of the services offered
by a server agent B (e.g. addition of a new service offer). Agent B may choose
whether and when to process the request, so that agent A must not expect
an answer (operation I n s e r t) .

This extended interaction paradigm is formalized in a protocol defined by 8
interaction verbs similar to KQML performatives [4]. It allows on the one hand
flexible dynamic redefinition and refinement of services and, on the other hand,
mul t i -par ty agreement between several service providers to fulfill a complex client
request.

3.2 C L F A g e n t s

A CLF agent can be implemented in any language, and can encapsulate any
kind of resources, as long as it accepts the CLF protocol. The interface defines
what is visible of these resources. I t consists of:

M e t h o d d e c l a r a t i o n s : which allow access to the agent through the s tandard
method invocation protocol. Method execution requires values for the input
parameters of the method, can perform any kind of modification on the re-
sources of the agent, and then returns values for the output parameters. The
support for this interaction is the H T T P protocol, for which most program-
ming languages have libraries. When the input parameters are small, they
can be encoded in a URL, so that it is possible to invoke the method directly
from any Web browser and display the results, e.g. in HTML. This makes it
easy to rapidly add a basic graphical user interface to any CLF application.

S e r v i c e d e c l a r a t i o n s : which allow access to the agent through the CLF pro-
tocol. A service declaration can be viewed as declaring a property of some of
the resources of the agent. The Inquiry operation on a service requires values
for the input parameters of the service. It does not modify the resources of
the agent, but each service offer in the s t ream returned by the Inquiry con-
sists of (i) an assignment of the output parameters and (ii) an action capable
of removing a resource satisfying the property with the assigned parameters
(both input and output) . The other operations of the protocol then just deal
with the action id attached to each offer.

Different kinds of prototypical agents have been designed for CLF applications.
The most impor tant is the coordinator. A coordinator is an agent whose resources
are coordination scripts specified as production rules, and which enacts these
rules. The enactment of a CLF rule consists of

- a negotiation between different agents on a set of service offers, as specified
by the rule;

- the atomic execution of the services according to the agreed offers;
- the notification of the success of the transaction to different agents specified

by the rule.

Since coordinators are themselves CLF agents, they may be part of a coordina-
tion which manipulates their rules, thus making the system fully reflexive.

146 Jean-Marc Andreoli and Francois Pacull

3.3 A s a m p l e C L F s c r i p t

The aim of the following CLF script is to illustrate with a toy example the syntax
and semantics of CLF rules. More realistic rules are given in Section 4.

The basic building block of a CLF script is the token. Tokens are used to
access CLF services. For example, the token p (x , z) specifies an access to a ser-
vice locally named p with one input argument x and one output (underlined)
argument y. Invocation of such a service requires a value for x and produces,
with each offer, a value for y. The name p is local to the coordinator and must
be assigned to a real service provided by the coordinator. By default, a coordi-
nator provides basic computational services, and surrogates of remote services
identified by a name looked-up in an application-wide name service.

Rlocation(where) @ Jlocation(where) @ Rhand(thin K)
<>- Jhand(thing) @ Rlocationl("Ground'9 @ Jlocation('~oom")

Jhand(thin K) @ <Jlocation("Room") @ equal(thing, "Rose")
<>- Jmood("in lo~e") @ Vase(thing)

Ladder("Crash") @ Rlocation("Balcony") <>-Rlocation("Ground")

The first rule expresses a rendez-vous between Juliet and Romeo since the
location where held by Jlocation is shared with that held by Rlocation. More-
over, Romeo should have something in his hand to complete the rule instantia-
tion. For example, let

Rlocation1("Balcony'9 @ Jlocation("Balcony") @ Rhand("Rose")

be the result of the instantiation. The transaction phase is enacted and as
a result the "Rose" and the location of Romeo and Juliet are removed from
their respective services and new resources are inserted: "Ground" in J l o c a t ion,
"Room" in J l o c a t i o n and "Rose" in Jhand (i.e. Juliet takes the rose and goes
into the room while Romeo goes down the ladder).

The second rule may now be instantiated since the service Jhand has a re-
source verifying J h a n d (t h i n g) where e q u a l (t h i n g , "Rose'9 is verified (equal
is assigned to a basic computational service). Thus, the transaction is enacted
and consumes all the involved resources except the location of Juliet because the
operator ' placed before the token J l o c a t i o n means that the resource has to
be present for enacting the transaction but it is not effectively consumed during
the commit operation. New resources are inserted: a "Rose" in service v a s e and
"in love" in service mood of Juliet.

The third rule illustrates, in addition to synchronization and transactional
operations on independent services, non determinism and competition on re-
sources. Indeed, if an external event such as the break of the ladder (materialized
by the resources Ladder ("Crash")) occurs, then Romeo will fall down and the
resource "Balcony" will be consumed by the transaction while the new resource
"Ground" will be inserted as his location. So, if no resource "Crash" is available,
Romeo will meet Juliet on the balcony. Conversely, if the resource is present,

Distributed Print on Demand Systems in the Xpect Framework 147

rules 1 and 3 will compete for the resource "Balcony" and in case rule 3 "wins",
Romeo never meets Juliet.

4 D i s t r i b u t e d P r i n t on D e m a n d S y s t e m in X P e c t

Broker

Banker l

Legacy application Set of CLF agents Coordi~tor

. . . . ~" Direct Access protocol x CLF protocol

Fig. 2. Overall architecture

Coordinator

We now sketch the design of an electronic commerce application in the context of
distributed print on demand systems. We consider that all the required services
are managed by separate providers with specific expertise and/or equipment.
External service providers are accessible in the XPect framework through CLF
wrappers, and can thus participate in CLF coordinations. The components may
be invoked either through direct methods mainly for GUI purpose (dashed arrows
in figure 2) or through the CLF protocol (plain arrows). The components, spread
over the Web, are:

- digital libraries handling various types of documents;
- print shops offering various quality of services in terms of delay (e.g. page-

per-minute), printing (e.g. color, dot-per-inch), and service (e.g. binding);
- fast delivery companies responsible for delivering the printed books from the

print shop to the customer site;
- a payment mediator and several payment systems handling various modes

of payment: electronic cash, credit cards, checks;

148 Jean-Marc Andreoli and Francois Pacull

- a broker offering a single entry point to the customer.

As described in the scenario of section 2 a typical session may be decomposed
in several steps. Each step requires a specific high level coordination scheme
(i.e. Search, Negotiation, Transaction, Mediating and Tracking). These schemes
are described with CLF rules enacted either by the broker coordinator or by the
payment mediator coordinator.

4.1 S e a r c h P h a s e

Let us first illustrate how a simple search in a single digital library may be
handled. It is triggered via a Web browser offering a simple form to the cus-
tomer. The latter fills the form and submits it. This produces the resource
("Jonathan Livingston Seagull", "french") in the service simpleSearchRequest
of the broker agent. The three services title, version and bookInfo belong
to the digital library agent, the service bookMatching is provided by the b r o k e r
and holds the result of the search.

simpleSearchRequest(title,version)
@ 'title(ref,title) @ 'version(tel,version)
@ ~bookInfo(ref,description,p_p_,quality,price)
<>-
bookMatching(ref,description,pp,quality,price))

Thus, the service simpleSearchRequest retrieves the requests coming from
the customers, then collects all the book reference r e f corresponding to the
t i t l e (i.e. "Jonathan Livingston Seagull"). The service v e r s i o n acts as a filter
that keeps only the French version of the books. Finally the service bookInfo
is responsible for fetching all the information related to the book matching the
request.

Once instantiated, the resources are atomically removed. However, in this
case only the resource from s impleSearchReques t is actually consumed, since
the last three tokens in the left hand side of the rule are tagged with ' . A
resource describing the matching book is inserted into the service bookMatching
containing all the information required for the rest of the process (i.e. reference
of the book, human readable description, number of pages, quality required for
the printing and price).

However, this simple rule is only able to search into one digital library and
returns at most one offer. To extend the search capability, we rely on a special
type of service called dispatch. The first two arguments of a dispatch service are
input parameters and denote, respectively, the name of an object to be looked
up in the name service, and the name of a service defined in the interface of that
object. Thus, when a token is bound to a dispatch service, its occurrences in a
rule will in fact invoke remote services on objects specified by the instantiation
of the rule. In other words, dispatch services allow late (dynamic) binding of the
tokens. For commodity, the first two parameters of a dispatch token are written

Distributed Print on Demand Systems in the Xpect Framework 149

in square brackets after the token name. If the second parameter is identical to
the token name, it is omitted.

The following rule uses the dispatch mechanism to allow search within a set
of digital libraries that may be dynamically changed, and allows each of them
to return several offers.

'searchRequest(title,version,rLocation)
@ 'digitalLibrary(dl) @
@ ctitle[dl](dlRef,title) @ Cversion[dl](dlRef,version)
@ CbookInfo[dl](dlRef,description,pp,quality,dlPrice)
@ currencyConverter(dlPriceLocalCurrency,dlPrice,rLocation)
<>-

bookMatching(dl,dlRef,description,pp,quality,dlPriceLocalCurrency))

Basically, the service d i g i t a l L i b r a r y is provided by the b r o k e r agent. Ev-
ery digital library agent that would like to be involved in the search has to
register itself in this service by inserting an appropriate resource (namely the
agent name). Each digital library agent also has to provide the services t i t l e ,
v e r s i o n , bookInfo as previously. These services, specific to each digital library
agent, are accessed through dispatch services. It is possible to dynamically add
new digital libraries to the system without changing the rule nor interrupting the
system. Indeed, the resources proposed by the service d i g i t a l L i b r a r y define
the scope of the search. The service c u r r e n c y C o n v e r t e r is a simple wrapper of
a Web service that translates a price into the local currency. It holds no resource
and has a void behavior during the transaction phase. The service bookMatching
is the same as previously, except that the library agent name is also stored in
the tuple. Another difference with the previous rule is the ' tag before the to-
ken sea rchReques t . This prevents the consumption of the resource defining the
request and allows multiple offers satisfying a request to be stored.

In the scenario of section 2, four offers are received (at least: other offers may
occur later), so the service matchingBook now contains:

- ("libA", "1-567-789-6", "le petit prince ", "75", "color", "25s

-- ("libA", "2-277-562-7", "jonathan livingston le goeland, R. Bach,
trans. P. Clostermann,...", "130", "BW", "25s

- (" libB", "Ex324", "le petit prince ", "75", "BW", "15s

- (" libc", "Bach70-2345", "jonathan livingston le go@land, R. Bach,
trans. P. Closterma/m ","130", "BW", "15s

From the User Interface point of view, once the search is triggered from
the web browser, an HTML page is returned and regularly updated, displaying
the current content of the service matchingBook. The customer may select one
or more of the displayed items, triggering a direct method which removes the
corresponding resource from the service matchingBook and inserts a resource in
the service checkedBook, used afterwards in the negotiation.

150 Jean-Marc Andreoli and Francois Pacull

4.2 N e g o t i a t i o n P h a s e

Having selected two items out of the list of matching books, according to the
scenario of section 2, the customer, via the broker, asks for the print of both
books locally. Indeed, if it is possible, it would decrease the cost and reduce the
delivery delay. The customer, via her Web browser, fills a form indicating the fol-
lowing constraints: price best, printed near London and delay < 38 hours. These
informations are combined with the resources held by the service c h e c k e d B o o k
and produce the following two resources in the service l o c a l P r i n t R e q of the
Broker:

- ("libA", "I-567-789-6", "75", "color", "48", "london", "", "", "")
- ("libc", "Bach70-2345", "130", "BW", "48", "london", "", ' ,)

The components of these tuples are: the name of the digital library, the
identification of the book, its number of pages, its color feature, the deadline,
the expected location of the print shop, the price of the print service, the print
shop agent name and the reference of the printing service (the last three fields are
initially unknown). These insertions trigger the following rules the role of which
is to find the best offer satisfying the constraints imposed by the customer.

' p r in t Shop (ps)
localPrintReq (dl ,diRer ,rquality ,PP ,rDelay ,rLoc ,currentBestPrice)
~location[ps](rLoc) @ ~quality[ps](rQuality,psRef)
~ delay [ps] (psRef ,pp,psDelay) @ lessThan (psDelay,rDelay)

@ Cprice [ps] (psRef,pp,psPrice) @ lessThan(psPrice,currentBestPrice)
<>-

localPrint Req (dl, diRer, rqualit y ,pp, rDelay ,fLoe, psPrice ,ps, psRef)

For each print shop returned by printShop and for each request held by
c h e c k e d B o o k the constraints in term of location, quality, delay and price are
checked. Each time the constraints are satisfied, the transaction phase is trig-
gered and the resource held by the service l o c a l P r i n t R e q is removed and a new
one containing a best offer is inserted. Thus, the proposition of a new service
by a print shop or the dynamic registration of a new print shop may trigger the
rule and improve the current offer. For instance, after a few applications of the
rule, the resources of l o c a l P r i n t R e q are:

- ("libA", "I-567-789-6", "75", "color", "48", "london","" ,"" ,"")
- ("libc", "BachT0-2345", "130", "BW", "48", "london", "I0s "PSA",

"BW-600dpi-48h")

At any time the customer may consult the current best offer and decide to
either consider it or start, in parallel, another request, so as to feed in more offers.
In our example, she may try to seek an offer from a remote print shop, with the
printed book being delivered by a fast delivery company. For this, a specific
resource is inserted in the service remotePr in tReq , which has a similar role as
localPrintReq. The last components of a remotePrintReq service specify the
current price, the print shop agent name, the reference of the printing service,
the delivery company agent name and the reference to the delivery service.

Distributed Print on Demand Systems in the Xpect Framework 151

'printShop (ps) @ 'fastDelivery(fd)
@ remot ePrintReq(dl ,diRer ,rQuality ,p_p_,rDelau ,rLoc ,rPrice)
@ Clocation[ps] (psLocation)
@ c quality [psi (rQuality,psRef) @ ~ weight [psi (psRef ,p_p_,psWei~ht)
@ CdelayPS[ps, "delay'~ (psRef,pp,psDelay)
@ ~pricePS[ps, "price'~ (psRef,pp,psPrice)
@ c deliver [fd] (psLocat ion,rLoc ,fdRef)
@ ~delayFD[fd, "delay'~ (fdRef ,fdDelay)
@ ~priceFD[fd, "price"] (fdRef,psWeight,fdPrice)
@ plus (delay ,psDelay,fdDelay) @ lessThan (delay,rDelay)
@ curr encyConvert er (psPriceLocalCurrency, psPrice, rLoc)
@ currencyConvert er (f dPriceLocalCurrency, fdPrice, rLoc)
@ plus (price ,psPriceLocalCurrency, f dPriceLocalCurrency)
@ lessThan(price,rPrice)
<>-

remot ePrintReq (dl, direr, rQuality ,pp, rDelay, rLoc ,price ,ps, psRef ,fd, f dRef)

In the same manner, the combined offers for the printing and delivering
services are compared against constraints and the best offer is computed. After
a while, the service r emotePr in tReq contains a resource defining the current
best offer:

-- ("libA", "I-567-789-6", "75", "color", "48", "50s "PSc",
"co-300dpi-24h", "DeIAF", "24h")

4.3 T r a n s a c t i o n P h a s e

After the search and negotiation phases, the customer wishes to enact the com-
mercial transaction using the different service offers she has chosen. The customer
would like that transactional properties be respected, and, in particular, to en-
sure that all the negotiated offers are committed or none of them. For instance,
buying the offer from a remote print shop would be useless if finally the fast
delivery company is not able to realize its offer to deliver the books from this
print shop in less than 24h.

The transaction is initiated via the Web browser displaying the offers for each
request. Once all the offers are checked by the customer, she fills the different
information needed for the transaction (e.g. her address, banking details), which
triggers the construction of the following CLF script that handles the commercial
transaction. Notice here the use of the reflexive capabilities of the CLF model:
scripts are used us resources manipulated by another script. The commercial
transaction script is inserted into the coordinator of the payment mediator which
enacts it.

commercialTransaction("CT1 ")
@ item["libA'~ ("1-567-789-6", "10") @ credit ["libA '~ ("10")
@ item["PSc"] ("co-300dpi-2~h", "8") @ credit["PSc'~ ("6")
@ item["DelAF '~ ("2~h", "5") @ credit ["De~AF '~ ("5")
@ item["~ibc'~ ("Bach70-23~S", "@'9 @ credit ["libc'~ ("9")

152 Jean-Marc Andreoli and Francois Pacull

@ i t e m ["PSA 'fl ("BW-600dpi-48h", "2'9 @ c r e d i t ["PSA 'fl ("2")
@ withdrawall("cus tomerS ta . l ey" , "32")
<>-

n o t i f y P r o v i d e r D L [" t i bA ", "no t i fy 'O ("1-567-789-6")
@ n o t i f y P r o v i d e r P S ["PSc ", "not i fy 'O ("co-300dpi-2~h", " t ibA ", "1-567-789-6")
@ not i fyProviderFD["DetAF ", "not i fy 'O ("24h" , "PSc ", "<StanteyAddress>")
@ n o t i f y P r o v i d e r D L [" l i bc ", "no t i f y "] ("Ba ch70-23~5")
@ notifyProviderPS ["PSA ", "not ify'O ("BW-6OOdpi-~Sh ", "l ibc ", "BachTO-2345")
@ notifyCustomer("CTl", "Transaction accepted","")

' c o r m e r c i a l T r a n s a c t i o n ("CT1 ")
@ u n s u f f i c i e n t C r e d i t ("customerSZanl ey", "32")
<>-

n o t i f y C u s t o m e r ("CTI ", "Not Enough Money", "32")

' c o m a e r c i a l T r a n s a c t i o n ("CT1 ")
@ n o t h v a i l a b l e (" l i b A " , "no tAva i lab le" , "1-567-789-6", "10")
<>-

n o t i f y C u s t o m e r (" C T l " , "l iba s e r v i c e not a v a i l a b l e " , "1-567-789-6")

The first rule realizes the commercial transaction if everything goes well.
The others (subsidiary rules) handle the different problems tha t can occur (with-
drawal forbidden on the customer account, unavailability of a service) and notify
the customer of the problem. So, either the first rule or at least one of the oth-
ers is commit ted. The service c o m m e r c i a l T r a n s a c t i o n ensures that when the
main rule is enacted none of the subsidiaries will do since the resource " CT I" is
consumed.

One consequence of the commitment of the first rule is to credit and withdraw
the accounts of the different actors. This is performed via the payment m e d i a t o r
that provides services c r e d i t , w i thd rawa l and u n s u f f i c i e n t C r e d i t (see next
section for more information about the role of this agent). The i t em service of
each agent may react differently depending on the type of offer it concerns. For
instance, we can imagine that the resource constituted by an electronic document
is infinite and is not in fact physically consumed. However, the work that a print
shop should do impacts on the availability of its equipment and in this case, a
resource corresponding to the t ime slot used for the print of the book is really
consumed. The rules notify each individual actor of the final outcome of the
transaction through the n o t i f y P r o v i d e r . . , services.

4.4 M e d i a t i n g

The customer and the different service providers would like to be paid without
being bothered by finding a common payment system. Moreover, when small
amounts of money are involved it is not always interesting to directly realize
the operation. The payment system mediator, locally manages accounts (for
instance in order to group small payment) or forwards the operations to the
different payment systems used by the commercial actors. This latter option

Distributed Print on Demand Systems in the Xpect Framework 153

may involve traditionM payment methods such as faxed credit card information
or electronic payment service existing on the Web [8, 7, 6,3].

4.5 T r a c k i n g

The customer and the different provider would like to visualize the overall work-
flow in order to track the global work. For instance, with a classical web browser,
the customer may verify that the printing phase is finished and the task is now
in the delivery phase. For these workflow aspects the reader can refer to [5].

5 C o n c l u s i o n

We have presented here a Distributed Print-on-Demand System based on the
electronic commerce framework Xpect. The main advantage of our system is
that it provides high level scheme allowing not only to search services across the
Web but also to optimize their combination in order to realize complex service
respecting constraints imposed by the user. Moreover, it offers basic transaction
facilities that may directly be used for ensuring mult i -par ty commitment . Finally,
it is possible to dynamically register new services directly taken into account in
the on-going customer requests.

R e f e r e n c e s

1. J-M. Andreoli, F. Pacull, D. Pagani, and R. Pareschi. Multiparty negotiation for
dynamic distributed object services. Journal o] Science o] Computer Programming,
scheduled for mid-1998.

2. J-M. Andreoli, F. Pacull, and R. Pareschi. Xpect: A framework for electronic com-
merce. IEEE Internet Computing, 1(4):40-48, 1997.

3. Steve B. Cousins, Steven P. Ketchpel, Andreas Paepcke, H@ctor Garcfa-Molina,
Scott W. Hassan, and Martin Roescheisen. lnterpay: Managing multiple payment
mechanisms in digital libraries. In Second Annual Con]erence on the Theory and
Practice of Digital Libraries, 1995.

4. T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent communication language.
In 3. Bradshaw, editor, Software Agents. MIT Press, Cambridge, Ma, U.S.A., 1997.

5. A. Grasso, J-L. Meunier, D. Pagani, and R. Pareschi. Distributed coordination
and workflow on the world wide web. Computer Supported Cooperative Work: The
Journal o] Collaborative Computing, 6(2):1-26, 1997.

6. P. Panurach. Money in electronic commerce: Digital cash, electronic fund transfer,
and ecash. Communication of the ACM, 39(6):45-50, 1996.

7. Lee H. Stein, Einar A. Stefferud, Nathaniel S. Borenstein, and Marshall T. Rose.
The green commerce model, draft, October 1994.

8. Michael Waidner. Development of a secure electronic marketplace for europe. In
E. Bertino, H. Kurth, G. Martella, and E. Montolivo, editors, Proceedings of the
Fourth ESORICS, LNCS, Rome, Italy, September 1996. SV.

