
A Toolset for Message Sequence Charts

Doron A. Peled

Bell Laboratories
700 Mountain Ave.

Murray Hill, NJ 07974, USA
email: doron @research. bell-la bs.com

A b s t r a c t . Message Sequence Charts (MSCs) are a popular graphical
notation for describing communication protocols. MSCs enjoy an inter-
national standard (ITU-Z120) and a growing number of tools include an
MSC interface for either displaying simulation or verification results, or
testing the inclusion of a particular scenario in the design. We describe
here a toolset that was developed to help designing a system using the
MSC notation. The toolset allows creating an MSC description of a de-
sign for communication systems, and performing some verification tasks
on the design.

The MSC notation is becoming a popular notation for describing communication
protocols. It enjoys an international standard called ITU-Z120 [4]. MSCs are
among the standard description techniques used for designing communication
systems [2], and a growing number of tools include an MSC interface [8].

Each MSC describes a scenario where some processes communicate with each
other. Such a scenario includes a description of the messages sent and received
and the ordering between them. Each process is represented by a vertical line,
while a message is represented by a horizontal or slanted arrow from the sending
process to the receiving one (see Figure 1). Since a communication system usually
includes many such protocols, a high level description allows combining MSC
scenarios together. This description consists of a graph, where each node contains
one MSC. Each path in this graph, starting from a designated initial state,
corresponds to a single scenario.

In this paper, we describe a toolset that allows performing the early design of
a communication system using the notation of message sequence charts. These
tools allow applying simple verification tasks to the MSC design. Since the early
design is quite abstract, often avoiding detailed information such as the value
of particular process variables, the need for further verification at later stages is
not eliminated. However, finding design errors early in the development process
is very cost-effective and is rather efficient.

The first tool, called Msc [1], supports representing message sequence charts.
It allows both a graphical description of the MSCs, and its standard textual
representation [4]. Thus, an MSC can be obtained by either drawing it using the
graphical interface, or by typing it in its s tandard syntax. This approach has the

533

I P1 I I P2 I

[

MI

ld5

m

r

M2

., M4

i f i

I P3

1

m l

Fig. 1. A Message Sequence Chart

advantage that the graphical representation of an MSC is related to some formal
representation. We assign to each MSC its semantics denotat ion as a part ial ly
ordered set of send and a receive event.

The semantics of an MSC depends on some architectural parameters; it can
differ between architectures with fifo or non-fifo queues, or between architec-
tures with one or multiple incoming message queue. This results in a slightly
different behavior under each such choice. In our implementat ion, the user is
required to select the desired semantics (using a choice menu), and the analysis
is done according to this selection. Under fifo with one input queue semantics,
the following pairs of events are ordered:

534

- A send p and its corresponding receive q.
- Two sends p, q of the same process, where p appears above q on the process

line.
- A receive p and a send q of the same process, where p appears above q on

the process line.
- Two receives p, q of the same process corresponding to sends from some

mutual process, where the send corresponding to p appears above the send
corresponding to q.

Notice tha t in general, two receives p and q of the same process of messages
corresponding to sends from different processes, are not ordered. Similarly, a
send p tha t appears above a receive q in the same process line is unordered with
q.

We apply some simple verification algori thms to MSCs. One such check is
whether the MSCs contain race conditions. A race condition can result in from
the fact that in most cases, t ime progresses within each MSC process line down-
wards; however, this is not always the case, due to some limited control we have
over concurrently executed events. For example, the MSC in Figure 1 contains
two receive events of process P1 (of messages M5 and M6). Since each process
line is one dimensional, the MSC notat ion forces choosing one of the receive
events to appear above the other. However, these two messages were sent from
different processes, P2 and P3, and the chart imposes no order between these
sending events. Thus, there is no reason to believe that these messages would
indeed arrive in the particular order depicted using the MSC. In Figure 1, the
lines corresponding to the two messages in tha t race appear emphasized. This is
a result of applying the race detection algorithm.

Finding races is done as follows [1]: we translate the MSC syntax into its
semantical representation as a part ial ly ordered set of events. We calculate the
transitive closure F of this order using the Floyed-Warshall algori thm [9]. An-
other order that is constructed from the syntax of the MSC is the visual order
<. This includes pairs of events p < q, where p is a send and q is a receive, or p
appears above q on a process line. Then a race is reported for each pair of events
where p < q but it is not the case tha t p v" q. In our example, the two receive
events p, q of messages M5 and M6, we have p < q, since p appears above q on
process P1 line. But it does not hold that p f- q.

In a similar way, the tool allows checking for t ime inconsistencies. One can
assign lower and upper t ime limits to intervals between send and receive events.
The consistency between these t iming constraints are checked and inconsistencies
are reported [l].

The MSC standard allows combining simple MSCs using hierarchical message
sequence charts. These are graphs, where each node is a single MSC. Each pa th
of this graph, s tar t ing from some designated initial state, corresponds to a simple
concatenation of the MSCs that appear on it. The POGA tool [3] allows to design
hierarchical MSCs. With this capability, one can describe a large or even infinite

535

set of scenarios, each one of them can be finite or infinite (due to loops in the
hierarchical graph). The tools Msc and POGA together allow for the creation,
debugging, organization, and maintenance of systems of message sequence charts.

The tool TEMPLE [6, 7] adds the ability of searching a hierarchical MSC
design for a paths that match a given specification. The specification is also
written as an MSC or a hierarchical, using the Msc or Poga tools. The specifica-
tion MSC is called a template and denotes a set of events (sending and receiving
of messages) and their relative order. A specification matches any scenario that
contains at least those events that appear in the template, while preserving the
order between them. The matching path of the design can have additional events
besides the ones appearing in the template. At the conclusion of the search, TEM-
PLE either provides a matching scenario, or the fact that no matching scenario
exists in the checked hierarchical graph.

The use of template matching allows one to mechanize such searches. The
match can be used for determining whether MSCs with unwanted properties
exist in the design. Another use is for determining whether a required feature is
already included in the design or remains to be added.

An example of a template and a matching MSC scenario appears in Figure 2.
In both charts, there are three processes, P1, P2 and P3. The result of this match
is that s2 is paired with ~1, r2 with Pl, sl with or3, and rl with P3.

The user interface for Msc and POGA was written in T C L / T k , and the al-
gorithms were implemented in the language C. The implementation of the tem-
plate matching was done by translating the hierarchical graph and the template
into two COSPAN [5] processes (COSPAN is an automata-based model-checking
tool). A third process represents some collected matching information. Then, the
au tomata intersection is performed. If the intersection is not empty, the resulting
counter example is translated back into an MSC and displayed. A new imple-
mentat ion was recently written directly in the language SML.

cr 4

Template

Pl '
(T2

' P3

P

MSC scenario

(71

P4
m

Fig. 2. A template and a matching scenario

536

Acknowledgements

The tools described in this short paper are a result of collaborations with Rajeev
Alur, Brian Kernighan, Gerard Holzmann, Bob Kurshan, Vladimir Levin, Anca
Muscholl and Zhendong Su.

References

1. R. Alur, G.J. Holzmann, D. Peled. An Analyzer for Message Sequence Charts.
Software Concepts and Tools, Vol. 17, No. 2, pp. 70-77, 1996.

2. A. Ek, J. Grabowski, D. Hogrefer, R. Jerome, B. Kosh, M. Schmitt, SDL'97, Time
for testing: SDL, MSC and Trends, Proceedings of the 8th DSL Forum, Elsevier,
France, 23-26, 1997.

3. G.J. Holzmann, Early Fault Detection Tools, Software Concepts and Tools, Vol.
17, No. 2, pp. 63-69, 1996.

4. ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March 1993.
5. R.P. Kurshan, Computer-Aided Verification, Princeton University Press, 1994.
6. V. Levin, D. Peled. Verification of Message Sequence Charts via Template Match-

ing, TAPSOFT (FASE)'97, Theory and Practice of Software Development, Lille,
France. Lecture Notes in Computer Science. Springer, 1997.

7. A. Muscholl, D. Peled, Z. Su, Deciding Properties for Message Sequence Charts,
FoSSaCS, Foundations of Software Science and Computation Structures, Lisbon,
Portugal.

8. B. Sefic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented Modeling, Wiley,
1994.

9. S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9 (1962), pp.
11-12.

