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Industrial applications of formal techniques may be divided roughly in two 
types: 

- C o n s u l t a n t  Se rv i ce .  A formal method team inside or outside the company 
acts as a consultant to the engineering group responsible for the design. This 
is the most common type of application of formal methods in industry found 
in the literature and to a certain extent it is usual at Siemens. 

- R e a d y  to u se  tools .  The formal method group only p r o v i d e s  tools, training 
and support, while the design or verification task itself is planned and realized 
by the group of engineers responsible for the design. They use the formal 
method tools increasingly as a routine part of their development process, in 
very the same way as they use editors, compilers, simulation tools or data 
bases. This is turning to be the most common situation within Siemens, with 
about two thirds of the formal methods group dedicated to the development 
of tools and interfaces to the different design languages and to the established 
development tools in the application domains. 

The formal methods group has successfully developed the tools CVE (Circuit 
Verification Environment) and SVE (System Verification Environment), which 
are used within the business divisions of Siemens as ready  to u se  tools.  They 
provide interfaces to quite a few languages, in particular to SDL (used at the 
divisions public networks, private networks, and others), HiGraph and AWL 
(both used in particular at the automation divisions), and hardware description 
languages such as VHDL, Verilog or EDIF. Existing programs (not: abstract ver- 
sions of them) are used directly as input to application specific compilers that 
generate automatically finite state machine representations. The specified prop- 
erties and assumptions about the environment (physical process, other system 
components) are formulated in customised, user-friendly specification languages 
and are translated internally into temporal logic and/or finite state machines. 
The model checking algorithms verify whether the given properties hold or, if 
not, generate a counter example trace. This counter example is transformed to 
a trace at the application level and presented to the user in their usual envi- 
ronment. For instance, in HiGraph (a new programming tool for the Siemens 
Automation Systems Simatic), the user can animate the counter example se- 
quence in a graphical debugging environment or view it in a textual form. 

Let us briefly look at concrete application examples and present some fig- 
ures. The tools (see [8]) have been applied for instance to programs developed 
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by Siemens customers controlling components in several production lines, for ex- 
ample drilling stations for the production of automobile engines. These HiGraph 
program sizes range between 1000 and 3000 LOCs and contain several hundred 
boolean variables. Also we would like to mention the verification of protocol 
software in mobile phones produced by Siemens (see [12]). Each mobile phone 
contains an implementation of the highly complex GSM protocol. Typically, the 
number of reachable states of the models generated range between 107 and 1013 . 
Other examples include ISDN Protocols (network signaling for public switching 
networks or call processing for the private branch exchange HICOM), of 600 
pages and 110 kLOCs of SDL Code, respectivelyl Applications in HW design 
include the areas of consumer electronics, industrial automation, telecommuni- 
cation, and multiprocessor systems. There, ASICS with up to a million gates are 
routinely automatically compared. 

The rest of the formal methods team is on the one hand acting as a consul- 
tant group within the corporation and, on the other hand, developing tools that, 
we hope, will be eventually used by the business divisions on their own. Their ac- 
tivities center around DES (supervising control of discrete event system, [2, 11]), 
synchronous languages (in particular SCSL, synchronous control specification 
language, a new language closely related to TLT [5], [6] and CSL [9]), abstract 
state machines (formerly evolving algebras, see [1]), and theorem proving, see [13] 
and [3, 4]. This last activity is being currently reduced, due mostly to the poor 
acceptance of the methods by the engineers. The DES Tools could be used by 
the engineers to synthesise controllers for automation systems, or to check their 
consistency (for instance, the "non-blocking" property). Synchronous Languages 
([7]) are very interesting because they provide a higher abstraction level that in 
general is easier to verify than a conventional, sequential solution. There are quite 
efficient compilation techniques for synchronous languages. Within the ESPRIT 
project SACRES ([10]), we are applying the SVE model checker to synchronous 
programming languages such as SIGNAL and Statemate, and supporting sev- 
eral industrial case studies in the aerospace and automotive industries. ASMs 
are currently successfully used for the documenta t ion  of the design process. 

Formal Methods for the design or verification of HW or SW systems is an 
emerging technique in industry. As with any other new methodology, the decision 
to use it is driven by considerations of benefits, costs, efficiency and risks: for 
instance, 

- Are  the benefits o f  the new methodology clear to managers  and engineers ? For 
most formal methods the answer is yes. Indeed, the benefits of using formal 
methods to validate/verify the correctness of the product are easy to explain: 
Existing software products may fail and the costs due to their malfunctioning 
is high. Formal methods have demonstrated success in specifying, designing 
and verifying industrial systems. 

- Do the benefits o f  the new  method exceed the costs o f  convert ing to i t? This is 
somewhat difficult to determine. If the new method implies a drastic change 
in the established design flow, the costs will probably be high or unpre- 
dictable. For instance, a design or verification methodology based on estab- 
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lishing a sequence of design descriptions at different abstract ion levels, linked 
together  by a formal refinement notion, is found to be difficult. This is even 
true in the case of a finite-state setting with Model Checking and worse for 
the theorem-proving approach. The  si tuation is tha t  high level descriptions 
are not used further in the current design flow. The construction and main- 
tenance of the consistency mapping  of abs t rac t  descriptions with the actual  
system is a not trivial task, poorly supported with tools and costly in t ime 
and effort. 

- Can you estimate the risks? For most  formal methods,  tha t  require a change 
in the design process: the answer is no. 

In order for a formal method to be used in a given, typical industrial envi- 
ronment,  the following criteria should be met: 

- the method must  handle examples of industrial size, at reasonably low levels 
of abstraction,  

- the costs in terms of effort, t ime, etc. should be less or comparable  to the 
ones in the existing design process, 

- the method should be accepted by engineers who do not have a strong back- 
ground in logic, and 

- the technique must  be easily integrated into the existing design flow. 

Most of these criteria favour the Model Checking approach. 
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