
F o r m a l M e t h o d s in an I n d u s t r i a l E n v i r o n m e n t

Jorge R. Cu611ar

Siemens AG
Corporate Technology ZT SE 4

Otto-Hahn-Ring 6
D-81739 Munich, Germany

Jorge. Cuellar~nchp. siemens, de

Industrial applications of formal techniques may be divided roughly in two
types:

- C o n s u l t a n t Se rv i ce . A formal method team inside or outside the company
acts as a consultant to the engineering group responsible for the design. This
is the most common type of application of formal methods in industry found
in the literature and to a certain extent it is usual at Siemens.

- R e a d y to u se tools . The formal method group only p r o v i d e s tools, training
and support, while the design or verification task itself is planned and realized
by the group of engineers responsible for the design. They use the formal
method tools increasingly as a routine part of their development process, in
very the same way as they use editors, compilers, simulation tools or data
bases. This is turning to be the most common situation within Siemens, with
about two thirds of the formal methods group dedicated to the development
of tools and interfaces to the different design languages and to the established
development tools in the application domains.

The formal methods group has successfully developed the tools CVE (Circuit
Verification Environment) and SVE (System Verification Environment), which
are used within the business divisions of Siemens as ready to u se tools. They
provide interfaces to quite a few languages, in particular to SDL (used at the
divisions public networks, private networks, and others), HiGraph and AWL
(both used in particular at the automation divisions), and hardware description
languages such as VHDL, Verilog or EDIF. Existing programs (not: abstract ver-
sions of them) are used directly as input to application specific compilers that
generate automatically finite state machine representations. The specified prop-
erties and assumptions about the environment (physical process, other system
components) are formulated in customised, user-friendly specification languages
and are translated internally into temporal logic and/or finite state machines.
The model checking algorithms verify whether the given properties hold or, if
not, generate a counter example trace. This counter example is transformed to
a trace at the application level and presented to the user in their usual envi-
ronment. For instance, in HiGraph (a new programming tool for the Siemens
Automation Systems Simatic), the user can animate the counter example se-
quence in a graphical debugging environment or view it in a textual form.

Let us briefly look at concrete application examples and present some fig-
ures. The tools (see [8]) have been applied for instance to programs developed

58

by Siemens customers controlling components in several production lines, for ex-
ample drilling stations for the production of automobile engines. These HiGraph
program sizes range between 1000 and 3000 LOCs and contain several hundred
boolean variables. Also we would like to mention the verification of protocol
software in mobile phones produced by Siemens (see [12]). Each mobile phone
contains an implementation of the highly complex GSM protocol. Typically, the
number of reachable states of the models generated range between 107 and 1013 .
Other examples include ISDN Protocols (network signaling for public switching
networks or call processing for the private branch exchange HICOM), of 600
pages and 110 kLOCs of SDL Code, respectivelyl Applications in HW design
include the areas of consumer electronics, industrial automation, telecommuni-
cation, and multiprocessor systems. There, ASICS with up to a million gates are
routinely automatically compared.

The rest of the formal methods team is on the one hand acting as a consul-
tant group within the corporation and, on the other hand, developing tools that,
we hope, will be eventually used by the business divisions on their own. Their ac-
tivities center around DES (supervising control of discrete event system, [2, 11]),
synchronous languages (in particular SCSL, synchronous control specification
language, a new language closely related to TLT [5], [6] and CSL [9]), abstract
state machines (formerly evolving algebras, see [1]), and theorem proving, see [13]
and [3, 4]. This last activity is being currently reduced, due mostly to the poor
acceptance of the methods by the engineers. The DES Tools could be used by
the engineers to synthesise controllers for automation systems, or to check their
consistency (for instance, the "non-blocking" property). Synchronous Languages
([7]) are very interesting because they provide a higher abstraction level that in
general is easier to verify than a conventional, sequential solution. There are quite
efficient compilation techniques for synchronous languages. Within the ESPRIT
project SACRES ([10]), we are applying the SVE model checker to synchronous
programming languages such as SIGNAL and Statemate, and supporting sev-
eral industrial case studies in the aerospace and automotive industries. ASMs
are currently successfully used for the documenta t ion of the design process.

Formal Methods for the design or verification of HW or SW systems is an
emerging technique in industry. As with any other new methodology, the decision
to use it is driven by considerations of benefits, costs, efficiency and risks: for
instance,

- Are the benefits o f the new methodology clear to managers and engineers ? For
most formal methods the answer is yes. Indeed, the benefits of using formal
methods to validate/verify the correctness of the product are easy to explain:
Existing software products may fail and the costs due to their malfunctioning
is high. Formal methods have demonstrated success in specifying, designing
and verifying industrial systems.

- Do the benefits o f the new method exceed the costs o f convert ing to i t? This is
somewhat difficult to determine. If the new method implies a drastic change
in the established design flow, the costs will probably be high or unpre-
dictable. For instance, a design or verification methodology based on estab-

59

lishing a sequence of design descriptions at different abstract ion levels, linked
together by a formal refinement notion, is found to be difficult. This is even
true in the case of a finite-state setting with Model Checking and worse for
the theorem-proving approach. The si tuation is tha t high level descriptions
are not used further in the current design flow. The construction and main-
tenance of the consistency mapping of abs t rac t descriptions with the actual
system is a not trivial task, poorly supported with tools and costly in t ime
and effort.

- Can you estimate the risks? For most formal methods, tha t require a change
in the design process: the answer is no.

In order for a formal method to be used in a given, typical industrial envi-
ronment, the following criteria should be met:

- the method must handle examples of industrial size, at reasonably low levels
of abstraction,

- the costs in terms of effort, t ime, etc. should be less or comparable to the
ones in the existing design process,

- the method should be accepted by engineers who do not have a strong back-
ground in logic, and

- the technique must be easily integrated into the existing design flow.

Most of these criteria favour the Model Checking approach.

References

1. ASM-Bibliography. http://www.eecs.umich.edu/gasm/. WWW page.
2. B. A. Brandin, "The Real Time Supervisory Control of an Experimental Manu-

facturing Cell", IEEE Transactions on Robotics and Automation, Vol. 12, No. 1,
February 1996, pp. 329-342.

3. H. Busch. A Practical Method for Reasoning About Distributed Systems in a
Theorem Prover. In Higher Order Logic Theorem Proving and its Applications -
8th International Workshop, Aspen Grove, UT, USA, Proceedings, pages 106-121.
Springer-Verlag, LNCS 971, September 1995.

4. H. Busch. Proving Liveness of Fair Transition Systems. In J. v. Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th Inter-
national Conference, TPHOL'96, volume 1125 of LNCS, pages 77-92. Springer-
Verlag, August 1996.

5. J. R. Cu611ar and]. Wildgruber. A TLT Solution. In J.-R. Abrial, E. B5rger, and
H. Langmaak, editors, Formal Methods for Industrial Applications. Specifying and
Programming the Steam Boiler, volume 1165 of LNCS, pages 165-183. Springer-
Verlag, 1996.

6. Jorge Cu6llar, Dieter Barnard, and Martin Huber. Rapid Prototyping for an As-
sertional Specification Language. TACAS'96, LNCS 1055, March 1996.

7. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.
8. M. H51zlein, Th. Filkorn, P. Warkentin, and M. Weiss. Eine Verifikationskompo-

nente fiir HiGraph. Volume 1397 of VDI-Berichte. VDI-Verlag, Dfisseldorf, 1998.

60

9. Klaus NSkel and Klaus Winkelmann. The FZI Production Cell Case Study: A
distributed solution using TLT. In Formal Development of Reactive Systems: Case
Study Production Cell, volume 891 of LNCS. Springer-Verlag, 1995.

10. Sacres Esprit Project. http://www.ilogix.co.uk/ilogix/sacres.html. W W W home
page.

11. P. J. Ramadge and W. M. Wonham, "The Control of Discrete-Event Systems",
IEEE Proceedings, Vol. 77, No. 1, January 1989, pp. 81-98.

12. Franz Regensburger and Aenne Barnard. Formal Verification of SDL Systems
at the Siemens Mobile Phone Department. In TACAS 1998, Lecture Notes in
Computer Science. Springer-Verlag, 1998.

13. Karl Stroetmann. SEDUCT - - a proof compiler for first order logic. In Manfred
Broy and Stefan J£nichen, editors, KORSO: Methods, Languages, and Tools for
the Construction of Correct Software, volume 1009 of Lecture Notes in Computer
Science, pages 299-316. Springer Verlag, 1995.

