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Abstract. There arc two broad approaches 1o the specification of the dynamics
of infecrmation systcms, namely the operational and the declarative one. The
declarwive approach has advantages in terms of abstractness and of locality
of infonnation. Its main drawback is the so called frame problem, i.c. the
necd (¢ explicitly forbid unwanted changes. We propose an extension of the
declara.ive approach which incorporates some aspects of the operational one,
thereby climinating the frame problem. The technique is illustrated on an
examp ¢, and the resulting specification is compared with the corresponding
operational and dcclarative oncs.

1 Introduction

The requirer.ents engincering of information systems includes an identification of the
structure of the relevant information, and of its cvolution over time, or dynamics. There
arc two broud approachcs 10 the description of these dynamics, namely the operational
onc and the declarative onc, of which the deductive approach is a variant,

The declirative, or logic-based, approach uscs logical formulas to constrain the evolu-
tion of infor+ation. It is supporicd by such languages as CIAM [GKB82], RML [GBMS6],
Infolog [FS8%1, or ERAE |Hag88]. This approuch gencralises the concept of integrity con-
straint to the temporal dimension : the same language is uscd to characterise valid states
(“all salaries e greater than 5000°) as well as valid changes (‘salaries may only grow’).
This is illustrated below using a function salary [rom types Person and Time 10 Salary.
The logic us~4 is first order logic.

salary( Person,Time) : Salary

% all sularies are greater than 5000
VpVt (salary(p,t) > 5000)

% salasics may only grow
VpVt) vty (81 > t2 = salary(p,t)) > salary(p,t2))

This work was partly funded by the Commission of the European Communitics under the ESPRIT project
ICARUS.
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A variani of first order logic called temporal logic is used by some authors [Hag88]
[DHR90} [FS86] 1o avoid the cxplicit reference to time. The formal semantics of temporal
logic arc recalled in Scction 3.1, but their intuitive meaning is the following. Temporal
logic formulus arc interpreted in sequences of successive states, the valid sequences being
thosc wherc jormulas hold in cvery state. Most functions and predicates, like salary, are
state-dependent, i.c. thcy may have different interpretations in dilferent states. Temporal
logic formui:.s may contain spccial operators (0, @, O, etc) which causc the subsequent
sub-lormula or term to be evaluated in a different state. For instance, the tcrm ‘@ 7’ denotes
the value of r in the previous state. The temporal logic version of the specification above
can be wrilicn

salary: Person) : Salary

Vp (sacary(p) > 5000)
Vp (salary(p) > @ salary(p))

The cffec: of an event is among the dynamic constraints that declarative languages
can cxpress. An event is modclled by a predicaic which holds whenever the event occurs.
The cxample above may be cxicnded 10 express that an event promotion induccs a salary
incrcasc :

promation(Person) : Event

Vp (prrmotion(p) = salary(p)=1.1 * @ salary(p))

The decl.vative approach has many advantages in terms of abstractness and locality
of information [Oli86]. 1t suffers however Irom a drawback known as the frame problem
{Min74]: it is not sufficient (o require the nceded changes; onc must also exclude the
undcsired oncs. The last formula above forces the salary 1o vary in case of promotion,
but does not prevent it to change freely at other moments. To this end, we must add the
following formula:

Vp{(saiary(p) # ® salary(p) = promotion(p))

The deductive approach JOL86] is a variant of the declarative approach which suffers
however froin the same drawback. It will be discussed in Scction 4.

The operational approach controls the evolution of information in a program-like style.
Typically, events trigger the execulion of routines explicitly modiflying the information.
This approach avoids the frame problem through the implicit assumption that no change
takes place, «xcept if an operation explicitly requircs it. However, it suffers from other
drawbacks, thic first onc being s lack of abstraciness. A property like ‘salaries never
decrcase’ cannot be dircctly cxpressed; it can only be deduced from a careful analysis of
all routines. Its other weakncesses will be discussed in Section 4.

In face of this situation where the declarative and operational approaches have good
qualities and drawbacks, we propose to exiend the former in a way that circumvents the
frame problem. The suggesied technique is introduced in Scction 2, and illustrated on a
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simple language called MinI-ForL. This language is given formal semantics in Scction 3. It
is compared to the operational, purcly declarative, and deductive approaches in Scction 4.
Further extensions arc proposed in the conclusion.

2 The MINI-FOL language

2.1 Active and Reactive Happenings

The difference between the declarative and operational approaches may be synthesised in
the following two principles, as far as the specification of dynamics is concerned :

Declarativeness principle : any change is allowed, except those forbidden
by the specification.

Operationality principle : any change is forbidden, except those imposed
by the specification.

When specifying an information system, onc scems to nced the two principles in tum.
There arc indecd two calegorics of happenings that the specification is concerned with:
the active ones and the reactive oncs.

e An active happening is onc that the planned information system will not control,
typical'y an action ol the user. Some authors call these happenings external events.
The specification can express hypotheses that limit their occurrences, but it cannot
force tiem to happen. The declarativeness principle suits their description optimally.

¢ A rcacuve happening is onc that the information system will control. It happens
in reaction (hence ‘reactive’) to an active happening and should only take place if
requesicd. The specification will impose its occurrence in strictly limited circum-
stances. The operationality principle is betier suited to describe this second category
of phcromena.

As an cxiple, consider an information system maintaining information about projects,
and departments responsible for them. The start of a project in a department, and the end
of a project are active events. The specification may not force them to happen; it may just
prevent them from happening in certain circumsiances. The record of ‘which projects are
running at any moment is rcactive. The specification will force it to change when start or
cnd eveals occur,

2.2 Description of MINI-FOL

The contradivtion between the optimal handling of active and reactive happenings is re-
solved in the ianguage MiINI-FoL. This language is not meant as a complete specification
language, but rather as a toy language illustrating a certain cxtension of the declarative
approach. This extension is applicable 10 any practical declarative specification language.
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Let us siart from the example above, which can be modelled in temporal logic by
mcans of the components below. (From now on, we usc component to denole a function
or predicate.

Start(Project, Department) : Event
End(l roject) : Event
running(Project) : Boolean

An autempt at specilying the value of running may lead 1o the following formulas:

VpVd \ Start(p,d) = running(p))
Vp (End(p) = ~running(p))

By convention, the universal quantifications at the outermost of formulas may be omitted.
These formulas can thus be rewritten as follows.

Start(p, d) = running(p)
End(p) = —~running(p)

In a purcly declarative approach, these formulas arc not sufficient : they only constrain
the valuc ol running when the events Start and End occur, and at no othcr moment,
The formulas do not cxpress that running holds from a Start 10 the subsequent End.
The correct formulas arc subsiantially more complex.

Still, these naive formulas arc appealing and they would be correct if we could add that
running is ycactive, in the sense of Scction 2.1, and only changes if required. MINI-FOL
allows it through the following cxiensions :

o Funcliuns and predicates are partitioned into active and reaclive ones.

o Formu.as are similarly partitioned into action restrictions and reaction conditions.

Active and reactive components arc declarcd in two separatc scctions introduced by the
keywords active and reactive, respectively :

active
Siart(Project, Department) : Event
End(Project) : Event

reactive
running(Project) : Boolcan

The rcaction conditions arc given in a section introduced by the keywords reaction con-
dition. This .cction associates cach reactive component with a sct of formulas controlling
its changes:

reacticii condition
ruaning : Start(p,d) = running(p)
End(p) = ~running(p)
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There may be two other scctions in a MINI-FOL specification. One, introduced by the
kcywords action restriction, lists the action restrictions. In the example above, we could
require that only running projects be ended :

action restriction
End(p) = ® running(p)

This formula cannot causc the cvent End 10 occur, nor docs it cause running to change.
It is only mcant 1o prevent End from occurring,

Finally, a section introduced by the keyword initially lists conditions that mwust hold
in the initial state, in addition 1o the other formulas. For example, that there is initially no
running project:

initially
—running(p)

We postulate that all events arc falsc in the initial state. The specification is thus interpreted
as if the initially section implicitly contained the formula cxpressing this fact. In the
cxample,

~Start(p,d) A ~“End(p).

The scmauntics of MINI-FOL cnsurc that the declarativeness principle holds for the
active components and the opcrationality principle holds for the rcactive ones. A MINI-
FoL specification admits a subset of the models oblained with the standard temporal logic
interpretatior, namely thosc that minimise the changes from state to state (hence its hame
which stands for MINImalised First Order Logic). These minimally changing modcls
are thosc whose statc transitions can be obtained as follows: (irst, the active components
arc changed within the limits of the action restrictions; after this, the reactive components
may change, but only for the clements of their domain invalidating the reaction condition.
In the example, running will only change for a project p if cither Start(p,d) occurs
while p is not running, or End(p) occurs while p is running,

In general, however, the situation is slightly more complex than suggested by this

simple cxample. Let us introduce a sccond reactive component, the function dept giving
the department that is responsible Tor a project ;

reactive
dept(Project) . Department

This department is the one in which the project was started, or is none if the project is
not running. The reaction conditions for dept arc the following ones:

reactien condition
dept : Start(p,d) = dept(p)=d
—running(p) = dept(p) = none
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Onc obacrves that the reaction conditions of dept mention the rcactive predicate
running, which induces a dependency between the two reactive components.  There-
fore, a state 'ransition gencrally consists in changes to the aclive components, followed
by a reactior chain during which the reactive components are changed in scquence. If a
component ¢ depends on another y, then @ must be changed after y in the chain. The
reactive cononents must therefore be ordered by the specificr in the reactive scction :

reactive
renning(Project) : Boolean
dept(Project) : Department

rinning < dept

In the context of this ordering, the models of a MINI-POL specification arc:the temporal
logic modcls whosc state transitions can be obtained as follows:

e active componenls are first changed within the limits permitied by the action restric-
tions:

e aller this, the reactive funciions and predicales arc considered in any order com-
patible :vith their partial ordering: cach of them is changed minimally to restore
the ass wiated reaction conditions; ‘chuanged minimally’ means that the valuc of the
functicn or predicate is changed for as few clements in its domain as possible.

Scction 3 formalises these scmantics.

The orde. - < may be partial, because independent components need not be ordered, The
following weli-formedness rules ensure that this ordering is consistent with its intended

purposc.

e First, -~ must indced define a partial order, i.c. its transitive closure may not contain
any loop.

o If a corponent ¢ is consirained by a stalement ¢, then ¢ may only refer to another
compaient ¢ if this component is guaranteed (0 be updated before e. This is however
not neessary il ¢f occurs within the scope ol @, in which case no dependency is
inducc..

This ruic has the following implications :

- jcaclive componenis may not occur in action restriclions, except in the scope
o'e;

- a reaclive component z occurring in the rcaction condition of a diffcrent com-
punent y must verify z <™ y (where <™ is the transitive closure of <), except
if & occurs within the scopc of' @ ;

— ir any of its reaction conditions, a rcactive predicate or function z must have
ils arguments bound 1o the same variables in all its occurrences not within the
scope of @ ; this is 10 avoid dependencics between the values of a predicate or
tuniction for diffcrent clements of its domain,
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In practice, these rules arc casily obeyed, provided the dependencics between components
arc well ideniificd.

Although it is not critical. it often simplifies the specifications o assume that only one
cvent occurs, or only onc other active component changes from one state to the next. This
property is laken into account by the following implicit formula, required to hold in all
but the iniliat statc:

2 @) A Njerj 4 YP; =25 (P)) A Niersi VP5 25(pj) = @ 25(p3))
\%

Vet (3155 2:(p) # @ 2P A Newar i1 Y05 25(0j) = ® 23(0;) A Nlny VD —2i(05))

where ‘3!’ r.cans ‘there exists exactly one’, 2y, ..., 2, arc all active events and @p141,... 25
arc the other active components, and where, for i € {1,...,n}, p; is a tuple of variables
on the domain of ;.

2.3 A Larger Example

In this section, we give the complele MINI-FoL specification of an extension of the example
uscd in the previous scctions,

The planned information sysicm maintains information about projects running
in departments and programmers assigned 10 these projects. Projects can be
started “n a department and ended; programmers can be assigned 1o or removed
from a project; depantiments can receive the responsibility for a project or lose
1t

The information sysicmi must record which projects arc running, which pro-
grammer works for which project, which department is responsible for which
projeci, and which programmer has cver worked for which department.

It mus! prevent the ending of non running projects, the start of a running

projeci. and the removing of a programmer [rom a project 10 which he or she
is not sssigned.

The conresponding MINI-FOL specification is the following :

active

Swart(Project, Department) | Fvemn:
End(Project) : Event
Assign(Programmer, Project) : Event
Kemove(Programmer, Project) : Event

reactive

running(Project) : Boolean
dept(Project) : Department
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assigned(Programmer, Project) : Boolean
hus-worked(Programmer, Dcpt) : Boolean

ronning < assigned < dept < has-worked
initially

s unning(p)
-has-worked(pg,d)

action vestriction

End(p) = ® running(p)
Start(p,d) = ® -running(p)
Remove(pg, p) = @ assigned(pg, p)

reaction condition

running : Start(p,d) = running(p)
End(p) = ~running(p)
dept : Start(p,d) = dept(p) = d

arunning(p) => dept(p) = none

a.signed :  Assign(pg,p) = assigned(pg, p)
Remove(py, p) = —assigned(pg, p)
S(~running(p) A assigned(pg, p))

has-worked : assigned(pg, p) A depl(p) = d = has-worked(pg,d)

It can be verificd that the various formulas comply to the well-formedness conditions.
In this case, :he declared ordering of reactive componcents is slightly stronger than needed,
as assigned and dept arc actually independent of cach other. This strengthening docs no
harm.

Notice that the usual temporal logic deductions arc still valid, as all action restrictions
and reaction conditions hold in all siates. In particular, we can conclude from the initially
scction that no project is initiafly assigned to any department

dept(p,. = none

and that no programmer is initially assigned 10 any project

—assigned(pg, p).

3 Formal semantics of MINI-FOL

This seclion presents two cquivalent formal semantics for MINI-FoL. The first one is
constructive and specifics the claboration of a modcl state by statc. This scmantics is
probably the most intuitive. The other is a rewrile semantics, specifying the formulas
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that must be added 10 a MINI-FOL specification to reduce it Lo a classical temporal logic
specification. This clearly identifics the expressive power of MINI-FOL and guarantees that
it is amenablc to deduction and theorem proving. The proof of the equivalence of the two
scmantics is in appendix.

3.1 Temparal Logic

MINI-FOL is an cxtension of a lincar tecmporal logic which is first defined in this section.
Its modcls are right-infinite sequences of staies of the form ¥ =(o,, : m € N). As in first
order logic, « state is a valuation function for variable, funciion and predicate symbols.
The valuation of variables is identical in ail states of a sequence.

A formuia holds in a model X il its valuc is truc with respect 1o every state of this
modcl. The value of the formula ¢ with respect to the #* state of a model ¥ is noted
‘val(X,1,¢) The value of a tlcom 7 is noted ‘val(X, ¢, 7). The funciion val is defined
recursively as follows (p, f, and 2 denote respectively a predicate symbol, a funciion
symbol, and a variable):

val(¥,i,2) = o;(z)
val(X, i, f(r1,..., 1)) = oi(f)wval(X, i, 1), ..., val(Z, i, 7,))
val(E, "ia P(Tl RN Tn)) = Ui(P)(l'al(S, i T )y very val(S, i‘) Tn))
val(L,i,~¢) = ruc  iff val(T,i,¢) = fulse
val(S,:. ¢t Ad2) = truc ifT val(X,1,¢)) = true and val(X, i, ¢2) = true
val(¥,:,Vad) = truc  iff  val(X',4,¢) = truc for all ¥’ differing from ¥ at most
by the valuc assigned 1o z in all states
val(X.i,0 1) =il i > 0 then vall £,i-1,7) clse val( 2,0, 1)
val(Y,:,® &) =il 7 > 0 then val(X,i-1, ) clsc val( T, 0, $)
Additional opcrators (3, V) can be defined in 1erms of these. We also need the predefined

predicale initially which holds only in the first statc of a scquence, Its semantics is given
by thc following property :

agi(initially) = truc  iff 1=0.

3.2 Constructive Semantics

Let 5 be a MinI-For specification, where the implicit formulas restricting the simultancous
changes have been added 1o the action restriction scetion (prefixed by ‘- indtially = ..."):

active Ty...2,

reactive wj...u;,

initialiv I

action restriction ¥

reacticn condition u; : Vp; $;(p;) (1 < i< k)
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For each i € {1,...,k}, p; is a wple of variables on the domain of u;. We assume that
the partial owder between reactive components is such that if u; < u; then 7 < j. The
specification is well-formed, which implies that

o any u; in ¥ is undcer the scopc of @ ;
o any u; (5 > 1) and any u;(p!) (p} # p;) in $;(p;) is under the scope of @ .

The consiructive semantics reflects the foHowing intuition. A model of a specification
is a sequence of states, where every nexi state is obtained in two steps. First some arbi-
trarily choscr active componcents are changed without invalidating the action restriclions.
Then, the reactive components arc checked and updated il necessary, starting with the
smallcst one.

Formally, a sequence of states (o; : 2 € N) is a model for the specification S if op
salisfics

k By
DAY A AL YD $i(p)
and if the following conditions hold for any 1wo successive states o and o' :

e there is an inlcrmediate statc py which is obtained from o by changing the values
assigned to the active components in a way that prescrves &,

o there is a sequence of intermediale states pi,. .., pk, where p, = ¢/, verilying the
following propertics :

~ p. (@ > 0) differs from p;_¢ at most by the valuc assigned to u;;
— consider the p; in the domain of u; in any order; if the formula &;(p;) cvaluates

to true in state p;_11, then p;(wi(pi)) = pi—1(wi(ps)), clse p;(u;(p;)) is any value
such that @;(p;) is truc at statc p;.

This scmantics may only be called constructive if the domains of all reactive com-
poncnts arc tinitc. This restriction is quite natural in the (icld of information systems
specification.

To distinguish ¢ and o' [rom ihe states p; which do not belong to the model of the
specification, we call the former observable stales and the latier intermediate states. It is
proven in appendix that all action restrictions and rcaction conditions hold in all observable
statcs.

3.3 Rewrite Semantics

The purposc of these sccond semantics is 1o identily the formulas that must be added to a
MINI-FOL spzcification, to reducc it to a specification in the iemporal logic of Scction 3.1,
We will neca the following notation :

The evaluauon is according to the rules of lemporal logic as defined in Section 3.1, with ;. considered
the successor of cr.
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@[y : ¢} means that cach occurrence ol y which is not under the scope of @ in
the formula @ is replaced by ¢; iy @ ¢1,y2 @ c2l = ($ly1 : ally2 : e2l.

The initi=! statc should satisly the initially scction, the action restrictions, and the
rcaction cond'itions :

initially = T A ¥ A A&, Vp; 8i(pi)

In cach uther stale, an active componceni is chosen and its valuc may be changed
without invatidating the action restrictions, We therefore have

—~initiolly = ¥

During the subscquent reaction chain, all rcaction conditions must be salisficd, and a
reactive comnonent u; should only change if' its associated formula is invalidated.

~initially = AL, Vpi (:(pdA(Bi(pplui(p) : @ w(p)] = uilp:) = ® wi(pi)))
AN
We can simplily these formulas into the four following oncs ;
initiaily = I
v
AL Vo $:(pi)
AL Vi (8:(p)wilp) © @ wip)) = wilpi) = ® ug(py))

The reduction of a MINI-FoL specification to temporal logic therefore consists in converting

the initially scetion into its obvious counterpart, in taking the action restrictions and reaction
conditions, und in adding the formula

AL Vo; (8 ui(ps) - @ wi(p))] = witp;) = ® ui(p;))

which expresscs the minimisation of changes in the reactive components.

As an cxample, the formula that corresponds (0 the predicate has-worked is the
following (p; is (pg,d) for this predicalc)

Vpg Vd (Vp (assigned(pg, p) A dept(p) = d = ® has-worked(pg, d))
= has-worked(pg,d) = ® has-worked(pg, d))

4 Comparison

This scction ases the example of Scction 2.3 1o highlight the differences between MINI-FOL
and the operauonal approach, the purcly declarative one, and the deductive one.



232

4.1 The Operational Approach

In an opcrational approach, cxternal (active) happenings trigger routines which modify the
intcmal (rcac.ive) variables. For example, the routine triggered by the cvent End(p) may
be writlen as follows :

if running(p)

then running(p) = false
dept(p) = none
foreach pg
du assigned(pg,p) = false

A first difference between this specification and the MINI-FOL onc is that the routine
associated o End must consider all possible conscquences of this event, be they direct
(stopping a prrojcct) or indirect (selting the project department 1o none and unassigning
all programmcrs). In comparison, the MINI-FoL approach culs reaction chains inlo picces
handled by separate formulas: onc saying that End(p) scts running(p) to false; another
to say that a siopped project has none as department; cle.

The need to consider all conscquences at once reduces Lthe readability of operational
specifications: for cxample, the conditions under which assigned changes must be gath-
cred from the routines triggered by the events End, Assign and Remove. The main-
tainability is rcduced as wcll: if the dcfinition of assigned changes, the operational
specification must be adapted in all these places. These drawbacks are of course amplified
when the size of the specification grows,

Besides, ‘he operational style sulfers from its inhcrent inability to directly state cru-
cial propertics like ‘a project which is not running has no assigned programmer’. Such
propertics can only be deduced from a carcful analysis of the specification.

Note that the advantages of MINI-FoL over the opcrational style are shared by the
other non-operational approaches, i.c. the declarative and deductive ones.

4.2 The I eclarative Approach

A purely dec!erative specification writicn in first order or icmporal logic contains the same
formulas as *hc MINI-FOL onc, plus those required to cxplicitly circumvent the frame
problem. These formulas, which must prevent the undesired change of reactive variables,
could be the ollowing ones:

aStart(p,d) A 2 End(p) = (running(p) < ® running(p))
~Starip,d) A (running(p) & @ running(p)) = dept(p) = ® dept(p)
~Assiyn(pg, p) A - Remove(py, p) A running(p)
= (assigned(pg, p) < ® assigned(pg, p))
has-w srked(pg, d) <= (® has-worked(pg,d) vV Ip (assigned(pg,p) A dept(p) = d))
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Each formule is devoted Lo a specific reactive component, and states that it may not change
outside of the conditions known 1o require a change. For cxample, the first formula
prevents any change of running, il there is no Start or End cvent,

These formulas can be proven cquivalent o those automatically gencrated by the
rewritc secmantics of MINI-FoL. Leaving these formulas implicit has several benefits. Of
course, it rids the user of finding them, which is oficn not too casy. It also reduces the total
sizc of the syccification, which is always a win. Finally, it improves the maintainability
of the specification, i.e. its ability to be casily changed. Suppose we add the possibility to
change the department responsible for a project :

active
ChangeDept(Project, Departinent) : Event

action restriction
ChangeDept(p,d) => @ running(p)

reaction condition
dupt : ChangeDept(p,d) = dept(p) = d

In the first-order logic approach, the mere adjunction of the last formula simply prevents
any Change Dept 10 accur, because this would contradict the second frame formula above,
namcly :

~Stari{p,d) A (running(p) < ® running(p)) = dept(p) = ® depl(p).
This axiom reust also be changed, and replaced by :

=~Start{p,d) A ~ChangeDept(p,d} A (running(p) < ® running(p))
=> dept(p) = ® dept(p)

The need to <hange the frame axioms makes any modification more delicate, especially if
the specificat.on is large.

4.3 The Deductive Approach

The deduclive approach [Qli89] is a variant of the declarative approach. External events
arc modelled by adding or removing hase predicaies, corresponding to the MINI-FOL
active predicates. Active functions have no counterpart. These changes are constrained by
integrity constraints, similar to the MINI-FOL action restrictions. Information that must be
maintained by the information system is represented by derived predicates, corresponding
to the MINI-FOL reaclive predicates. Reactive funclions have no counterpart.

The mair difference is in the cxpression. of reaction conditions which are called de-
duction rules in the deductive approach. There is no assumption that reactive components
change mininally; there is another assumption, sometimes called the closed world as-
sumption, implying that the predicates are false in all states where they are not said to be
truc. For cxample, the derived predicate assigned(pg, p) can be specified by the lollowing
deduction rules (notations in |O1i89] are adapied 1o temporal logic) :
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Assign(pg, p) = assigned(pg, p)
runnsing(p) A 7 Remove(pg, p) A ® assigned(pg,p) = assigned(pg, p).

The closed world assumption implicitly adds

assigr.2d(pg, p) = Assign(pg,p)
v (running{p) A ~ Remove(pg, p) A ® assigned(py, p))

The deductive approach allows some saving in writing, compared to the declarative
approach, but it docs not help avoiding the Irame problem : a specificr still has to specify
when a predicate does not change, as in the sccond formula above, As a conscquence, a
MINI-FOL si~wilication is usually casier to write, morc compact and more readable than a
deductive specification,

Besides, the deductive approach docs not allow the usc of funclions and restricts the
forms of rules 1o ensurc their clficicnt automatic interpretation.  This limited form may
obscure simple properties, or require to introduce intcrmediate predicates.

5 Conclusion

A dcclarative (logic-bascd) specification has advantages over an operational (assignment-
bascd) onc, ‘n terms of modularity and cxpressiveness. The former suffers, however,
from a draw! ack known as the frame problem, i.c. the need to cxplicitly statc what may
not change in addition 10 saying what must change. Actually, cach approach is best
suited 1o spocify part of the dynamics of information sysiecms, The declarative approach
assumes that all changes are possible, except thosc explicitly excluded. This is optimal
for specifying the events which arc exiemal (o the information system, and constitute its
input. The oscrational approach assumes that no change is allowed, except the explicitly
requircd oncs. This avoids the frame problem and is optimal for specifying the reactions
of the information system.

We have proposed a technique that reconciles the two approaches. It extends the
declarative approach by distinguishing two kinds of application-dcpendent functions and
predicates, th: active and reactive oncs. The lonmer are treated in the classical declarative
stylc; they may change frecly, except if constrained by formulas called action restrictions.
The reactive functions and predicates may not change, cxcept if forced 1o do so Lo maintain
the truth of associated formulas called reaction conditions. This technique is illustrated
in a simple language called MINI-FOL, which has been given formal semantics. The
specification of a simple case study alfows 10 compare this approach with the opcrational
ong, the purciy declarative one, and a variant called the deductive approach.

We arc currently working on several exiensions of MINI-FoL. The first onc consists in
suppressing the requirement 10 order reactive components. This not only frees the specifier
from some work, but also allows 10 treat the special cases where these componcents cannot
be ordered, because of mutual dependencics. The sccond extension in sight is the inclusion
of more 1emj oral operators than just ® . Introducing other temporal operators referring to
the past is almmost straightforward. More dclicate is the introduction of temporal operators
referring to the future, like 0, &, or O.
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Appendix : Equivalence of rewrite and constructive semantics

Let S be the MINI-FOL specification of Scction 3. Let ¥ = (ay, : m € N) be a temporal
logic model. For practical reasons, we use the following notation to denote the truth of a
formula X in £ with respect to the m* state ;

Zymig T,

This notation s cquivalent 1o ‘val(X,m, T) is truc’.

Theorem

Each constructive model of' S corresponds 1o a temporal logic model of the specification
obtaincd from S by the rewrile semantics.
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Proof : LcL ¥ =(o,, : m € N) be a constructive model of S.

1. By definition of a constructive model. we have

LS,0ETA® AN, VD $i(pi)
and heace the following formula is truc in Y':
initially = ' A ¥ A NS Vpi :(p;).

. We have to prove X,m E &, for any m > (.

By del'nition of a constructive model, there exists a state po obtained from a,,—1 by
changisg only the values assigned Lo active componceats, and such that po satisfies ¥
(according to the rules ol temporal logic as given in Sccton 3.1, with pg considered
the suceessor of ap,— ).

Since the values assigned (0 z4,..., 2, it g, arc thc same as in pp and since none
of uy, ..,u occurs outside the scope ol @ in &, ¥ cannot be invalidaied by the
subscquent changes ol reactive components. Hence, 2, m .

. We prove that, for any m > 0, forany i (1 <1 < k),
X, m EVp; ($:(pi) A (Si(pilluitps) : @ wi(pi)] = uwi(pi) = ® ui(py))).

By dctiition ol a constructive model, there exists a sequence of states (p1,..., %)
such that p; differs from p;_; @t most in the valuc assigned to u;, and such that
Om = [k

As a conscquence, for any 1 (1 < i < k),

pi(ug) = ‘Tm(ug) 1< g9< i

, . 1
pi(ug) = opm-1luy) i+1<g<k W

and herce, if p; satisfics T, then
YomE Tlust: ® uiety ..., u; O ul. 2)

Let p; be in the domain of u;. According 1o the constructive semantics, the value
of u;(p;) in statc p; is obtained differently, depending the casc:

(a) In the first case, $;(p;) is satisficd in p;_;. By the definition of a constructive
mwadel, we then have p;(u;(pi) = pi— {ui(ps)), and, hence,

$:(plui(pi) : @ wi(p)] = ui(p;) = @ ui(pi)

holds trivially in p;. From (1). and since u;(p}) (p} # p;) occurs only under
the scope of ®in &;(p;), $(p;) cannot be invalidated by changes to u;(p})
(3% # pi). hence @;(p;) holds in p;.
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(b) In the sccond case. p;—y docs not salisly $;(p;). Then, since u;(p}) (0} # p)
oceurs only under the scope of @ in &;(p;), p; docs not satisly ®;(p)lu;(p;) :
& u;(p;)], and, hence,

:(p)lui(p) : @ ui(pi)| = ui(p;) = ® ui(p;)
holds in p;. Morcover, @;(p;) holds in p; by delinition in a constructive model.

Hence, lor any p;,
$i(pi) A (@i(pplui(p;) © @ ui(py)l = wi(p) = ® ui(py))

holds in p;. By (2), and sincc w4y, ..., up occur only under the scope of @ in $;(p;),
it follows that

X, m EVp; ($i(p) A (P pluitp) : ® wi(p)] = ui(pi) =  ui(pi))).

Theorem

Each tcmporal logic model of the specification obtained from the specification S by the
rewrile semaatics is a constructive model ol S.

Proof : Let £ = (o, :m € N) be a temporal logic model for the specification obtained
from S by (he rewrite semantics.

o As we have ‘tnitially = T A ¥ A /\i-‘;, Vpi :(p:i)’, il is clcar that
0D AP AN, Vp; &:i(p).

¢ Wc prcve that for cach m > 0, o, can be obtained from o,,_1 as described in the
conslreclive secmantics.

- We have (o find a statc po which can be obtained from o,,._; by changing only
the values assigned to active components, and such that pg satisfics ¥.
Lct po be obtained from o,,_; by sciting 2; 10 o,,,(z;) for 1 < i < n. Since
Y.m F ¥ and since uy,...,u; occur only under the scope of ® in ¥, it
feilows that py satislics ¥,

- We have to find a sequence ol states (py, ..., pi) with the propertics mentioned
in the constructive semantics,
Let (i, .., p4) be the states such that p; is obtained from p;_; by selting the
vilue of u; 10 g, (w;). In other words, for 1 <4 < k,

pi(uy) = (T,"(’U.g) for 1 < [ i

pilug) =0, 1(uy) fori+1 < g<k G)

Note that it lollows that p;, = o,,.
WS prove that p; can be obtained from p;_q as described in the constructive
s:mantics. Let p; be in the domain of ;.
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() Supposc ¥;(p;) is satistied in p;_). Then, since uwi(p}) (p} # p:) occurs
only under the scope of @ in @;(p;), ¥, m E &:(p)ui(p:) : @ ui(pi)]
and hence, ¥, m | wi(pi) = & wi(p;).
Conscquently, Gm (W(pi)) = G- 1(u;(p;)) and, by (3), pi(ui(p:)) = pi—1(w:(@)-
(b) Supposc ®;(p;) is not satisficd in p;—1. Since ¥, m E ®;(p:) and since
Uinls- .-, Occur only under the scope ol @ in $(p;), by (3), it follows
that &;(p;) is satisfied in p;.



