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Abstrac t .  In this paper we introduce a method for distinguishing be- 
tween informative and uninformative viewpoints as they pertain to an 
active observer seeking to identify an object in a known environment. 
The method is based on a generalized inverse theory using a probabilis- 
tic framework where assertions are represented by conditional probabil- 
ity density functions. Experimental results are presented showing how 
the resulting algorithms can be used to distinguish between informative 
and uninformative viewpoints, rank a sequence of images on the basis 
of their information (e.g. to generate a set of characteristic views), and 
sequentially identify an unknown object. 

1 I n t r o d u c t i o n  

Consider an active agent charged with the task of roaming the environment in 
search of some particular object. It has an idea of what it is looking for, at least 
at some generic level, but resources are limited so it must act purposefully when 
carrying out its task [1]. In particular, the agent needs to assess what it sees and 
quickly determine whether or not the information is useful so that it can evolve 
alternate strategies (the next place to look for example). Key to this requirement 
is the ability to make and quantify assertions while taking into account prior 
expectations about the environment. In this paper we show how the problem be 
cast in probabilistic terms from the point of view of inverse theory [2]. Assertions 
are represented by conditional probability density functions, which we refer to as 
belief distributions, that  relate the likelihood of a particular hypothesis given a set 
of measurements. What  is particularly important about the methodology is that  
it yields a precise recipe for generating these distributions, taking into account 
the different sources of uncertainty that enter into the process. Based on this 
result we show how the resulting distributions can be used to (i) assess the quality 
of a viewpoint on the basis of the assertions it generates and (ii) sequentially 
recognize an unknown object by accumulating evidence at the probabilistic level. 

Specifically, we show how uncertainty conditions prior expectations such that 
the shape of the resulting belief distribution can vary greatly, becoming very 
delta-like as the interpretation tends towards certainty. In contrast, ambiguous 
or poor interpretations consistently tend towards very broad or flat distributions 
[3]. We exploit this characteristic to define the notion of an informative viewpoint, 
i.e. a view which gives rise to assertions that have a high probability according 
to their associated belief distribution. There are at least two applications for this 
result. First, in the case of an active observer, viewpoints can be chosen so as to 
maximize the distribution associated with an object of interest. This does not 
specify how to choose an informative viewpoint 1, but can be used as a figure of 

1 Strategies for gaze planning are operationally defined [4, 5]. 
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merit for a particular choice. Second, in the case of an off-line planner, it is often 
advantageous to be able to pre-compute a set of characteristic views to aid in 
recognitio n [6]. A good strategy here would be to select the n best views of an 
object ranked according to its belief distribution. 

Although viewpoints can be labelled as either informative or uninformative, 
ambiguous cases where there is "reasonable" belief in more than one interpre- 
tation still exist. It becomes apparent that  evidence from more than one view- 
point is needed. This leads to a sequential recognition strategy that seeks to 
improve uncertain interpretations by accumulating evidence over several views. 
We show that  such evidence can be accumulated by hist0gramming votes from 
each viewpoint and picking the hypothesis with the highest score. This strat- 
egy is appropriate provided that  clear "winner" hypotheses prevail in a largely 
view-invariant manner. 

This brings us to the problem of obtaining the 
belief distributions. Here we consider the recogni- 
tion problem itself, focusing on a model-based ap- 
proach. Specifically, rnodel-based recognition fo- 
cuses on matching an unknown model, which is 
computed on-line from sensory data, with a pre- 
determined model computed off-line and resid- 
ing in a database of known objects [7]. What  
differentiates approaches is largely a mat ter  of 
the kinds of models used to represent objects in 
the scene and how models are matched. Our in- 
terest is in three-dimensional object recognition Fig.  1. (a) Laser range finder 
in which objects are represented by parametric image of a pencil sharp- 
shape descriptors (i.e. models) such as superel- ener rendered as a shaded 
lipsoids [8, 9, 10, i1], deformable solids [12], and image. (b) An articulated, 
algebraic surfaces [13]. In our context, models are part-oriented model of the 
constructed through a process of autonomous ex- sharpener using superellipsoid 
ploration [4, 5] in which a part-oriented, articu- 
lated description of an object is inferred through primitives; 8 superellipsoids 

are used, one corresponding to successive probes with a laser range-finding sys- 
tem. The set-up used to perform experiments con- each of the parts of the object. 
sist of a two-axis laser range-finder mounted on 
the end-effector of an inverted PUMA-560 ma- 
nipulator. For any particular viewpoint, such as the one Shown in Figure la, a 
process of bot tom-up shape analysis leads to an articulated model of the object 's 
shape (Figure lb) in which each part is represented by a superellipsoid primitive 
[11]. Associated with each primitive is a covariance matrix C which embeds the 
uncertainty of this representation and which can be used to plan subsequent 
gaze positions where additional data  can be acquired to reduce this uncertainty 
further [4]. A system which automatically builds object models based on this 
principle is reported in [5, 14]. 

Many approaches have been advocated for the problem of matching models. 
The majori ty of these employ various metrics to measure the  distance between 
models in the appropriate parameter spaces, e.g., Mahalanobis distance [15], 
dot product [12] to mention but a few. These strategies rarely include both the 
uncertainties in the parameters of the measured models and the ambiguities of 
the representations in the database. However, when fitting a model to data  that  
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are-noisy, there is an inherent lack of uniqueness in the parameters  tha t  describe 
the model. In these cases it is impossible to make a definitive s ta tement  as to 
which model fits the da ta  best [4]. For this reason, rather than choose external 
constraints that  would force the choice of one model over another, it would be 
more instructive to embed the uncertainty in the chosen description into the 
representation. This is precisely the approach that  we have taken in computing 
the belief distribution. 

Our methodology is based on a probabilistic inverse theory first introduced by 
Tarantola  in [2]. Earlier work has shown how this theory can be used to method-  
ically synthesize belief distributions corresponding to each model hypothesis, 
7-/), given the parameters  corresponding to the unknown model, .M, computed 
from the current measurement  Dj, i.e. P(7/)I.M/vl) [3]. This procedure explicitly 
accounts for uncertainties arising from the est imation of the unknown model pa- 
rameters, database model parameters,  and prior expectations on the frequency 
of occurrence for each of the database entries. In this case, the solution reduces 
to the classical Bayesian solution, similar to the result obtained by Subrahmonia  
et al. [13] - the pr imary difference being in the techniques used to obtain the 
solution. The inverse solution forces all sources of knowledge to be made explicit 
prior to the experiment. The method provides a more general recipe for combin- 
ing information in a formal and structured fashion. In addition, they (and many  
others [7, 16]) are interested in constructing a discriminant that  makes an ab- 
solute identification of the measured object. We argue that  making assessments 
about  identity from single measurements can be erroneous. We are more inter- 
ested in assessing the quality of the identification from a particular viewpoint 
and to communicate  this belief to other processes to determine whether further 
sampling is required. 

The sequential recognition strategy therefore seeks to combine information 
at the level of the belief distribution. Tha t  is, given two data  sets Dj and Dj+I 
corresponding to different viewpoints we seek a conjunction of P(7-/)IMvl)  and 
P(7/) 13dT)l+~) that  is equivalent to P(7/)IAdvl+vl+ ~) .  Although the theory for- 
mally defines conjunction, such an operation requires knowing how a change in 
viewpoint conditions the respective belief distributions. Later on, we will show 
that  if the max imu m  likelihood hypothesis 2 is largely invariant over a sequence 
of trials, then a robust interpretation can be made by tabulat ing the votes for 
each one and picking the hypothesis with the highest score. We also show that  
this invariance can be maximized by using the structure of the belief distribution 
to filter out uninformative hypotheses. 

The remainder of the paper is organized as follows. We begin in Section 2 
by describing how to distinguish between informative and uninformative view- 
points. We then introduce the general inverse theory in Section 2.1 and explain 
how to apply the theory to the problem of recognizing parametr ic  models. We 
then indicate how the theory can be used to label viewpoints as informative or 
uninformative in Section 2.2. In Section 3 these results are combined to form 
an incremental recognition scheme, and in Section 4 we show how it can be ap- 
plied to the recognition of complex, mult i -par t  objects. Finally, we conclude in 
Section 5 with a summary  of the results and a pointer to future applications. 

2 This refers to the hypothesis that the correct answer is the one with the highest 
belief. 
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2 D e t e r m i n i n g  W h i c h  V i e w p o i n t s  a r e  I n f o r m a t i v e  
In order to be able to determine whether a viewpoint is informative or not, the 
recognition engine should quantify the identification by producing a degree of 
confidence in the hypotheses, rather than establish an absolute identity for the 
unknown object. In this fashion, views with stronger hypotheses in terms of a 
significantly higher degree of confidence in one model than the others, can be 
considered informative. Viewpoints associated with low confidence levels in the 
hypotheses are considered uninformative. In the next sections, we will illustrate 
how the inverse theory can be used to generate confidence in various hypothe- 
ses, and illustrate how it can be used to distinguish between informative and 
uninformative viewpoints within the context of model-based object recognition. 

2.1 T h e  Inve r se  P r o b l e m  T h e o r y  
In lieu of a single maximum likelihood solution, we seek a method that generates 
a measure of confidence in various hypotheses within the context of an object 
recognition problem. Like all inverse problems, the recognition problem is ill 
posed in that, i) several models can give rise to identical measurements and, ii) 
experimental uncertainty gives rise to uncertain measurements. As a result it is 
not possible to identify the unknown object uniquely. There are various ways of 
conditioning ill posed problems, but these all require strong, and often implicit, 
a priori assumptions about the nature of the world. As a result a method may 
work well only in specific cases and because of the hidden implicit nature of the 
conditioning assumptions, cannot be easily modified to work elsewhere. 

For this reason we have adopted the very general inverse problem theory of 
Taxantola [2]. In it the sources of knowledge used to obtain inverse solutions are 
made explicit, so if conditioning is required, the necessary assumptions about 
that knowledge are apparent and can be examined to see if they are realistic. 
The theory uses probability density functions to represent the following sources 
of knowledge: 
1. Knowledge given by a theory which describes the physical interaction be- 

tween models m and measurements d, denoted 0(d, m),  
2. Knowledge about the model from measurements, denoted PD (d). 
3. Information from unspecified sources about the kinds of models which exist 

in the world (namely that  there are a discrete number of them). We denote 
this knowledge PM (m). Knowledge like this is a powerful constraint and can 
be used to eliminate many of the unconstrained solutions. 

T h e  Inverse  S o l u t i o n  The theory postulates that  our knowledge about a set 
of parameters is described by a probability density function over the parameter 
space. This requires us to devise appropriate density functions in order to rep- 
resent what we know about the world. The solution to the inverse problem then 
becomes a simple matter  of combining the sources of information. Tarantola de- 
fines the logical conjunction of states of information such that  the solution to 
the inverse problem is given by the theory AND the measurements AND any a 
priori information about the models. With this definition we can therefore com- 
bine the information from the joint prior probability density function p(d, m) 
and the theoretical probability density function 0(d, m) to get the a posteriori 
state of information 

or(d, m) = p(a, m) O(d, m) 
t~(d,m) (1) 
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where 0 ( d , m )  = 0(dim) #M(m)  and p ( d , m )  = pD(d) pM(m) over the joint 
space M x D, where M refers to the model space and D, the data space. The so 
called non-informative probabili ty density /t(d, m)  = ]AD (d )#M(m)  represents 
the reference state of information. For our purposes we will assume that  all the 
non-informative densities are uniform over their respective spaces. 

Accordingly, (1) is more general that  the equations obtained through tra- 
ditional approaches, but degenerates to the classical Bayesian solution under 
the aforementioned conditions. The a posteriori information about  the model 
parameters  is given by the marginal probabil i ty density function: 

~(m)  = pM(m) --./n pD(d) 0(dim) dd. (2) 

T h e  P a r t  R e c o g n i t i o n  P r o b l e m  In the system we have constructed, range 
measurements  are taken, surfaces are reconstructed, segmented into parts,  and 
individual models are fit to each part.  We will t reat  the whole system as a 
measuring instrument. Given some model m in the scene, range measurements  
are taken and from these an estimate of the model d is obtained, which we call 
a measurement of the model in the scene. 

1. I n f o r m a t i o n  O b t a i n e d  f r o m  P h y s i c a l  T h e o r i e s  
We first formulate an appropriate distribution to represent what is known 
about the physical theory that  predicts est imates of the model parameters  
given a model in the scene. Such a theory is too difficult to formulate math-  
ematically given the complications of our system. We therefore build an em- 
pirical theory through a process called the training or learning stage. Here, 
Monte Carlo experiments are run on measures of a known model  exactly as in 
traditional statistical pat tern classification methods. The conditional prob- 
ability density function 0(dim) is calculated for each model m by assuming 
a mult ivariate normal distribution. Therefore, the equation for 0 (d im ) is: 

0(dim) = N ( d  - m ,  CT) (3) 

where N is the multivariate normal distribution, with a covariance matr ix ,  
CT, describing estimated modelling errors for a model m.  

2. I n f o r m a t i o n  O b t a i n e d  f r o m  M e a s u r e m e n t s  
Much of the knowledge we have about  a problem comes in the form of ex- 
perimental  measurements.  In our system [5], we obtain an est imate of the 
observed model parameters  dob~, and also an est imate of their uncertainty 
in the covariance operator Cd. The assumption we make is that  the mul- 
tivariate normal distribution N ( d  - dobs, Cd) represents our knowledge of 
the measurements.  The probabili ty density function representing this infor- 
mat ion is the conditional probability density function v(dob~td), such that:  

u(dob~ld) = pD(d) /pD(d)  = N ( d  - dob,, Cd) (4) 

3. A P r i o r i  I n f o r m a t i o n  o n  M o d e l  P a r a m e t e r s  
In the current context, there are a discrete number  of reference models, 
mi ,  i = 1 . . .  M. The probability density function used to convey this knowl- 
edge is 

pM(m)  = P ( m , )  - m , ) ,  (5) 
i 

where P ( m i )  is the a priori probabili ty that  the i th model occurs. 
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4. S o l u t i o n  to  the Inverse Problem 
Substituting the probability density functions (3), (4), and (5) into  (2) gives 
us the final equation for the a posteriori probability density function 

o-(m) ---- Z P(mi)N(dobs - m i ,  CD) (f(m -- mi) .  (6) 
i 

where CD = Ca + CT. This density function is comprised of one delta 
function for each model in the database. Each delta function is weighted by 
the belief P(mi)N(dobs  - m~, CD) in the model ml .  The final distribution 
represents the "state of knowledge" of the parameters of mi .  The beliefs 
in each of the reference models are computed by convolving the normal 
distributions in (3) and (4). The advantage of the method is that rather 
than establish a final decision as to the exact identity of the unidentified 
object, it communicates the degree of confidence in assigning the object to 
each of the model classes. It is then up to the interpreter to decide what may 
be inferred from the resulting distribution. 
The methodology introduced applies to the recognition of any parametric 
primitive. For our purposes, superellipsoid models were chosen because of the 
range of shapes they can represent as well as their computational simplicity. 
However, representations based on superquadrics pose a number of problems 
due to degeneracies in shape and orientation. 

2.2 Determining Which V i e w p o i n t s  a r e  I n f o r m a t i v e  u s in g  the 
I n v e r s e  T h e o r y  
Figure 2 shows by example how the resulting belief distribution can be used 
to differentiate between informative and uninformative viewpoints. In this case, 
one can see that the system is able to distinguish the cylinder from a block with 
great ease, if the cylinder is measured from an informative viewpoint. However, 
if measured from an uninformative viewpoint, there is little confidence in either 
model. In this case, the beliefs are in fact below the numerical precision of the 
system, and therefore become zeros. 

The problem of distinguishing between the two kinds of states becomes one 
of determining the threshold, below which one can safely state that  the beliefs 
are in fact insignificant. It is obvious that cases where the beliefs in all the 
models are zero are uninformative. However, this threshold depends on the nu- 
merical precision of the system. In this sense, it is chosen externally. We therefore 
feel justified in raising this threshold to one that  excludes other low confidence 
states. The expectation is that this will eliminate false positive states, as they 
are generally occur with low belief. One can determine this cutoff point empiri- 
cally, by observing the belief distributions from different viewpoints, and noting 
if there is a clear division between the clear winner states and the low confi- 
dence states. A bi-modal distribution would indicate that an application of a 
predefined threshold can easily distinguish between these states. 

Figure 3 illustrates the logarithm of the beliefs resulting from recognizing 36 
different single-view samples of each of six models in a database: a Big Sphere, 
a Block, a Cylinder, a Lemon, a Small Sphere and a Round Block. The results 
indicate the bi-modality of the belief distribution. 

3 Sequential Recognition 
Provided that the low belief states have been identified, we wish to make a 
statement about the remaining beliefs. Even though the majori ty of the cases 
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At the left of this figure are the two reference models in the data base: the cylinder 
and the square block. To their right are measured models of the cylinder obtained 
after scanning its surface from 4 different viewing positions. Below each model one 
can find the unnormalized belief distributions obtained when attempting to recognize 
each of the measured models. 

Fig. 2. (a) Informative and (b) Uninformative Views of a Cylinder. 

can be clearly divided into informative and uninformative states, there are still 
ambiguous cases where a "significant" belief in more than one model exists. Be- 
cause of these situations, it becomes apparent that evidence from more than 
one viewpoint is needed. The question becomes: how do we accumulate evidence 
from different views, when the evidence is in the form of a conditional prob- 
ability density function? The immediate response is given by the theory (Sec- 
tion 2.1) which formally defines the operation of conjunction of information, 
i.e. the belief distributions. To state this more formally, we denote belief distri- 
butions corresponding to each model hypothesis, 7-/}, given the parameters of 
the unknown model, 2r computed from the measurement, Dj, by P(Tg}IA/I~D). 
Then, given two data  sets Dj and Dj+I corresponding to different viewpoints 
we seek a conjunction of P(7i}1~491 ) and P(7/}1~/191+~) that  is equivalent to 
P(7/) 1~/[7)l+vb+~). An active agent would then gather sufficient evidence in this 
fashion until the composite belief distribution associated with a particular hy- 
pothesis exceeds a predefined level of acceptability. 

Although the theory formally defines conjunction, such an operation requires 
knowing how a change in viewpoint conditions the respective belief distributions, 
as they are normalized with respect to a global frame of reference. As a result, 
relative values between the views are meaningless. The normalizing factor is 
some unknown function of viewpoint, and is difficult to obtain analytically.(See 
[17].) As a result, the beliefs are not normalized, making it difficult to compare 
the values from different viewpoints in a sensible fashion. As well, in situations 
where the beliefs are "close" in value, it becomes impossible to establish a clear 
winner. 

For this reason, we have chosen not to select a "winner" in ambiguous sit- 
uations, and state that all beliefs above a threshold indicate equally likely hy- 
potheses. We illustrate this philosophy by binarizing the conditional probability 
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Above are the results from attempting to recognize 36 different single-view samples 
of each of the models in the database. The beliefs in the different models are rep- 
resented by different symbols, each symbol indicating the true model used during 
that trial. The level of numerical underflow of the system is represented by a "U" 
on the y - axis. Because so many trials fall into this category they are marked 
with a simple point, except when the belief is for the true model used in the triM. 

Fig. 3. Log of beliefs in the Big Sphere, Block, Cylinder, Lemon, Small Sphere, and 
Round Block. 

density function values at each view, such that  all beliefs above the threshold 
become ones. In this fashion, we have divided the possible results to include: 

1. Informative states: states with one clear winner (a single positive value). 
2. Uninformative states: states without a clear winner. These include: 

a) Ambiguous states: states with more than one possible winner (more than 
one single positive value). 

b) Undetermined states: states with no winners (all zero values). 

It  is important  to note that  ambiguous states are, in fact, undetermined states 
that  lie above the chosen threshold. In theory, careful choice of cutoff level should 
eliminate these states as well (without eliminating a large number of informative 
states). Figure 4 illustrates these different states in the case of a square block. 
Here, the system is asked to identify a square block from different views, and 
correctly distinguish it from a similar rounder one. This example indicates that  
the results match human intuition. The clear winners, or informative states, in 
Figure 4a indicate that  the system is able to identify the block despite wide 
variations in its three dimensions. The ambiguous cases (Figure 4b) occur when 
the resulting models are rounder in shape. Here, the system has trouble differ- 
entiating between the models. In fact, these models resemble the rounded block 
more than the square one. In the third case (Figure 4c), the system does not 
have significant belief in any of the models. Intuitively, one can see that  these 
models are not similar to either reference model. 

In order to communicate  the validity of all hypotheses above a particular 
threshold, the beliefs are binarized at a threshold value. By normalizing our 
confidence values in this manner,  combining them from different viewpoints be- 
comes straightforward. Should the m a x i m u m  likelihood hypothesis prevail in a 
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On the left are the two reference models: a block and a rounded block. In the 
first row of the table are the models of the block measured from (a) informative, 
(b) ambiguous and (c) undetermined viewpoints. Below, one can find the unnor- 
malized, and binarized belief distributions (a threshold of 10 -13) obtained when 
attempting to recognize each of the measured models. 

Fig.  4. Informative, Ambiguous, and Undetermined States for the Block. 

largely view-invariant manner ,  then after a sequence of trials, a robust  inter- 
pre ta t ion can be made  by tabulat ing the votes for each one, represented by the 
binarized beliefs, and picking the hypothesis  with the highest score. In this fash- 
ion, a clear winner should emerge. In addit ion,  the confidence in the incorrect 
models should become insignificant. 

Figure 5 illustrates an a t t empt  at sequentially recognizing the square block 
at 400 increments.  As in the previous example,  the square and round blocks are 
used as reference models.  The raw beliefs are binarized by imposing a threshold 
of 10 -13. Notice tha t  the ambiguous case quickly becomes insignificant with the 
increase of evidence in the correct model.  After only 9 iterations, the clear winner 
emerges, casting all doubt  aside. 

Displayed above are the 9 models resulting from sequentially measuring the square 
block at 40 ~ increments, From top to bottom, one can see the viewing angle, the 
measured model, the unnormalized and binarized (threshold of 10 -13) belief distri- 
bution resulting from attempting to recognize each of the measured models. The final 
distribution is the histogram of the binarized distributions. 

Fig.  5. Incremental Recognition of a Block. 
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4 A p p l i c a t i o n  t o  C o m p l e x  O b j e c t s  
In practical recognition scenarios objects rarely correspond to the simple shapes 
depicted in Figure 5. A more realistic object model, such as the one shown earlier 
in Figure 1, accounts for the fact that objects are often comprised of multiple 
parts that can be articulated in different ways. This suggests a recognition by 
parts approach using the sequential recognition strategy developed in the pre- 
ceding sections. However the task becomes much more difficult because of the 
complex self-occlusions by different parts of the object. Still, the results suggest 
that the sequential recognition strategy outlined is sufficiently robust to cope 
with this added complexity. 

In these experiments, two articulated models were used: a potato-head toy 
consisting of two ears, two eyes, a nose and a head, and an alarm clock with 
two bells, two legs, a cylindrical face and a back. In addition, six single-part 
"distractors" were placed in the database in order to render the recognition 
task more difficult. These objects consisted of: two spheres (tad = 2 0 m m ,  rad = 
25ram), a block, a cylinder, a lemon, and a block with rounded edges. The objects 
were chosen for the experiments because they consisted of parts that generally 
conformed well to non-deformable superellipsoids, with the exception of the toy 
head whose shape was tapered. The parts varied in size and shape, so as not 
to be clustered together too tightly in five-dimensional feature space. However, 
their distributions overlapped sufficiently enough in several dimensions so that 
the recognition procedure was challenged in its discrimination task. 

Training automatically produced object class representatives, by measuring 
the object numerous times. Each individual model was created by scanning the 
object from several views in an exploration sequence [4, 5]. Here, each object 
was scanned using a laser range-finder, segmented into its constituent parts, a 
superellipsoid model was fit to each part, and the resulting parameters stored. 
In order to create the representatives in the database, 24 samples of each single- 
part object, 10 samples of the potato-head, and 7 samples of the alarm clock 
were used. Figure 6 illustrates the actual potato-head and alarm used in recog- 
nition experiments, and the representative models of each object that result from 
training. 

The first result (Figure 7) shows that the system is able to successfully rec- 
ognize instances of articulated parts of a complex object with only partial infor- 
mation available, even with the added effects of self-occlusion. It also indicates 
that, for most models, an external threshold retained most of the correct states, 
confirming that the system had high confidence in the correct identifications. 
In addition, the majority of the false-positive assertions were eliminated. This 
confirms the hypothesis that, because the beliefs are bi-modal in nature, the ap- 
plication of an external threshold can be used to successfully distinguish between 
informative and uninformative viewpoints. An active observer can then assess 
these results from a particular viewpoint and determine if further sampling is 
necessary. 

Table la shows the results of now accumulating this evidence over the se- 
quence of views. A similar result is obtained for the alarm clock object (bina- 
rized belief distribution not shown) and shown in Table lb. The results show 
that the majority of the evidence in the incorrect models was removed after 
application of an external threshold. The exceptions to this rule are the potato- 
head's head and the face of the alarm clock, where the majority of the evidence 
in the correct model was eliminated as well. This indicates the possibility that 
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Displayed above are reference objects that result from training acting as "distractors" 
for the recognition procedure: a big sphere (BS), a block (B), a cylinder (C), a lemon 
(L), a smaller sphere (SS), and a rounded block (RB). 

(a) Real potato-head and alarm 
clock used in experiment. 

(b) Reference potato-head 
and alarm clock models 
created by training. 

Pig.  6. The reference parts resulting from training. 

Threshold  = 0.00001 

Displayed above is the belief distribution of the potato-head measured from single 
view-points. The parts of the potato-head are: a head (H), a nose (N), a left ear (GRL), 
a right ear (ERR), a left eye (EYL), and a right eye (EYR). Here, labelling one eye 
as the other, or one ear as the other was considered to be a correct identification. 
Zero values are defined application of a threshold of 0.00001. 

F ig .  7. Matching samples of the potato-head taken from single viewpoints. 

the choice of threshold was not  appropr ia te  for these parts  However, even with 
a uni form threshold, the results indicate  tha t  the correct assertion is ob ta ined  
with the combina t ion  of a threshold to remove false assertions and the accumu-  
la t ion of in fo rmat ion  from a series of views to remove the ambiguous  cases. In 
fact, if one were to choose a winner  based on a m a x i m u m  likelihood scheme of 
the accumula ted  evidence, the results would be correct for all models  a. 

5 D i s c u s s i o n  and C o n c l u s i o n s  

In this paper,  we have in t roduced a me thod  for d is t inguishing  between informa-  
tive and un in fo rmat ive  viewpoints  and  for assessing the beliefs associated with 
a par t icular  set of assertions based on this data .  The  impor t ance  of this result  

3 We have treated the left and right eyes of the potato-head as being instances of the 
same class. A similar rule was applied to the left and right ears, as well as the left 
and right bells and the left and right legs of the alarm clock. 



480 

H N  EAR E Y E B S B C L S S R B  
H 1 0 0 0 0 0 0 0 0  0 
N 0 1 6  2 12 0 0 0 0  0 0 

ERL 0 1 15 1 0 0 0 0 0 0 
E R R 0  1 13 1 2 0 0 0 3 0 
E Y L 0  3 0 16 0 0 0 0  0 0 
E Y R 0  3 0 14 0 0 0 0 0 0 

a) Accumulation of evidence in potato-head,  threshold = 0.00001 

F BA BELL LEG H N EAR EYE BS B C L SS RB 
F 1 0 0 0 0 0 0 0 0 0 0 0  0 0 

BA 0 6 0 0 0 0 0 0 0 0 0 0  0 0 
R B L 0  0 4 0 0 1 2 1 0 0 1 0  3 0 
LBL 0 0 6 0 0 3 0 1 0 0 1 0  2 0 
RL 0 0 0 13 0 0 0 0 0 0 0 0  0 0 
LL 0 0 0 15 0 0 0 0 0 0 0 0  0 0 

b) Accumulation of evidence in alarm clock, threshold = 0.0001 

Displayed above are the tables describing the accumulation of evidence from 32 single- 
view recognition experiments. Each row describes the histogram of the binarized belief 
distributions for a particular measured model. In a), the measured models include 
the parts of the potato-head (see Figure 7 for notation.) In b), the measured models 
include the parts of the alarm clock: the face (F), the back (BA), the right bell (RBL), 
the left bell (LBL) the right leg (RL), and the left leg (LL). The columns refer to the 
reference models, including the alarm clock parts: the face (F), the back (BA), the 
legs (LEG), and the bells (BELL), the potato-head parts and the single-part objects. 
Zero values are defined by a) b) a threshold of 0.0001. 

T a b l e  1. Histogram of binarized belief distributions for the potato-head and the alarm 
clock after 32 single-view iterations. 

is that  it provides a basis by which an external agent can assess the quality of 
the information from a particular viewpoint, and make informed decisions as to 
what action to take using the da ta  at hand. Our approach was based on a gen- 
eralized inverse theory [2] using a probabilistic framework where assertions are 
represented by conditional probabili ty density functions (belief distributions). 
The importance of the method is that  it provides a formal recipe for represent- 
ing and combining all prior knowledge in order to obtain these distributions. 
We have illustrated how to apply the theory to solve a 3-D model-based recog- 
nition problem and have shown how the resulting belief distributions can be 
used to assess the quality of the interpretation. An impor tant  characteristic of 
the resulting belief distributions is that  they are bi-modal,  simplifying the prob- 
lem of determining how to distinguish between informative and uninformative 
viewpoints. 

A major  strength of the method is its potential  for a wide variety of applica- 
tions. For example, an active recognition agent can choose viewpoints that  will 
maximize the belief distribution associated with an object of interest. We have 
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not specified how to choose this viewpoint, but the method can be used to de- 
termine if the particular choice leads to a sufficient level of information. Another 
important application of the methodology is a strategy for off-line computation 
of a pro-computed set of characteristic views. One can rank these views accord- 
ing to the belief distributions, and then store the n best views. Predefining these 
views speeds up on-line computations by directing the active agent's attention 
to informative views, thereby reducing the search space of viable hypotheses. 
These and other topics are currently under investigation in our laboratory. 
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