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A b s t r a c t .  Message Sequence Charts (MSCs) are a popular graphical 
notation for describing communication protocols. MSCs enjoy an inter- 
national standard (ITU-Z120) and a growing number of tools include an 
MSC interface for either displaying simulation or verification results, or 
testing the inclusion of a particular scenario in the design. We describe 
here a toolset that was developed to help designing a system using the 
MSC notation. The toolset allows creating an MSC description of a de- 
sign for communication systems, and performing some verification tasks 
on the design. 

The MSC notation is becoming a popular notation for describing communication 
protocols. It enjoys an international standard called ITU-Z120 [4]. MSCs are 
among the standard description techniques used for designing communication 
systems [2], and a growing number of tools include an MSC interface [8]. 

Each MSC describes a scenario where some processes communicate with each 
other. Such a scenario includes a description of the messages sent and received 
and the ordering between them. Each process is represented by a vertical line, 
while a message is represented by a horizontal or slanted arrow from the sending 
process to the receiving one (see Figure 1). Since a communication system usually 
includes many such protocols, a high level description allows combining MSC 
scenarios together. This description consists of a graph, where each node contains 
one MSC. Each path in this graph, starting from a designated initial state, 
corresponds to a single scenario. 

In this paper, we describe a toolset that  allows performing the early design of 
a communication system using the notation of message sequence charts. These 
tools allow applying simple verification tasks to the MSC design. Since the early 
design is quite abstract, often avoiding detailed information such as the value 
of particular process variables, the need for further verification at later stages is 
not eliminated. However, finding design errors early in the development process 
is very cost-effective and is rather efficient. 

The first tool, called Msc  [1], supports representing message sequence charts. 
It allows both a graphical description of the MSCs, and its standard textual 
representation [4]. Thus, an MSC can be obtained by either drawing it using the 
graphical interface, or by typing it in its s tandard syntax. This approach has the 
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Fig. 1. A Message Sequence Chart 

advantage that  the graphical representation of an MSC is related to some formal  
representation. We assign to each MSC its semantics denotat ion as a part ial ly 
ordered set of send and a receive event. 

The  semantics of  an MSC depends on some architectural parameters;  it can 
differ between architectures with fifo or non-fifo queues, or between architec- 
tures with one or multiple incoming message queue. This results in a slightly 
different behavior under each such choice. In our implementat ion,  the user is 
required to select the desired semantics (using a choice menu),  and the analysis 
is done according to this selection. Under fifo with one input queue semantics, 
the following pairs of events are ordered: 
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- A send p and its corresponding receive q. 
- Two sends p, q of the same process, where p appears  above q on the process 

line. 
- A receive p and a send q of the same process, where p appears  above q on 

the process line. 
- Two receives p, q of the same process corresponding to sends from some 

mutual  process, where the send corresponding to p appears  above the send 
corresponding to q. 

Notice tha t  in general, two receives p and q of the same process of messages 
corresponding to sends from different processes, are not ordered. Similarly, a 
send p tha t  appears  above a receive q in the same process line is unordered with 
q. 

We apply some simple verification algori thms to MSCs. One such check is 
whether the MSCs contain race conditions. A race condition can result in from 
the fact that  in most  cases, t ime progresses within each MSC process line down- 
wards; however, this is not always the case, due to some limited control we have 
over concurrently executed events. For example,  the MSC in Figure 1 contains 
two receive events of process P1 (of messages M5 and M6).  Since each process 
line is one dimensional, the MSC notat ion forces choosing one of the receive 
events to appear  above the other. However, these two messages were sent from 
different processes, P2  and P3,  and the chart imposes no order between these 
sending events. Thus, there is no reason to believe that  these messages would 
indeed arrive in the particular order depicted using the MSC. In Figure 1, the 
lines corresponding to the two messages in tha t  race appear  emphasized. This is 
a result of applying the race detection algorithm. 

Finding races is done as follows [1]: we translate the MSC syntax into its 
semantical representation as a part ial ly ordered set of events. We calculate the 
transitive closure F of this order using the Floyed-Warshall algori thm [9]. An- 
other order that  is constructed from the syntax of the MSC is the visual order 
<. This includes pairs of events p < q, where p is a send and q is a receive, or p 
appears  above q on a process line. Then a race is reported for each pair of events 
where p < q but  it is not the case tha t  p v" q. In our example,  the two receive 
events p, q of messages M5 and M6, we have p < q, since p appears  above q on 
process P1 line. But it does not hold that  p f- q. 

In a similar way, the tool allows checking for t ime inconsistencies. One can 
assign lower and upper t ime limits to intervals between send and receive events. 
The consistency between these t iming constraints are checked and inconsistencies 
are reported [l]. 

The  MSC standard allows combining simple MSCs using hierarchical message 
sequence charts. These are graphs, where each node is a single MSC. Each pa th  
of this graph, s tar t ing from some designated initial state, corresponds to a simple 
concatenation of the MSCs that  appear  on it. The POGA tool [3] allows to design 
hierarchical MSCs. With  this capability, one can describe a large or even infinite 
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set of scenarios, each one of them can be finite or infinite (due to loops in the 
hierarchical graph). The tools Msc  and POGA together allow for the creation, 
debugging, organization, and maintenance of systems of message sequence charts. 

The tool TEMPLE [6, 7] adds the ability of searching a hierarchical MSC 
design for a paths that  match a given specification. The specification is also 
written as an MSC or a hierarchical, using the Msc  or Poga tools. The specifica- 
tion MSC is called a template and denotes a set of events (sending and receiving 
of messages) and their relative order. A specification matches any scenario that  
contains at least those events that  appear in the template, while preserving the 
order between them. The matching path of the design can have additional events 
besides the ones appearing in the template. At the conclusion of the search, TEM- 
PLE either provides a matching scenario, or the fact that  no matching scenario 
exists in the checked hierarchical graph. 

The use of template matching allows one to mechanize such searches. The 
match can be used for determining whether MSCs with unwanted properties 
exist in the design. Another use is for determining whether a required feature is 
already included in the design or remains to be added. 

An example of a template and a matching MSC scenario appears in Figure 2. 
In both charts, there are three processes, P1, P2 and P3. The result of this match 
is that  s2 is paired with ~1, r2 with Pl, sl with or3, and rl  with P3. 

The user interface for Msc and POGA was written in T C L / T k ,  and the al- 
gorithms were implemented in the language C. The implementation of the tem- 
plate matching was done by translating the hierarchical graph and the template 
into two COSPAN [5] processes (COSPAN is an automata-based model-checking 
tool). A third process represents some collected matching information. Then, the 
au tomata  intersection is performed. If the intersection is not empty, the resulting 
counter example is translated back into an MSC and displayed. A new imple- 
mentat ion was recently written directly in the language SML. 
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Fig. 2. A template and a matching scenario 
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