
A n Improved A l g o r i t h m for A r i t h m e t i c on a
Family of Ell iptic Curves*

Jerome A. Solinas

National Security Agency, Ft. Meade, MD 20755, USA

A b s t r a c t . It has become increasingly common to implement discrete-
logarithm based public-key protocols on elliptic curves over finite fields.
The basic operation is scalar multiplication: taking a given integer mul-
tiple of a given point on the curve. The cost of the protocols depends on
that of the elliptic scalar multiplication operation.

Koblitz introduced a family of curves which admit especially fast ellip-
tic scalar multiplication. His algorithm was later modified by Meier and
Staffelbach. We give an improved version of the algorithm which runs
50% faster than any previous version. It is based on a new kind of repre-
sentation of an integer, analogous to certain kinds of binary expansions.
We also outline further speedups using precomputation and storage.

Keywords : elliptic curves, exponentiation, public-key cryptography.

1 I n t r o d u c t i o n

It has become increasingly common to implement discrete-logarithm based pub-
lic-key protocols on elliptic curves over finite fields. More precisely, one works
with the points on the curve, which can be added and subtracted. If we add the
point P to itself n times, we denote the result by nP. The operation of computing
nP f rom P is called scalar multiplication by n. Elliptic public-key protocols are
based on scalar multiplication, and the cost of executing such protocols depends
most ly on the complexity of the scalar multiplication operation.

Scalar multiplication on an elliptic curve is analogous to exponentiation in
the multiplicative group of integers modulo a fixed integer m. Various techniques
have been developed [1] to speed modular exponentiation using memory and
precomputat ions. Such methods, for the most part , carry over to elliptic scalar
multiplication.

There are also efficiency improvements available in the elliptic case tha t have
no analogue in modular exponentiation. There are three kinds of these:

1. One can choose the curve, and the base field over which it is defined, so as to
optimize the efficiency of elliptic scalar multiplication. Thus, for example, one
might choose the field of integers modulo a Mersenne prime, since modular

* This paper presents the results of cryptographic research conducted at NSA a~d
does not necessarily represent the policies of the NSA or U.S. Government.

358

reduction is particularly efficient [2] in that case. This option is not available
for, say, RSA systems, since the secret primes are chosen randomly in order
to maintain the security of the system.

2. One can use the fact that subtraction of points on an elliptic curve is just
as efficient as addition. (The analogous statement for integers (rood m) is
false, since modular division is more expensive than modular multiplication.)
The efficient methods for modular exponentiation all involve a sequence of
squarings and multiplications that is based on the binary expansion of the
exponent. The analogous procedure for elliptic scalar multiplication uses a
sequence of doublings and additions of points. If we allow subtractions of
points as well, we can replace [3] the binary expansion of the coefficient n
by a more efficient signed binary expansion (i.e., an expansion in powers of
two with coefficients 0 and +1).

3. One can use complex multiplication. Every elliptic curve over a finite field ~
comes equipped with a set of operations which can be viewed as multiplica-
tion by complex algebraic integers (as opposed to ordinary integers). These
operations can be carried out efficiently for certain families of elliptic curves.
In these cases, they can be utilized in various ways [5] to increase the effi-
ciency of elliptic scalar multiplication.

It is the purpose of this paper to present a new technique for elliptic scalar
multiplication. This new algorithm incorporates elements from all three of the
above categories. The new method is 50% faster than any method previously
known for operating on a non-supersingular elliptic curve.

2 F i e l d a n d E l l i p t i c O p e r a t i o n s i n F 2 ~

We begin with a brief survey of the various operations we will need in the field
IF2,- and on elliptic curves over this field.

Squa r ing . We will assume that the field IF2-~ is represented in terms of a normal
basis: a basis over IF2 of the form

{0,02, 02~,. . . ,02~-~}

The advantage of this representation is that squaring a field element can be
accomplished by a one-bit cyclic shift of the bit string representing the element.
This property will be crucial in what follows. If m is not divisible by 8, then one
can use Gaussian cyclotomic periods to construct easily [6] an efficient normal
basis for IF2,~. (Since our application will require rn to be prime, we can always
use the Gaussian method.)

Our emphasis in this paper will be the case in which the field arithmetic is be
implemented in hardware. Although the algorithms that follow will be efficient

2 We restrict our attention to elliptic curves that are not supersingular, since such
curves are cryptographically weak. (See [4].)

359

in software as well, the full advantage of our method occurs in hardware, where
the bit shifts (and therefore field squarings) are virtually free.

A d d i t i o n a n d M u l t i p l i c a t i o n . We may neglect the cost of additions in IF2-,
since they involve only bitwise XORs. A multiplication (of distinct elements)
takes about m times as long, just as in the case of integer arithmetic. The cost
of an elliptic operation depends mostly on the number of field multiplications it
USES.

Inve r s ion . Multiplicative inversion in IF2-, can be performed in

L(m- 1) q- W (m - 1) - 2

field multiplications using the method of [7]. Here L(k) represents the length of
the binary expansion of k, and W(k) the number of ones in the expansion. This
fact may be a consideration when choosing the degree m. (Alternatively, one
can use the Euclidean algorithm [8], but one must first convert from the normal
basis representation to the more familiar polynomial basis form, and then back
again after the inversion.)

Elliptic A d d i t i o n . The standard equation for an elliptic curve over IF~- is the
Weierstrass equation

E: y2+=y:x3+a=2+b (1)

where b r 0. Public key protocols based on this curve work on the group con-
sisting of the points (x, y) on this curve, along with the group identity O. (The
element (9 is called the point at infinity, but it is most convenient to repre-
sent it 3 by (0, 0).) The following algorithm inputs the points P0 = (=0, Y0) and
P1 = (=1, Yl) on E and returns their sum P~ = (z2, Y2).

A l g o r i t h m 1. (Elliptic Group Operation)

If P0 : 0 then output P2 ~- PI and stop

If P1 =(9 then output P2~-P0 and stop

If =0 = =1
then

else

if Y0 + Yl----=1 then output O and stop
else

A ~- =I + YI/=I
x2 ~A2+A+a

=2 ~'- ~2 .~_)t ..[_ =0 "~-=1 -~-a

3 This does not cause confusion, because the origin is never on E.

360

y2 ~--(Xl+X2) A + x 2 + y l
Output P2 '--- (x2,y2)

To subtract the point P = (x, y), one adds the point - P = (x, x + y).
Except for the special cases involving O, the above addition and subtraction

operations each require 1 multiplicative inversion and 2 multiplications. 4 (As
always, we disregard the cost of adding and squaring field elements.)

E l l i p t i c Sca l a r M u l t i p l i c a t i o n . The basic technique for elliptic scalar multi-
plication is the additwn-subtractwn method. This begins with the nonadjacent
form (NAF) of the coefficient n: a signed binary expansion with the property
that no two consecutive coefficients are nonzero. For example,

NAF(29) = (1, 0, 0, - 1 , 0, 1) (2)

since 29 -- 32 - 4 + 1.
Just as every positive integer has a unique binary expansion, it also has a

unique NAF. Moreover, NAF(n) has the fewest nonzero coefficients of any signed
binary expansion of n (see [1]). There are several ways to construct the NAF of
n from its binary expansion. We present the one that most resembles the new
algorithm we will present in w

The idea is to divide repeatedly by 2. Recall that one can derive the binary
expansion of an integer by dividing by 2, storing off the remainder (0 or 1), and
repeating the process with the quotient. To derive a NAF, one allows remainders
of 0 or 4-1. If the remainder is to be +1, one chooses whichever makes the quotient
even.

A l g o r i t h m 2. (NAF)

Inpu t n
Set k ~--- n
set S , - - ()
While k > 0

If k odd
then set u~-2--(k (mod 4))
else set u~-O

S e t k ~ k - u

P r e p e n d u t o S

Set k ~ - k / 2
EndWhile

Output S

For example, to derive (2), one applies Alg. 2 with n --- 29. The results are shown
in Fig. 1.

4 There does exist a faster algorithm for doubling a point, but we relegate it to the
Appendix since it does not fit well with the best hardware implementations of normal
bases.

361

Fig. 1. Computing a NAF.

k u S

29 ()
28 1
14 O)
14 0
7 (0, 1)
8 - 1
4 (--1, 0, 1)
4 0
2 (0, --1, O, 1)
2 0
1 (0,0,-1,0,1)
0 1
0 (1,0,0,--1,0, 1)

Note that, although we have phrased the algorithm in terms of integer arith-
metic, it can be implemented in terms of bit operations on the binary expansion
of n. No arithmetic operations are needed beyond integer addition by 1.

In the derivation of the ordinary binary expansion, the sequence k is decreas-
ing, but that is not true in general in Alg. 2. As a result, the NAF of a number
may be longer than its binary expansion. Fortunately, it can be at most one bit
longer, because

2 l < 3n < 2 l+1

where ~ is the bit length of NAF(n). (See [3].)
We now implement elliptic scalar multiplication using the NAF. Given the

NAF
s

n = Z ci2i '
i=0

the elliptic scalar multiplication Q = nP is performed as follows.

A l g o r i t h m 3. (Addition-Subtraction Method)

Input P

S e t Q +- P
For i : g -- 2 downto 1 do

Set Q ~- 2Q
I f ei : 1 t h e n s e t Q * - Q + P
If ei=--i then set Q ~-Q-P

Output O

362

The cost of Alg. 3 depends on the bit length s of NAF(n), which we now
estimate. It follows from the Hasse theorem that the order of an elliptic curve
over IF2= is

#E(]F2, , ,) = 2 ~ + 0 (2 ' ' ' /2) . (3)

Most public-key protocols on elliptic curves use a base point of prime order p.
Since all of the curves (1) have even order, then p must be at most 2 "*-1 +
0(2m/2). We can assume that n < p; thus 5 s _< m.

It follows that Alg. 3 requires about m doubles at most. The number of ad-
ditions is (about) the number of nonzero coefficients in NAF(n). The average
density of nonzero coefficients among NAF's is 1/3 (see [3]). Therefore the av-
erage cost of Alg. 3 is -~ m doubles and .~ m/3 additions, for a total of ~ 4m/3
elliptic operations. This is about one-eighth faster than the binary method, which
uses the ordinary binary expansion in place of the NAF and therefore requires
an average of .~ m/2 elliptic additions rather than -.- m/3.

3 A n a m o l o u s B i n a r y C u r v e s

Two extremely convenient families of curves [5] are the anamolous binary curves
(or ABC's). These are the curves E0 and E1 defined over IF2 by

E~ : y2 + xy = x3 + az2 + l .

We denote by E ~ (I F ~) the group of lF2.~-rational points on Ea. This is the
group on which the public-key protocols are performed. The group should be
chosen so that it is computationally difficult to compute discrete logarithms of
its elements. Thus, for example, the order #Ea(IF2.-) should be divisible by
a large prime (see [9]). Ideally, #Ea(]F2=) should be a prime or the product
of a prime and small integer. This can only happen when m is itself prime,
for otherwise there are large divisors arising from subgroups Ea(]F2a) where d
divides m.

Actually, the orders #Ea(IF2,,) are never prime, because they always contain
the point (0, 1), which is easily seen to have order 2. The best result to be hoped
for, then, is that the order is twice a prime. This happens relatively frequently
for El . The values of m _< 512 for which #EI(IF2-~) is twice a prime are

m - 3, 5,7, 11, 17,19, 23,101, 107,109,113,163,283,311,331, 347,359 .

The curves E0 contain the points (1, 0) and (1, 1), which are easily seen to have
order 4. The best result to be hoped for among the curves E0, then, is that the
order is 4 times a prime. The values of m < 512 for which this happens are

m = 5, 7, 13, 19, 23, 41, 83, 97,103,107,131, 233,239,277,283,349,409 .

5 A further one-bit improvement on this bound is possible if we use the identity

whenver n > p/2. Moreover, if a has trace 0 over]F~, we save yet another bit since
the order of E must be divisible by 4.

363

Since the ABC's are defined over IF2, they have the property that, if P =
(x, y) is a point on E~, then so is the point (x 2, y~). Moreover, one can verify
from Alg. 1 that

(X4, y4) § 2 (X, y) "-- (--1):-" (X 2, y2) (4)

for every (x, y) on Ea. This relation can be written more easily in terms of the
Frobenius (squaring) map over IF2:

y) = (=2, .

Using this notation, (4) becomes

r (r P) § 2P = (- 1) : - ~ r P

for all P E E. Symbolically, this can be written

(r 2 + 2) P - = (-1):-arP .

This means that the squaring map can be regarded as implementing multiplica-
tion by the complex number r satisfying

r 2 + 2 = (- 1) l - " r .

Explicitly, this number is

(--1) 1-a +

2

By combining the squaring map with ordinary scalar multiplication, we can
multiply points on Ea by any element of the ring 7)'[7-]. We say that Ea has
comptex multiplicatio, by r. (See [5].)

The reason why this property is useful for elliptic scalar multiplication is that
multiplication by r , being implemented by squaring, is essentially free when IF2-~
is represented in terms of a normal basis. Thus it is worthwhile, when computing
uP, to regard n as an element of 7711-] rather than as "just" an integer. More
precisely, one replaces the (signed) binary expansion of the coefficient with the
(signed) r-adic expansion. That is, one represents n as a sum and difference of
distinct powers of r .

For example, with a = 0 we have

9 = r s - r 3 + 1 . (5)

Thus, if P = (x,y) is a point on E0, then

9P : (x 32, y32) __ (X8, yS) + (x, y) .

The above example gives 9 as what we call a r-adic NAF, since no two
consecutive terms are nonzero. (Both [5] and [10] use signed r-adic expansions,
but neither kind has the nonadjacency property.) As we shall see, the use of
the v-adic NAF gives a significant reduction in the number of terms, just as the

364

NAF gives a significant improvement over the binary expansion in the case of
integers.

The r-adic NAF has a property analogous to the NAF for integers, namely
that every element o f the ring Z[r] has a unique r-adic NAF. We shall prove
the existence by providing the construction. (The proof of uniqueness is similar
to that of the NAF for integers.)

We begin with the observation that x + yr is divisible by r if and only if x
is even. One direction of this statement follows from the identity

(u + v r) T = - 2 v + (u + (- 1) 1 - %) r ,

and the other from the fact that, if x = 2v, then

x + yr = (y + (- 1) l - a v - vv) 1" .

We now present the algorithm [11] for computing the v-adic NAF. It is com-
pletely analogous to Alg. 2, but here we are dividing by r rather than by 2. The
ring ~'[r] is Euclidean with norm function

N (x + yr) = x 2 + (- 1) 1-a x y + 2y 2 .

Since 1" has norm 2, the possible remainders upon division by v are 4-1. Earlier
algorithms chose the remainder that minimized the norm of the quotient; this
is analogous to the basic division algorithm for generating the binary expansion
of an integer. What we shall do instead is to choose the remainder that makes
the quotient divisible by r (i.e., having real part even). This is analogous to the
computation of the NAF for integers.

A l g o r i t h m 4. (r-adic NAF)

Input x0, Y0
Set X ~-- x0, y (-- Y0
set S ()
While x#O or y#O,

If x odd,
t h e n s e t u ~-- 2 -- (x -- 2y (mod 4))
else set u ~ 0

Set z+--z--u

Prepend u to $

Set (x, y) (y + (-1) ~ x/2, --x/2)
EndWhil e

Output 8

For example, to derive (5), one applies Alg. 4 with a = 0, x = 9, and y = 0. The
results are shown in Fig. 2.

Note that the implementation of Alg. 4 involves nothing more complicated
than integer addition. (This is slightly more than is required by Alg. 2, which
only adds 1 to an integer.)

365

Fig. 2, Computing a generalized NAF.

x y u s

9 0 <>
8 0 1

4 - 4 O)
4 -4 o

- 2 - 2 (0, I)
- 2 - 2 0
- 3 1 (0,0,1)
- 2 1 - 1

0 I (-1 ,0 ,0 , 1)
0 1 0
1 0 (0, -1 , O, O, 1)
0 0 1
0 0 (1,0,--1, 0,0, 1)

An argument similar to the one [3] in the NAF case proves that the average
density of nonzero terms among r-adic NAF's is 1/3. There is a drawback to this
representation, however: the r-adic NAF of an integer n is about twice as long
as its ordinary NAF. This is because Alg. 4 begins with n, which is an element
of Z[v] with norm n 2, and repeatedly divides by r , which has norm 2.

The solution is to adopt the following modification from [10]. Recall that
multiplication by r is implemented by a one-bit circular shift of each of the m-
long bit strings representing the coordinates of P . Multiplication by r m, then,
involves m such shifts, returning each coordinate to its original state. In other
words, r m P = P for all P 6 Ea(]F2,~). I t follows that , if a and ~ are elements
of Z[r] with a - ~ (mod r m - 1), then a P = ~ P for all P .

This means that , to multiply by n, one need not work with n itself, but rather
the remainder obtained f rom dividing n by r m - 1. Since 7/Iv] is Euclidean, this
remainder will have norm smaller than that of r m - 1. The norm of 7" m - - 1 is
precisely the order of Ea(]F2-,), and this is roughly 2 m by (3). Thus the r-adic
NAF of the remainder will have length ~ m, only half as long as the r-adic NAF
of n itself. Moreover, the average density is still only 1/3. To see this, one must
examine the distribution of the residues (mod v m - 1) of the integers; see [1].

To implement this improvement, one needs a division algorithm in Z[r] . The
following algori thm inputs the dividend u + v r and divisor r + s r and outputs a
quotient w + z r and remainder x + yr , the latter having smaller norm than the
divisor.

A l g o r i t h m 5. (Division in the Ring 7 [r])

Input u, v, r, s

Set k ~ ru + su + 2sv ,

366

+--- P V - - 8 ~

Set h +---r 2 § 2s 2

Set w t /hJ,
z g / h i

S e t x ~-- u - - r w + 2 8 z ,

y +-- V - - S W - - r z - - s z

Output w , z , z , y

To apply Alg. 5, one needs to express r m - 1 as an expression of the form
r + s r . This is done via Lucas sequences. Let U0 = 0, U1 = 1, and

Uk = (- 1) 1-~ U~_I - 2 U~-2

for k > 2. I t is easy to prove tha t

r m = U m r - 2 U m - 1 �9

Thus we have the following procedure for computing n P in Ea(IF~-,).

A l g o r i t h m 6. (Sca lar M u l t i p l i c a l i o , on A B C ' s)

1. Divide n by Urn r - (2 Urn-1 + 1) via Alg. 5.
2. Compute the r-adic NAF

es e g - 1 , �9 �9 � 9 e l , e 0 }

of the remainder via Alg. 4.

3 . S e t Q ~-- e z P

4. For i from g--i do.nto 1 do

set Q rQ(= shift[Q])
If e l -- 1 then set Q +--- Q -4- P
If ei - - - - - - I then set Q , - Q - P

S. Output Q.

Except for Step 1 (i.e. Alg. 5), the only arithmetic required by Alg. 6 is
binary field ari thmetic and integer addition. Alg. 5, on the other hand, requires
several multiplications and divisions involving m-bit numbers. Thus it is less well
suited to hardware, and more expensive in software, than the other steps. 6 The
running t ime of Step 1, however, is negligible compared to the actual elliptic
scalar multiplication (see [10]).

Since t ~ m, then Alg. 6 requires ,~ m / 3 additions and no doubles. This is
at least 50% faster than any of the earlier versions, as is shown in Table 1.

6 On the other hand, Alg. 5 can be replaced by simpler and more efficient algorithms
that do much the same thing. For example, one might use a "double-and-acid"
method of "building up" to the integer n via its binary expansion, reducing when
needed by suitable multiples of r " - 1. Such reductions would involve additions
rather than multiplications and divisions. Details are not available as of this writing,
but it seems that an efficient implementation could be developed which would yield
a r-adic NAF of only a few bits over the output of Alg. 5.

367

Table 1. Comparison of Elliptic Scalar Multiplication Techniques.

Type of
Curve Method

General Binary Method
" Addition-Subtraction (1989)

ABC Koblitz, Balanced (1991)
" Meier-St affelbach (1992)
" r-adic NAF (1997)

Avg. # of
Length of Avg. Elliptic
Expansion Density Operations

m 1/2 3m/2
m 1/3 4m/3

2m 3/8 3m/4
m 1/2 m/2
m 1/3 m/3

The "length" and "density" columns give the approximate length of the
relevant representation of the number and the average density of nonzero terms.
The density figure of 3/8 for Koblitz' "balanced" expansions is from experimental
observation and may be only an approximation.

4 Precomputation and Memory Speedups

We can obtain still more dramatic savings by precomputing and storing some
"small" r-adic multiples of P . By this we mean the points a P for which a E Z[r]
has a short v-adic NAF. These precomputed values can then be used as needed
when going through the r-adic expansion of n. This is essentially a "r-adic
window method." We illustrate with a simple example: that of using windows of
a fixed width w.

This method is very similar to the fixed-width version of the window method
for ordinary NAF's of integers. Consider the following example. We let the width
w = 4 and n = 22310. Then NAF(n) is given by

(i, 0,-1, O, -1, O, 0,-1, O, O, 1,0, 1, O, -1,0) . (6)

We now rewrite (6) by allowing nonzero coefficients to take on the values 4-3,
+5, 4-7, 4-9 as well as +1. (This choice reflects the fact that the odd numbers 1
through 9 are the ones with NAF of length 4 or less.) We go right to left, as in
Fig. 3.

As a result, we have the expression

2 2 3 1 0 _ - 2 1 ~ _ 5 . 2 1 1 _ 7 . 2 5 + 3 . 2 .

Therefore, we can multiply the point P by 22310 by precomputing 3P, 5P, 7P,
9P and calculating

22310P = 215p - 211(5p) - 25(7P) + 2(3P)

via the suitable generalization of Alg. 3.

368

Fig. 3. Widening a NAF.

(1, O, -1 , O, -1 , O, O, -1 , O, O, 1 ,I o , 1, o,-1 l, o)
(1 , o,-1, o,-1, o, o,1-1, o,o, ,11, o, o,o, 3,0 >
1 1 , 1 0 , - 1 , 0 , - 1 1 , 0 , 0 , 0 , 0 , 0 , - 7 , 0 , 0 , 0 , 3 , 0)

1 , 0 , 0 , 0 , - 5 , 0 , 0 , 0 , 0 , 0 , - 7 , 0 , 0 , 0 , 3 , 0)

Apply ing the m e t h o d for the general wid th-w case requires

C(w) = (2 w - (- 1) w) / 3

values to be p r e c o m p u t e d and stored. The result ing wid th-w NAF has the prop-
e r ty t h a t any w consecutive coefficients include at mos t one nonzero entry. T h e
average densi ty of nonzero coefficients among width-w N A F ' s is (w + 1) -1 .

T h e same wid th-w NAF calculat ions can be used in the r -ad ic case. T h e
exa mple analogous to the above is mul t ip l ica t ion by

O~ = T 15 -- T 13 -- T II -- T 8-~- T 5 -~- T 3- T ,

since the ~--adic NAF of a is given by (6). To devise a width-w r-adic NAF of
c~, we allow nonzero coefficients to take on the values 4-/93, +fls, +fiT, q-fl9 as
well as q-l, where flk is the element of Z[r] whose r-adic NAF is the same as

the o rd inary N A F of k. (Explici t values are given in Fig. 4.)

Fig. 4. Analogues of the Small Odd Integers.

NAF(3) = (1, 0, - 1) 8a = r 2 - 1 /'3 = (r 2 - 1)P
NAF(5) = (1, 0, 1) 8s = r ~ + 1 P5 = (r 2 + 1)P
NAF(7) = (1, 0, 0, - 1) 87 = r a - 1 /'7 = (r a - 1)P
NAF(9) = (1, 0, 0, 1) 89 ---- r 3 q" 1 P9 = (r 3 + 1)P

T h e calculat ion shown in Fig. 3 shows tha t the width-4 r -ad ic NAF of a is

= r 15 - & " r 11 - ~ 7 " r s + / ~ 3 " r .

T h u s one computes

a P = r l S p - f l i p 5 - rSP7 + rP3

by p recompu t ing and storing the points Pi given in Fig. 4.
To pe r fo rm this procedure in general requires enough m e m o r y to store C(w)

points , including P itself. T h e p r e c o m p u t a t i o n requires C(w) - 1 elliptic addi-
t ions, and no m e m o r y other t han t ha t used to store the C(w) points . T h e ma in

369

computation is the analogue of Alg. 6, performed on a length-m, width-w, r-adic
NAF with average density (w + 1) -1. The total work, then, is

2 w m
,~ - ~ + ~ elliptic additions.

Table 2 gives the performance of this algorithm on the curve El(IF2,63) for
various widths. (Entries are rounded to the nearest integer.) The case w = 2 is
the ordinary method of w By choosing w = 4 or 5, one saves roughly one-third
the work. For larger w, the precomputation costs overshadow any savings on the
real-time computation.

T a b l e 2. Performance at Various Widths.

Width

Number of Elliptic Operations

Precomp- Real Time Total
utation

2 0
3 2
4 4
5 9
6 20
7 42

(~vg) (avg)

52 52
39 41
31 35
26 35
23 43
19 61

It is remarkable that one can perform a general elliptic scalar multiplication
on El(IF2163) using only about 35 multiplicative inversions and 70 field multipli-
cations.

One could obtain still further speedups by using more general window meth-
ods. These would be straightforward adaptations of existing methods such as
those found in [12]. On the other hand, such methods are less automatic than
the above fixed-width-window technique, so that more complicated up-front cal-
culations are needed.

Note added during review: the results of [10] have recently been generalized
to curves defined over fields of 2 a elements for small d. For example, the curves
with complex multiplication by (-4-1+ ~ / "~ -) / 2 are defined over lF2~. The results
of this paper should also carry over to this more general situation.

R e f e r e n c e s

1. D. Gordon, "A survey of fast exponentiation methods" (to appear).
2. D. E. Knuth, Seminumerical Algorithms, Addison-Wesley, 1981, p. 272.

370

3. F. Morain and J. Ohvos, "Speeding up the computations on an elhptic curve using
addition-subtraction chains", Inform. Theor. Appl. 24 (1990), pp. 531-543.

4. A. Menezes, T. Okamoto and S. Vanstone, "Reducing elliptic curve logarithms
to logarithms in a finite field", Proc. 23rd Annual ACM Symp. on Theory of
Computing (1991), pp. 80-89.

5. N. Koblitz, "CM curves with good cryptographic properties", Proc. Crypto '91,
Springer-Verlag, 1992, pp. 279-287.

6. D. W. Ash, I. F. Blake, and S. Vanstone, "Low complexity normal bases", Discrete
Applied Math. 25 (1989), pp. 191-210.

7. T. Itoh, O Teechai, and S. Trojii, "A fast algorithm for computing multiplicative
inverses in GF(2t) ", J. Soc. Electron. Comm. (Japan) 44 (1986), pp. 31-36.

8. E. Berlekamp, Algebraic Coding Theory, Aegean Park Press, 1984, pp. 36-44.
9. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptogra-

phy, CRC Press, 1997, pp. 107-109.
10. W. Meier and O. Staffelbach, "Efficient multiplication on certain non-supersingular

elliptic curves", Proc. Crypto "92, Springer-Verlag, 1993, pp. 333-344.
11. R. Reiter and J. Sohnas, "Fast elliptic arithmetic on special curves", NSA/R21

Informal Tech. Report, 1997.
12. K. Koyama and Y. Tsuruoka, "Speeding up elliptic cryptosystems by using a signed

binary window method", Proc. Crypto '92, Springer-Verlag, 1993, pp. 345-357.
13. R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck, "Fast key exchange

with elliptic curve systems", Proc. Crypto '95, Springer-Verlag, 1995, pp. 43-56.
14. R. Schroeppel, It. Orman, S. O'Malley, and O. Spatscheck, "Fast key exchange with

elliptic curve systems", Univ. of Arizona Comp. Sci. Tech. Report 95-03, 1995.
15. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

Elsevier, 1977, pp. 277-279.

A E l l i p t i c D o u b l i n g w i t h N o r m a l B a s e s

The following technique 7 carries out the doubling

y2) = 2 (=1, y l)

of a point (for which =1 r 0) on the curve

y2 + =y = =3 + a=~ + b

over IF2-,, where the field is represented in terms of a normal basis. The usual
algori thm requires 1 multiplicative inversion and 2 multiplications. The method
given here replaces one of the general multiplications by a multiplication by
a fixed constant (namely b). The operation of multiplying by a fixed constant
is comparable in speed to field addition. Therefore the effective cost of this
algori thm is 1 multiplicative inversion and 1 multiplication.

One begins by computing

b
= =12 + ,

7 This method is of the kind alluded to in [13]. There it is credited to [14], which is
not so easily available; hence its inclusion in this Appendix.

371

which is easily seen to equal the expression for z2 appearing in Alg. 1. One then
finds a root /~ of the quadratic equation

]~2 -[-]A ~--~ Z 2 -[- a .

Since the field is being represented in terms of a normal basis, this process can
be done without using anything more expensive than addition [15], so we can
neglect its cost. The element p will equal A + e, where e -- 0 or 1 and

A= xi + y l .
Z l

Therefore
pZl "~-Z 2 Jryl = eZl �9

This equation allows us to find e and therefore A. Notice tha t it is not necessary
to perform the multiplication/~ z l in full, but rather to compute one coordinate
of the product. (We can choose any coordinate where the corresponding coordi-
nate of Xl is 1.) Comput ing one coordinate of a product costs the same as an
addition, so the derivation of A is virtually cost-free. To complete the doubling,
one computes

Y 2 - - x 2 + () ~ + 1) x 2 �9

