
Reconciling Operational and Declarative 
Specifications 

J. Hagelstcin and D. Roelants 
{hagelste,roclants}@sema.be 

Sema Group Belgium 
5, Place du Chalnp de Mars 
B-1050 Brussels, Belgium 

Abstract. There are two broad approaches to the specification of the dynamics 
of infi;rmation systems, namely II~e operational and the declarative one. The 
declarative approach has advantages in terms of abstractness and of locality 
of information. Its main drawback is the so called frame problem, i.e. the 
need it' explicitly lbrbid unwanted changes. We propose an extension of the 
declara.ive approach which incorporates some aspects of the operational one, 
thereb: eliminating the frame pmbleln. The technique is illustrated on an 
examp c, and the resulting specilication is compared with the corresponding 
operational and declarative ones. 

1 Introduction 

The requirer,,ents engineering of informalion systems includes an identification of the 
structure of the relevant inlbmmtion, and of ils evolution over time, or dynamics. There 
are two broad approaches to the description of these dynamics, namely the operational 
one and the declarative one, of which the deductive approach is a variant. 

The dech.tative, or logic-based, approach uses logical lbmmlas to constrain the evolu- 
tion of infom,:-;tion. It is supported by such languages as ClAM [GKB82], RML [GBM86], 
infolog [FSS'.',], or ERAE I Hag88]. This approach generalises tile concept of integrity con- 
straint to the temporal dimension : the salne language is used to characterise valid states 
('all salaries "ire greater than 5000') as well as valid changes ('salaries may only grow'). 
This is illustrated below using a function salary I'ronl types Person and Time to Salary. 
The logic us-:::t is first order logic. 

salary(Person, Time) : Salary 

% all salaries are greater than 5(}00 
VpVt (salary(p, t) > 50{}0) 

% salaAes may only grow 
VpVtl ~t2 (tl > t2 =~ salary(p, tl) > salary(p, t2)) 

This work w~,s partly funded by the Commission of the European Communities under the ESPRIT project 
ICARUS. 
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A variam of first order logic called temporal logic is used by some authors [Hag88] 
[DHR901 [FS86] to avoid the explicil rcl~zrencc to lime. The formal semantics of temporal 
logic are recalled in Section 3.1, bul Ihcir inluilive meaning is the following. Temporal 
logic fonnulas are interpreled in sequences of successive states, the valid sequences being 
those where formulas hold in every state. Mosl functions and predicates, like salary, are 
state-depcndcnt, i.e. they may have dil'li~rcnl inlerpretations in different states. Temporal 
logic lbnnul;..~ may contain special opera~ors (o ,  � 9  G ,  etc) which cause the subsequent 
sub-lbrmula ur tcirn to be evalualed in a dil'lizrenl slate. For instance, the term '*  r '  denotes 
the value of r in the previous state. The lemporal logic version of the specification above 
can be wrillc,~ : 

salarb~ Person) : Salary 

Vp (sa, ar~(p) > 5000) 
Vp (salar~t(p) >_ �9 salar~j(p)) 

The effect of an event is among the dynamic constraints that declarative languages 
can express. ,~,n event is modelled by a predicale which holds whenever the event occurs. 
The example above may be cxlended Io express Ihat an event promotion induces a salary 
increase : 

promotion(Person) : Event 

Vp (Fr,~motion(p) ~ salary(p) = i. 1 * �9 salar~j(p)) 

The decl.:rative approach has many advantages in terms of abstractness and locality 
of infom~ation [Oli86]. !! suffers however from a drawback known as the frame problera 
[Min74]: it is not sufficiem Io i~equire Ihe needed changes; one must also exclude the 
undesired Ol~eS. The last formula above Ibl~ces Ihe salary to vary in case of promotion, 
but does not prevent it to change freely at olher moments. To this end, we must add the 
following formula: 

Vp~sa:ar~t(p) p �9 salar~l(p) ~ promotion(p)) 

The doducliv~ approach IOli861 is a variant of the declarative approach which suffers 
howcvcr from the same drawback. II will Ix: discus~d in Section 4. 

The operational approach controls the evolulion of information in a program-like style. 
Typically, events trigger the execution of routines explicitly modifying the information. 
This approach avoids the frame problem through the implicit assumption that no change 
takes place, ::• if an Olx~ralion explicilly requires it. However, it suffers from other 
drawbacks, Ihe first one being a lack of abslracmess. A property like 'salaries never 
decrease' caJmot be directly expressed; it can only be deduced from a careful analysis of 
all routines. Its other wcaknosses will be discus.,~d in Section 4. 

In face of this situation where Ihe declaralivc and operational approaches have good 
qualities and drawbacks, we propose to cxicnd the former in a way that circumvents the 
frame problc~n. The suggested technique is inlrodueed in Scclion 2, and illustrated on a 



223 

simple langttage called raINl-V'OI,. This language is given fomml semantics in Section 3. It 
is compared to Ihe operational, purely declarative, and deductive approaches in Section 4. 
Further cxleasions are prol)oscd in Ihc COl~clusion. 

2 The MINI-F'OL language 

2.1 Active and  Reaclive Happenings  

The difference between the declarative and operational approaches may be synthesised in 
the following two principles, as far as the spcciiicatkm of dynamics is concemed: 

Declarativeness princo~le : any change is allowed, except those forbidden 
by the specification. 

Operationality principle : any change is forbidden, except those imposed 
by the v~ec(]ication. 

When SlXzcifying an infomlation system, one seelus to need the two principles in turn. 
There are indeed two categories of happenings that the specification is concerned with: 
the active ones and the reactive ones. 

An active happening is one Ihal Ihe plalmcd information system will not control, 
typical,.,/an action of the user. Some aulhors call these happenings external events. 
The specification can express hyl~olheses that limit their occurrences, but it cannot 
force m:.~m to happen. The declarativcness principle suits their description optimally. 

A react4ve happening is one that the iniimuation system will control. It happens 
in rea(!ion (hence 'reactive') to an active happening and should only take place if 
requeslcd. The specification will impose its occurrence in strictly limited circum- 
stanccs. The operatkmality principle is [X~ller suited to de~ribe this second category 
of phe,;omena. 

As an ex;:mple, consider an infomlation system maintaining infomaation about projects, 
and deparlmcnts responsible for them. The star~ of a project in a department, and the end 
of a project ~',:e active events. The spccilication may not force them to happen; it may just 
prevent them from happening in certain circumslanccs. The record of which projects are 
running at ar~'v' moment is reaclive. The spccilicatkm will force it- to change when start or 
end events occur. 

2.2 Descriplion of MINI-FOL 

The contradk:tion between the optimal handling of active and reactive happenings is re- 
solved in thc ianguage M1NI-POL. This language is not meant as a complete specification 
language, but rather as a Ioy language illustrating a certain extension of the declarative 
approach. This extension is applicable IO any practical declarative specification language. 
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Let us start from the example above, which can be modelled in temporal logic by 
means of Ihc componenls below. (From now on, we use component to denote a function 
or predicate. 

Start(Project,  Department) : Event 
End( t  roject) : Event 
running(Project)  : Boolean 

An attempt at specifying the value of running may lead to the following formulas : 

VpVd (.~'tart(p, d) ~ running(p)) 
Vp (E'l;,t(p) ~ ~running(p)) 

By convention, the unive~al quantilicalions at Ihe oulermost of  fomaulas may be omitted. 
These fommlas can thus I'~ rewritten as follows. 

Start(p, d) ~ running(p) 
End(p) :~ -,running(p) 

In a purely declarative approach, these formulas are not sufficient : they only constrain 
the value of running when the evenls Start and End occur, and at no other moment. 
The fommlas do not express that running holds from a Start to the subsequent End. 
The correcl fommlas are substantially more coml)lex. 

Still, the:.e naive formulas are appealing and they would be correct if  we could add that 
running is =v.active, in the sense of  Seclion 2.1, and only changes if required. MINI-PO[ 
allows it thro,gh the following extensions: 

�9 Functions and predicales are partitioned into active and reactive ones. 

�9 Formu,as are similarly partilioned into action restrictions and reaction conditions. 

Active and reactive components are declared in two separate sections introduced by the 

keywords ac ' ive and reactive, respectively : 

active 
S~:art(Project, Department) : Event 
End(Project)  : Event 

reactive 
running(Project)  : Boolean 

The reactiot,, conditions are given in a sccli6n imroduced by the keywords reaction con- 
dition. This .,.ection associates each reactive component with a set of  formulas controlling 
iks changes : 

reactk),~ condition 
ru,~ning : Start(p,d) ~ running(p) 

End(p) ~ -~running(p) 
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Thcre may be two other sections in a MINI-FOb specification. One, introduced by the 
keywords action restriction, lists the action restrictions, in the example above, we could 
require that only running projects be ended : 

action restriction 
End(p) ~ �9 running@) 

This formula cannot cause the event End  Io occur, nor does it cause runn ing  to change. 
It is only meant to prcvenl End  from occurl'ing. 

Finally, a section introduced by the keyword initially lists conditions that must hold 
in the inilial :date, in addition to the other fonnulas. For example, that there is initially no 
running project" 

initially 
~running(p)  

We postulate that all events are false in the initial slate. The specification is thus interpreted 
as if the inilially section implicitly contailicd the formula expressing this fact. In the 
example, 

-~Start(p, d) A -~End(p). 

The semantics of MINI-ror~ ensure thai the declarativeness principle holds for the 
active components and the operationality principle holds for the reactive ones. A UXNI- 
FOL specific~:tion admits a subset of Ihe models obtained with the standard temporal logic 
interpretalioa, namely those Ihat minimise Ihe changes from state to state (hence its hame 
which stands for MINImalised Fil~l Oizicr Logic). These minimally changing models 
are those whose state transitkms can be obtained as billows: first, the active components 
are changed within the limits of the action restriclions; after this, the reactive components 
may change, but only ['or the elements of their domain invalidating the reaction condition. 
In the example, running  will only chalrge for a project p if either Start (p ,d)  occurs 
while p is n<,J running, or End(p) occurs whiic p is running. 

In goner:d, however, the situation is slightly more complex than suggested by this 
simple example. Let us introduce a second reactive component, the function dept giving 
the department that is responsible ]'or a project : 

reactive 
dcpt(Projeet)  : Depar tment  

This depariment is the one ira which Ihc pn)jcct was started, or is none if the project is 
not running. The reaction conditions for dcpt are file following ones: 

reactien conditi(m 
dept : Start(p, d) ~ deptfp) = d 

-~running(p) ~ dept(p) = none 



226 

One obmrves III;.11 the reaction conditions of  dept mention the reactive predicate 
running, which induces a dependency between the two reactive components. There- 
fore, a state 'ransition generally consists in changes to the active components, followed 
by a reactioc chain during which Ihe reactive components are changed in sequence. If  a 
component .~, depends on another y, then ~. must be changed after y in the chain. The 
reactive corn ~onenls must Iherelbre Ix: ordered by Ihe specifier in the reactive section : 

readive 
m:~ming(Project) : Boolean 
dept(Projeet) : Department 

r~.nning -~ dept. 

In the conlext of  this ordering, the models of a MINI-I~OI, specification are,the temporal 
logic models whose stale transilions can be oblained as follows: 

active componcnls are I'i,~t changed within Ihe limits pemfitted by the action restric- 
lions; 

arter this, the reaclivc functions and predicales are considered in any order com- 
paliblc :vith their pataial ordefng; each of them is changed minimally to restore 
the ass Jciated reaction conditions; 'changed minimally' means that the value of  the 
funclicn or predicate is changed Ibr as l~w elements in its domain as possible. 

Section 3 fonnalises these semanlics. 

The ordc" .< may be pa~aial, because independent components need not be ordered. The 
following wc}l-fommdness rules ensure'thai Ihis o,'dering is consistent with its intended 

purlx)se. 

Firs t . . ,  must indeed dcIi,m a parlkil ordcr, i.e. its transitive closure may not contain 
any loop. 

If a componcnt c is conslraincd by a sialcmcnl ~, then ~ may only refer to another 
compo)lent e I if this component is ,dual'antced Io be updated before e. This is however 
not nc, essary if e ~ occurs within Ihe scope of � 9  iq which case no dependency is 
i nd uct;..~. 

This rule has the following ilnplications: 

- ~c,tctive componcnls may not occur in action restrictions, except in the scope 
o " O  ; 

- a reactive component ~ occurring in ii~e reaction condition of  a different com- 
pt,nent y must verify ;e -.r y {whe,'e q"  is the transitive closure of  -~), except 
if �9 occurs within the scope of �9 ; 

- i,~ any of  its reaclion conditions, a reactive predicate or function x must have 
its arguments bound to the same variables in all its occurrences not within the 
scope of �9 ; Ihis is IO avoid dependencies between Ihe values of  a predicate or 
Iilrlclion for different elements of its doluain. _ 
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In practice, these rules are easily obeyed, provided the dependencies between components 
are well idel;tified. 

Although it is not critical, il often simplifies Ihe specifications to assume that only one 
event occurs, or only one olhcr aclive comi~)ncnl changes from one state to the next. This 
property is tal~en into a c c o u n l  by the following implicit formula, required to hold in all 
but the initiai, state: 

n' -~r A A#=.,+t Vp# ~#(p#) = �9 ~#(p#)) 
v 

V~=n,+l (3 !pi r ~ II igi(pl) A A)'=.,+t,#~, Vp, z#(p#) = * ~#(p#) A A#"='t Vp# -~#(pj)) 

where '::t !' ~v.eans 'them exists exactly one', z I , . . . ,  z,,, are all active events and cn'+l , . .  � 9  r 
are the other active components, and where, Ibr i E {1, . . .  ,n},  Pi is a tuple of  variables 
on the domaiq of ~i. 

2.3 A L a r g e r  E x a m p l e  

In this sectioa, we give Ihe complele M INI-FOL specification of an extension of Ihe example 
used in the previous sections. 

The pl:,tmed infomaation system maintains information about projects running 
in dep~wtmenls and programmers assigned Io these projects. Projects can be 
started :n a department and ended; progJamme~ can be assigned to or removed 
from a project; deparm~cnts can receive the responsibility lo ra  project or lose 
it. 

The int0mmtion syslem mus! record which projects are running, which pro- 
gmmmer works for which project, which department is responsible for which 
projecl, and which programmer has ever worked for which department. 

It mus' prevent the ending of non running projects, the start of  a running 
projecl, and the removing of a programmer from a project to which he or she 
is not ,ssigned. 

The convsponding M I N I - F O L  specificalion is the following: 

active 

S~art(Project,  Department)  : Evem 
End(Projec t )  : Event  
A~sign(Prograrnmer,  Project)  : Event  
Remove(Programmer ,  P r o j c c t ) :  Event  

reactive 

r 'unning(Projeet)  : Boolean 
dcpt(Projeet)  : Department  
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assigned(Programmer, Project)  : Boolean 
has-worked(Programmer, Dcpt) : Boolean 

r,,.nning -~ assigned .< dept -~ has-worked 

initially 

-~.'unning(p) 
-~has-worked(pg , d) 

action restriction 

~;ad(p) ~ �9 running(p) 
Start(p, d) =r �9 -~running(p) 
Remove(pg, p) ~ �9 assigned(pg, p) 

reaction condition 

running : 

dept : 

a. signed : 

has-worked : 

Start(p, d) => running(p) 
End(p) =~ -~running(p) 

Start(p, d) :~ dept(p) = d 
-~running(p) ~ dept(p) = none 

Assign(pg, p) =~ assigned(pg,p) 
Remove(pg, p) =. -~assigned(pg, p) 
-~(-~running(p) ^ assigned(pg,p)) 

assigned(pg, p) A dept(p) = d ~ has-worked(pg, at) 

It can bc verified that the various fimnulas con)ply to the well-formedness conditions. 
In this case, :he declared ordering of reactive components is slightly stronger than needed, 
as assigned and dept are actually independent of each other. This strengthening does no 
hann. 

Notice tb;al the usual lemporal logic deductions are still valid, as all action restrictions 
and reaction condilkms hold in all states. In panicular, we can conclude from the initially 
section that no project is initially assigned m any department 

dept(p) = none 

and that no l,rogrammer is inilially assigned m any project 

-~assioned(pg , p). 

3 Formal semantics of MINI-FOL 

This section presents two equivalent Ibmml semanlics for MINI-FOI.,. The first one is 
constructive and specifies the elaboration of a model state by state. This semantics is 
probably the most inluitive. The other is a rewrite semantics, specifying the formulas 
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that must be added to a MINI-FOL spccification to reduce it to a classical temporal logic 
specificalior~ This clearly identifics the expressive power o f  MtNt-~'Or. and guarantees that 
it is amenable to deduction and theorem proving. The proof of  the equivalence o f  the two 
semantics is in appendix. 

3.1 T e m p o r a l  L o g i c  

MINI-FOL is an extension of  a linear temporal logic which is first defined in this section. 
Its models are right-infinite sequences of  states of  the Ibml S = (o'~ : m E N) .  As in f r s t  
order logic, a state is a valuation functio,~ fur variable, function and predicate symbols. 
The valuation of  variables is identical in all states of  a sequence. 

A fornlui,| holds in a model S if ils value is Irue wilh respect to every state o f  this 
model. The value of  the l 'omwla r with respect to the i th slate of  a model ,~ is noted 
' va l (~ , i , fb ) '  The value of a teml r is noted " v a l ( S , i , r ) ' .  The function val is defined 
recursively as follows (p, f ,  and ~e denote respcclively a predicate symbol,  a function 
symbol,  and a variable): 

val( S ,  i, ~ ) = tri( z ) 

va l (~ ,  i, f ( r l , . .  �9 rn)) = tri(f)(val( S ,  i, "r l ) , . . . ,  va l (S ,  i, r , ) )  

val( S ,  ;J, p(rl ,  . . . , r,~)) = cri(pXval(S, i, rl ),. �9 �9 va l (S ,  i, rn)) 

va l fL ,  i, --,~b) = true i11' 

va l (S ,  :, ~bl ^ ~ )  = true 

v a l ( S , i ,  Vz/p) = true ill' 

va l (S ,  i, ~) = false 

iff va l (S ,  i, ~t)  = true and val (~ ,  i, 4~2) = true 

v a l ( S  ~, i, ~b) = Irue for all S ~ differing from ,~ at mos t  
by Ihe vahJe assigned to z in all states 

va l (S ,  i, �9 r )  = il" i > 0 then va l (S ,  i- 1, r )  else va l (S ,  O, 7") 

va l (S ,  i, �9 ~)  = if i > 0 then va l (S ,  i- I, r else va l (S ,  O, ~)  

Additional operatoms (3, v)  can be defined in lemlS of  these. We also need the predefined 
predicale ini'.iallg which holds only in the li~l state of  a sequence. Its semantics is given 
by the Ibllowing properly:  

ai(init ' iallg) = true ilT i = O. 

3.2 C o n s l r u c l i v e  S e n m n l i c s  

Let S b c a  ra~:+t-PoL specification, where Ihc implicit formulas restricting the simultaneous 
changes have been added to the action restriction section (prefixed by '--, init iall l l  ~ ...') : 

active z I � 9  �9 a : n  

react ive U l . . .  u k  

i n i t i a l l y  I"  
action restr ict ion 

reacti(m condit ion ui : Vpl ~i(Pl) I I < i < k) 
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For each i E {1, . . .  lk}, pi is at t ,  ple of  variables on the domain of ul. We assume that 
the partial o~der hetween reaclive components is such that if ui -.< u/ then i < j .  The 
specification is well-formed, which implies Ihal 

�9 any ui in ~ is under the scope of �9 ; 

�9 any u:/ (j > i) and any ui(p~) (p~ ~ pi) in 6i(Pi) is under the scope of  o .  

The constructive semantics rcllecls Ihe following intuition. A model of  a specification 
is a sequence of states, where every next state is obtained in two steps. First some arbi- 
trarily choset: active components ate chaqgcd wilhout invalidating the action restrictions. 
Then, the re~ctive componenls are checked and uixtated if necessary, starting with the 
smallest one. 

Formally, a sequence of states (trl : i E N) is a model for the specification S if o'o 
satisfies 

k V F A  ~ A A I = I  Pi Oi(Pi) 

and if the following condilions hold for any two successive states tr and ~d : 

�9 there.i.,; an intemlediate state po which is obtained from tr by changing the values 
assigned to the active components in a way that preserves q~; 

�9 there is a sequence of  intemwxliate stales Pl . . . . .  Pk, where Pt, = tr', verifying the 
following properties : 

- p. (i > 0) difl~rs from Pi-] at most by the value assigned to ul; 

- consider the pi in the domain of  ul in any order; if the formula q/i(P/) evaluates 
to true in state Pi-t  t, then pi(tti(Pi)) = Pi-I( l t i (Pi)) ,  else Pi(~i(Pi)) is any value 
st~ch that ~i(pi) is true al slate Pi. 

This semantics may only hc called constructive if the domains of  all reactive com- 
ponents are finite. This restriction is quitc natural in the field of  information systems 

specification. 

To distin,guish cr and ~r' from the states Pi which do not bclong to the model of  the 
specification, we call thc fimncr ob.s'ervahle stales and the latter intermediate states. It is 
proven in aprcndix that all action restrictions and rcaction co,~ditions hold in all observable 
states. 

3.3 Rewrite Semanlics 

The purpose of these second semantics is to identify the fommlas that must be added to a 
MINZ-FOt, Sl):cification, to reduce it to a specification in the temporal logic of  Section 3.1. 
We will nee~ the following notation : 

1The cvaluahon is according to the rules of temporal logic as delined in Section 3.1, with pi-I considered 
the successor (.,f or. 



ff[g : c} means that each occurrence of ~/which is not under the scope of �9 in 
the formula ~li is replaced by c; fflgl : cl,y2 : c2] = (~[~/t : el])[b'2 : e2]. 

The initir,! state should satisfy the initially sectkm, the action restrictions, and the 
reaction conditions : 

initiall!l  ~ P A ~ A Aik=l Vpl ~i(Pi) 

In each ,thor slate, an aclive componcnl is t h o r n  and its value may be changed 
without inwl!idating the aclion restrictions. We Iherefore have: 

-~initzally ~ 

During the subsequenl reaction chain, all reaction conditions must be satisfied, and a 
reactive coml)onent ui should only change if its associated fommla is invalidated. 

-~initiallg ~ Aik=l Vpi ( f~ i (p i )A(~i (p l ) l l t i (p i )  : �9 ui(Pl)l =:" ui(,Pi) = �9 ui (Pi)) )  

, \  

We can simplify the~ fomlulas into the Ibur following ones: 

in i t iaUg ~ F 

Aik l  V'ffl KSi(,Pi) 
Aik=i VPi ( ~ i (Pi )[ui (Pi )  : �9 ui(pi)l -~" tti(Pi) = �9 ui(Pi))  

The reduction ofa  MIN]-FOL specification to tcmpond logic therefore consists in converting 
the initially section into its obvious counteq~an, in taking the aclion restrictions and reaction 
conditions, ;and in adding the fomwla 

Aik=l VSj~ ( ~i(Pi)[ l t i (Pi)  " �9 ui(Pi)l ~ ui(Pi) = �9 Iti(,Pi)) 

which expres.-~cs the minimisation of changes ill the reactive components. 

As an example, the Ibnnula Ihal corresponds to the predicate has -worked  is the 
following (Pl is (pg,d)  h)l" this predicate): 

Vpg Vd ~Vp (ass igned(pg ,p)  ^ dept(p) = d ~ �9 has-worked(pg ,  d)) 
has -wor  ked(pg , d) = �9 has-wor  ked(pg , d) ) 

4 Comparison 

This section ,l~es the example of Section 2.3 to highlight the differences between MINI-FOL 
and the operauonal approach, the purely declaralive one, and the deductive one. 
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4.1 The  Opera t iona l  Approach  

In an operati,)nal approach, external (active) happenings trigger routines which modify the 
internal (reac.ive) variables. For example, lhc rouline triggered by the event End(p) may 
be written as Ibllows: 

if run~iing(p) 
then running(p) := false 

d~:pt(p) := none 
foreach pg 
d(, assigned(pg,p) := false 

A first difference between Ihis specilicalion and the MINI-FOb one is that the routine 
associated to End musl consider all possible coq~quences of this event, be they direct 
(stopping a I,roject) or indirccl (selling Ihe Im)jecl deparlmenl to none and unassigning 
all programnlct~). In compa,ison, Ihe MINt-FOg approach cuts reaction chains into pieces 
handled by separate fommlas: one saying Ihal End(p) sets running(p) to false; another 
to say that a slopped project has none as del)anmcnl; etc. 

The need to consider all consequences al oqce reduces the readability of operational 
specification';: for example, Ihe condilk)ns under which assigned changes must be gath- 
ered from th.: roulines t,'iggered by the events End, Assign and Remove. The main- 
tainability is reduced as well: if the deli,filion o1" assigned changes, the operational 
specification must be adapled in all these places. These drawbacks are of course amplified 
when the siz,: of the specificatio,~ grows. 

Besides, 'J~e operational slyle suffers i'ronl ils inherent inability to directly state cru- 
cial properties like 'a projccl which is not running has no assigned programmer'. Such 
properties ca:, only be deduced from a careful analysis of the specification. 

Note that the advantages of MIr~I-FOL over the operational style are shared by the 
other non-opt;rational al)l)roachcs, i.e. Jlle declarative and deductive ones. 

4.2 The  l :ec lara t ive  Approach  

A purely decle.rativc spccificalion wrillen ill [iBl order or temporal logic contains the same 
fommlas as ,he MINI-FOg one, plus those required to explicitly circumvent the frame 
problem. These fommlas, which ,nust prevcnl the undesired change of reactive variables, 
could be the ;-)llowing ones: 

-~Star+(p, d) A -.End(p) ~ (running(p) ~ �9 running(p)) 
-~Starg(p, d) A (running(p) ~. �9 running(p)) ~ dept(p) = �9 dept(p) 
-~ Assi,jn(pg , p) A -1Remove(pg, p) A running(p) 

(assigned(pg, p) ~ �9 assigned(pg,p)) 
has-w ~.rked(pg, d) ~ (o has-worked(pg, d) v 3p (assigned(pg,p) ^ dept(p) = d)) 
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Each lbmmlv is devoted to a specific reactive component, and states that it may not change 
outside of Ihc conditions known to require a change. For example, the first fommla 
prevents any ,:hange of running, il' there is m) Start or End event. 

These formulas can be proven equivalcm It) those automatically generated by the 
rewrile semantics of MINI-FOL. Leaving these I'~mnulas implicit has several benefits. Of 
course, it rid.," the user of linditag them, which is oflen not too easy. It also reduces the total 
size of the .,,pecilication, which is always a win. Finally, it improves the maintainability 
of the specitication, i.e. its ability to be easily changc.d. Suppose we add the possibility to 
change the department responsible Ibr a project: 

active 
ChangeDept(Project ,  Department} : Event 

aclion restriction 
ChangeDept(p, d) ~ �9 running(p) 

reaction condition 
d,:pt : ChangeDept(p, d) ~ dcpt(p) = d 

It] the first-order logic al)Proacla, the mere ]d junction of the last formula simply prevents 
any Change Oept to occur, becatlsc this would contradict the second frame formula above, 
nan]ely : 

-~Starr d) A (running(p) ~ �9 runaing('p)} ~ dept(p) = �9 dept(p). 

This axiom r,:ust also l~ changed, and replaced by: 

-~Start(p, d) A. "~C hangeDept(p, d) A (running(p) r �9 running(p)) 
dept(p) = �9 dept(p) 

The need to ~.hange the fi'ame axioms makes any modification more delicate, especially if 
the specilicahon is large. 

4.3 The Deductive Approach 

The dcductiv;-, approach IOli89] is a variant of the declarative approach. Extemal events 
are modelled by adding or removing hase predicales, corresponding to the MINX-FOL 
active predicates. Active functions have no counleq)arl. These changes are constrained by 
integrity con:;traints, similar Io the MINi-}'OL action restrictions. Infomlation that must be 
maintained by the info,lnation system is rcpresemed by derived predicates, corresponding 
to Ihe MtNI-P,)I, reactive prcdicales. Rcaclive fimclions have no counterpart. 

The mait~ difference is it] Ihc expression of reaclion conditions which are called de- 
duction rules in the dedt,clive approach. There is m) assumption that reactive components 
change minimally; there is another assumplio,], sometimes called the closed worm as- 
sumption, implying thai the predicales arc false in all states where they are not said to be 
true. For example, the derived predicate as~igned(pg, p) can be specified by the following 
deduclion ruk:s (notations in IO1i891 arc adapted to temporal logic): 
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As~ign(p9, p) ~ assigned(pg, p) 
runni','t9(p) A ~ Remove(pg , p) ^ tt as~iyned(pg, p) :~ assigned(pg, p). 

The closed world assumplion implicilly adds 

assigr,ed(pg, p) ~ A,~sign(pg, p) 
v (running(p)  ^ -~ Remove(pg,p) h It assigned@g, p)) 

The deductive approach allows some saving in writing, compared to the declarative 
approach, but it does not help avoiding the frame problem : a specifier still has to specify 
when a prcdicale does nol change, as in the second formula above. As a consequence, a 
MINI-?Ob slz",cification is usually easier to write, more compaci and more readable than a 
deductive Sl~:.cification. 

Besides, !he deductive approach dtres nol allow Ihe use of functions and restricts the 
forms of rule,:, to ensure Iheir eMcienl automalic itllerprelation. This limited form may 
obscure siml:le properties, or require It inlroduce intcrmediale predicates. 

5 Conclusion 

A declarative (logic-based) specilication has adva,ltages over an operational (assignment- 
based) one, ;n lenns of modularily and expressiveness. The fomler suffers, however, 
from a draw: ack known as tile frame I~robh'.m, i.e. the need to explicitly state what may 
not change in addition to saying whal n|usl change. Actually, each approach is best 
suited to specify part of Ihe dynamics of infonnalion systems. The declarative approach 
assumes that all changes are i,~)ssiblc, r those explicitly excluded. This is optimal 
for specifying the events which are exlemal to the infomlation system, and constitute its 
input. The o~crational approach assumes that no change is allowed, except the explicitly 
required onc:r This avoids Ihc frame problem and is optimal for specifying the reactions 
of the infont~ation system. 

We have proposed a technique Ihat reconciles the two approaches. It extends the 
declarative approach by dislinguishing Iwo kinds of application-dependent functions and 
predicates, Ib,: active and reac!ive ones. The Ibrmer are treated in the classical declarative 
style; they may change freely, except if constrained by fomlulas called action restrictions. 
The reactive functions and predicales may not change, except if forced to do so to maintain 
the truth of e, ssociated formulas called reaction conditions. This technique is illustrated 
in a simple language called MINt-POL, which has been given fomml semantics. The 
specification of a simple case study allows to compare this approach with the operational 
one, the purciy declarative one, and a variant called Ihe deductive approach. 

We are cv.rrenlly working on several extensions of MII~II-POL. The first one consists in 
suppressing the requirement to orde," rcaclive components. This not only frees the specifier 
fi'om some work, but also allows It Ireal Ihe special cases where these components cannot 
be ordered, be.cause of mulual dependencies. The second extension in sight is the inclusion 
of more tem i ~ral operators Ih.'|n just � 9  lntrtxh, cing other temporal operators referring to 
the past is ah~lost straightforward. More delicale is Ihe introduction of temporal operators 
referring to the future, like o ,  ~ ,  or ra. 
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Appendi,: : Equivalence of rewrite and constructive semantics 

Let S be thc MINI-FOL spccilicalion of Scclion 3. Let ,~ = (o-,,~ : m E N) be a temporal 
logic model. For practical reasons, we u ~  the following notation to denote the truth of a 
formula T in .S wilh respect Io the 111, th  slale: 

,~, m ~-- T. 

This notation is equivalent Io 'val(S, m, T) is true'. 

T h e o r e m  

Each construe:live model of S corl'csponds It) a teluporal logic model of the specification 
obtained frond S by Ihe rewrite semanlics. 
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Proof  : Let S = (o-~ : m E N)  be a conslruclive inodel o f  5'. 

1. By definition of  a conslruclive model. WE have 

and hence Ihe following formula is true in S :  

initially =r r '  A ~ A Ai~I Vpi flii(Pi). 

2. We have to prove S ,  m ~ ~,  for any m > 0. 

By del 'nition of  a conslruclive model, there exists a slate po obtained from o'~_t by 
changi.:g only the values assigned It) active coml~onenls, and such that po satisfies 
(according to the rules of  ICnlporal logic as given ill Secton 3.1, with Po considered 
tile successor of  o'm_ I ). 

Since 'he values assigned Io ~: l , . . .  ,z , ,  ill am are the same as in P0 and since none 
of  u t ,  . . ,u t ,  occurs outside Ihe scope of  * ill if', ~ cannot be invalidated by the 
subsequent changes of  reaclive components.  Hence, ~ ,  m ~= ~'. 

3. We prove that, for ally m > 0, for any i (1 < i < k), 

ft,.', m ~ Vpi (~i(Pi)  A (~i(Pi)l l t i (Pi)  : �9 ui(Pi)] ::8, ui(Pi) = �9 Ui(,Pi))). 

By delmition of  a constructive model, Ihere exists a sequence of  states ( p t , . . . , , o k )  
such Ihat Pi differs from Pi-I at nlost ill the value assigned to ul, and such that 
O'm = Pk. 

As a consequence, Ibr any i (1 < i < k). 

pi(ug) = rf,,,(ug) 1 < g < i (1) 
pi(ug)= o' , . - i (u  a) i +  1 _< g <  k 

and hence, if pi salisfies T, Ihen 

S , m  ~ Tlui+l : �9 u i + l , . . . , u k  : �9 ukl. (2) 

Let pi I)e in tile domain of  ul. According to tile constructive semantics, the value 
of  ui(pl) in state Pi is obtained dil'l~rEnlly, depending the case : 

(a) hi the first case. ~i(Pi) is satisfied ill Pi-I. By the definition o f  a constructive 
n,,)del, we then have pi(Ui(Pi )) = Pi-I (ui (pi ) ) ,  and, hence, 

~i(Pi)lui(pi) : �9 ui(Pi)] =~ ui(pl) = �9 ui(pi)) 

holds trivially in Pi. From (i1. and since ui(p~) (p~ ~ Pi) occurs only under 
the SCOlX~ of  �9 in ~'i(Pi), 4,(pi) cannot he invalidated by changes to ui(~)  
{,i F.: ~ Pi), hence ~i(pi)  holds in Pl. 
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(b) in the second case. p i - I  does not satisfy ~i(Pi). Then, since ui(p~) (p~ ~ Pi) 
occurs only tinder Ihe scope of �9 in kbi(Pi ), Pi docs not satisfy f~i(pi)[ui(pi) : 
�9 ui(pl)], and, hence, 

~i(pi)[ui(pi) : �9 ui(pi)] :=~ ui(Pi) = �9 ui(Pi) 

h.dds in Pi. Moreover, ~i(Pi) holds in Pi by delinition in a constructive model. 

Hence, lbr any pi, 

ffi(.Pl) A (f~i(pi)Jui(pi) : �9 ui(Pl)l ~ ui(Pi) = �9 ui(Pi)) 

holds irt Pi. By (2), and since ui+l , . . . ,  uk occur only under the scope of  �9 in ~i([Pi), 
it foll(~ws that 

~ , m  ~ Vpi ( #i(Pl) A ( #i(pi)lui(pi) : �9 ui(pi)l ~ ui(pi) = �9 ui(pi))). 

T h e o r e m  

Each temporal logic model of  Ihe specilicalk)ll obtained I'rom the specification S by the 
rewrite semamics is a conslruclive model of  S. 

P roof  : Let 2 = (a,~ : m E N)  b c a  tclnporal logic model for the specification obtained 
from S by the rewrite semanlics. 

�9 As we i;ave ' in i t ia l ly  ~ F A ~' A Ai~l Vpi fbi(pi)', it is clear that 

S,  0 ~ 1" A ~ A Aik=l Vpi (~i(Pi). 

. We prcve that h~," each m > 0, a,,, can be oblained fi'om a ,~ - I  as described in the 
cons t r r t ,  t ive selnal l l  i ts .  

Wc have to find a slate p~ which can be obtained fronl a m - I  by changing only 
tl,c values assigned m active components,  and such that P0 satisfies ~ .  

L,.,t P0 be obtained from a ... .  I by selling ~i tO O'm(;ei) for 1 < i < n. Since 
~ ' , rn  ~ $ and since ut . . . .  ,uk occur only under the scope o f  * in $ ,  it 
fclh)ws that po salislics q'. 

~ e  have to find a sequence of  states ( p t , . . . ,  Pk) with the properties mentioned 
in the conslruclivc semantics. 

Let (pl . . . . .  p~.) be Ihe sl;.llCs such Ihal Pl is obtained from Pi-I by setting the 
v'l!ue of  u i Io am(ui).  In olher words, for 1 < i < k, 

pi(ltg) = O'm(Ug) Ibr 1 < g < i 
pi(ug) = a, , ,_l(ug) for i + 1  < 9 < k (3) 

Note that it follows that Pk = a , , .  

We prove that pi can be obtained from Pi-1 as described in the constructive 
s, mlanlics. Le! pl be in Ihe domain of ul. 
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(a) Suppose 4'i(pi) is salislicd in p l - I .  Then, since ui(p~) (p~ ~ Pi) occurs 

only under tile scope of  �9 in ~i(Pi), ~,  m ~ ~i(Pi)[ui(Pi) : �9 Ui(Pi)] 
and hence, ~~ ...,, I1~ ~ It, i(pi) = �9 lti(pi). 
Conscqucnlly, a,n (ui(pi }) = o',,_ I (ui (Pi)) and, by (3), pi(ui(.Pi)) = Pi- l (ui(pl)). 

!1:~) Suppose ~i(pi) is nol salislied in pi - l .  Since $ , m  ~ ~i(Pi) and since 
Ui+l, . . .  ,uk occur only under Ihr scope of  �9 in #(Pi), by (3), it follows 

that ~i(Pi) is salislicd in #i. 


