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A b s t r a c t .  We develop a face recognition algorithm which is insensi- 
tive to gross variation in lighting direction and facial expression. Taking 
a pattern classification approach, we consider each pixel in an image 
as a coordinate in a high-dimensional space. We take advantage of the 
observation that the images of a particular face under varying illumina- 
tion direction lie in a 3-D linear subspace of the high dimensional fea- 
ture space - if the face is a Lambertian surface without self-shadowing. 
However, since faces are not truly Lambertian surfaces and do indeed 
produce self-shadowing, images will deviate from this linear subspace. 
Rather than explicitly modeling this deviation, we project the image 
into a subspace in a manner which discounts those regions of the face 
with large deviation. Our projection method is based on Fisher's Linear 
Discriminant and produces well separated classes in a low-dimensional 
subspace even under severe variation in lighting and facial expressions. 
The Eigenface technique, another method based on linearly projecting 
the image space to a low dimensional subspace, has similar computational 
requirements. Yet, extensive experimental results demonstrate that  the 
proposed "Fisherface" method has error rates that  are significantly lower 
than those of the Eigenface technique when tested on the same database. 

1 I n t r o d u c t i o n  

W i t h i n  the las t  several  years, numerous  a lgo r i t h ms  have been p roposed  for face 
recogni t ion;  for de ta i led  surveys see [4, 24]. W h i l e  much progress  has  been m a d e  
toward  recognizing faces under  smal l  var ia t ions  in l ight ing,  facial  expression and 
pose, re l iable  techniques for recogni t ion under  more  ex t r eme  var ia t ions  have 
proven elusive. 

In this  paper  we out l ine  a new approach  for face recogni t ion  - one tha t  is 
insensi t ive to ex t reme  var ia t ions  in l ight ing and facial  expressions.  Note tha t  
l ight ing var iab i l i ty  includes not  only intensi ty,  bu t  also d i rec t ion  and number  of  
l ight  sources. As seen in Fig. 1, the same person,  wi th  the  same  facial  expres-  
sion, seen f rom the same  viewpoint  can a p p e a r  d r a m a t i c a l l y  different when l ight  
sources i l l umina te  the  face f rom different di rect ions .  

Our  approach  to face recogni t ion exploi ts  two observat ions :  
1. For a L a m b e r t i a n  sur face  wi thou t  se l f -shadowing,  all of the  images  of a 

pa r t i cu la r  face f rom a fixed v iewpoin t  will lie in a 3-D l inear  subspace  of the  
h igh-d imens iona l  image  space [25]. 
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Fig. 1. The same person seen under varying lighting conditions can appear dramaticMly 
different. These images are taken from the Harvard database which is described in 
Section 3.1. 

2. Because of expressions, regions of self-shadowing and specularity, the above 
observation does not exactly apply to faces. In practice, certain regions of 
the face may have a variability from image to image that often deviates 
drastically from the linear subspace and, consequently, are less reliable for 
recognition. 

We make use of these observations by finding a linear projection of the faces 
from the high-dimensional image space to a significantly lower dimensionM fea- 
ture space which is insensitive both to variation in lighting direction and facial 
expression. We choose projection directions that  are nearly orthogonal to the 
within-class scatter, projecting away variations in lighting and facial expres- 
sion while maintaining discriminability. Our method Fisherfaces, a derivative of 
Fisher's Linear Discriminant (FLD) [9, 10], maximizes the ratio of between-class 
scatter to that of within-class scatter. 

The Eigenface method is also based on linearly projecting the image space 
to a low dimensional feature space [27, 28, 29]. However, the Eigenface method, 
which uses principal components analysis (PCA) for dimensionality reduction, 
yields projection directions that  maximize the total scatter across all classes, 
i.e. all images of all faces. In choosing the projection which maximizes total 
scatter, PCA retains some of the unwanted variations due to lighting and facial 
expression. As illustrated in Fig. 1 and stated by Moses, Adini, and Ullman, "the 
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variations between the images of the same face due to illumination and viewing 
direction are almost always larger than image variations due to change in face 
identity" [21]. Thus, while the PCA projections are optimal for reconstructi~)n 
from a low dimensional basis, they may not be optimal from a discrimination 
standpoint. 

We should point out that Fisher's Linear Discriminant [10] is a "classical" 
technique in pattern recognition [9] that  was developed by Robert Fisher in 1936 
for taxonomic classification. Depending upon the features being used, it has been 
applied in different ways in computer vision and even in face recognition. Cheng 
el al. presented a method that used Fisher's discriminator for face recognition 
where features were obtained by a polar quantization of the shape [6]. Contem- 
poraneous with our work [15], Cui, Swets, and Weng applied Fisher's discrimina- 
tor (using different terminology, they call it the Most Discriminating Feature - 
MDF) in a method for recognizing hand gestures [8]. Though no implementation 
is reported, they also suggest that the method can be applied to face recognition 
under variable illumination. 

In the sections to follow, we will compare four methods for face recognition 
under variation in lighting and facial expression: correlation, a variant of the lin- 
ear subspace method suggested by [2.5], the Eigenface method [27, 28, 29], and 
the Fisherface method developed here. The comparisons are done on a database 
of 500 images created externally by Hallinan [13, 14] and a database of 176 
images created at Yale. The results of the tests on both databases shows that 
the Fisherface method performs significantly better than any of the other three 
methods. Yet, no claim is made about the relative performance of these algo- 
rithms on much larger databases. 

We should also point out that we have made no at tempt  to deal with variation 
in pose. An appearance-based method such as ours can be easily extended to 
handle limited pose variation using either a multiple-view representation such 
as Pentland, Moghaddam, and Starner's View-based Eigenspace [23] or Murase 
and Nayar's Appearance Manifolds [22]. Other approaches to face recognition 
that accommodate pose variation include [2, 11]. Furthermore, we assume that 
the face has been located and aligned within the image, as there are numerous 
methods for finding faces in scenes [5, 7, 17, 18, 19, 20, 28]. 

2 M e t h o d s  

The problem can be simply stated: Given a set of face images labeled with the 
person's identity (the learning set) and an unlabeled set of face images from the 
same group of people (the test set), identify the name of each person in the test 
images. 

In this section, we examine four pattern classification techniques for solving 
the face recognition problem, comparing methods that have become quite pop- 
ular in the face recognition literature, i.e. correlation [3] and Eigenface methods 
[27, 28, 29], with alternative methods developed by the authors. We approach 
this problem within the pattern classification paradigm, considering each of the 
pixel values in a sample image as a coordinate in a high-dimensional space (the 
image space). 
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2.1 C o r r e l a t i o n  

Perhaps, the simplest classification scheme is a nearest neighbor classifier in the 
image space [3]. Under this scheme, an image in the test set is recognized by 
assigning to it the label of the closest point in the learning set, where distances 
are measured in the image space. If all of the images have been normalized to be 
zero mean and have unit variance, then this procedure is equivalent to choosing 
the image in the learning set that  best correlates with the test image. Because 
of the normalization process, the result is independent of light source intensity 
and the effects of a video camera's automatic gain control. 

This procedure, which will subsequently be referred to as correlation, has 
several well-known disadvantages. First, if the images in the learning set and 
test set are gathered under varying lighting conditions, then the correspond- 
ing points in the image space will not be tightly clustered. So in order for this 
method to work reliably under variations in lighting, we would need a learning 
set which densely sampled the continuum of possible lighting conditions. Second, 
correlation is computationally expensive. For recognition, we must correlate the 
image of the test face with each image in the learning set; in an effort to re- 
duce the computation time, implementors [12] of the algorithm described in [3] 
developed special purpose VLSI hardware. Third, it requires large amounts of 
storage - the learning set must contain numerous images of each person. 

2.2 E igen faces  
As correlation methods are computationally expensive and require great amounts 
of storage, it is natural to pursue dimensionality reduction schemes. A technique 
now commonly used for dimensionality reduction in computer vision - particu- 
larly in face recognition - is principal components analysis (PCA) [13, 22, 27, 28, 
29]. PCA techniques, also known as Karhunen-Loeve methods, choose a dimen- 
sionality reducing linear projection that maximizes the scatter of all projected 
samples. 

More formally, let us consider a set of N sample images { X l ,  X 2 ,  . . . , X N }  tak- 
ing values in an n-dimensional feature space, and assume that each image belongs 
to one of c classes {X1, X2, . . . ,  Xc}- Let us also consider a linear transformation 
mapping the original n-dimensional feature space into an m-dimensional fea- 
ture space, where m < n. Denoting by W E ]R n •  a matrix with orthonormal 
columns, the new feature vectors yk E IR "~ are defined by the following linear 
transformation: 

Yk = wTxk ,  k = 1 , 2 , . . . , N .  
Let the total scatter matr ix ST be defined as 

N 

k = l  

where/_t E 1R '~ is the mean image of all samples. 

Note that after applying the linear transformation, the scatter of the trans- 
formed feature vectors {Yl, Y2,. . . ,  YN} is wT,_qW. In PCA, the optimal projec- 
tion Wopt is chosen to maximize the determinant of the total scatter matr ix  of 
the projected samples, i.e. 

wo , = S T w l  = . . .  (1)  
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where {wi I i = 1 , 2 , . . . , m }  is the set of n-dimensional eigenvectors of ST 
corresponding to the set of decreasing eigenvalues. Since these eigenvectors have 
the same dimension as the original images, they are referred to as Eigenpictures 
in [27] and Eigenfaces in [28, 29]. 

A drawback of this approach is that  the scatter being maximized is not only 
due to the between-class scatter that is useful for classification, but also the 
within-class scatter that, for classification purposes, is unwanted information. 
Recall the comment by Moses, Adini and Ulhnan [21]: Much of the variation from 
one image to the next is due to illumination changes. Thus if PCA is presented 
with images of faces under varying illumination, the projection matr ix Wopt will 
contain principal components (i.e. Eigenfaces) which retain, in the projected 
feature space, the variation due lighting. Consequently, the points in projected 
space will not be well clustered, and worse, the classes may be smeared together. 

It has been suggested that by throwing out the first several principal com- 
ponents, the variation due to lighting is reduced. The hope is that if the first 
principal components capture the variation due to lighting, then better cluster- 
ing of projected samples is achieved by ignoring them. Yet it is unlikely that  the 
first several principal components correspond solely to variation in lighting; as 
a consequence, information that is useful for discrimination may be lost. 

2.3 L i n e a r  S u b s p a e e s  

Both correlation and the Eigenface method are expected to suffer under vari- 
ation in lighting direction. Neither method exploits the observation that  for a 
Lambertian surface without self-shadowing, the images of a particular face lie in 
a 3-D linear subspace. 

Consider a point p in a Lambertian surface and a collimated light source 
characterized by a vector s C IR 3, such that the direction of s gives the direction 
of the light rays and Ilsl] gives the intensity of the light source. The irradiance 
at the point p is given by 

E(p) = a(p) < n(p), s > (2) 

where n(p) is the unit inward normal vector to the surface at the point p, and 
a(p) is the albedo of the surface at p [16]. This shows that the irradiance at 
the point p, and hence the gray level seen by a camera, is linear on s C IR 3. 
Therefore, in the absence of self-shadowing, given three images of a Lambertian 
surface from the same viewpoint taken under three known, linearly independent 
light source directions, the albedo and surface normal can be recovered; this is 
the well known method of photometric stereo [26, 30]. Alternatively, one can 
reconstruct the image of the surface under an arbitrary lighting direction by a 
linear combination of the three original images, see [25]. 

For classification, this fact has great importance: It shows that for a fixed 
viewpoint, all images of a Lambertian surface lie in a 3-D linear subspace em- 
bedded in the high-dimensional image space. This observation suggests a simple 
classification algorithm to recognize Lambertian surfaces - invariant under light- 
ing conditions. 

For each face, use three or more images taken under different lighting direc- 
tions to construct a 3-D basis for the linear subspace. Note that  the three basis 
vectors have the same dimensionality as the training images and can be thought 
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of as basis images. To perform recognition, we simply compute the distance of 
a new image to each linear subspace and choose the face corresponding to the 
shortest distance. We call this recognition scheme the Linear Subspace method.  
We should point out that  this method is a variant of the photometric alignment 
method proposed in [25] and, although it is not yet in press, the Linear Sub- 
space method can be thought of as special case of the more elaborate recognition 
method described in [14]. 

If there is no noise or self-shadowing, the Linear Subspace algorithm would 
achieve error free classification under any lighting conditions, provided the sur- 
faces obey the Lambert ian reflectance model. Nevertheless, there are several 
compelling reasons to look elsewhere. First, due to self-shadowing, specularities, 
and facial expressions, some regions of the face have variability that  does not 
agree with the linear subspace model. Given enough images of faces, we should 
be able to learn which regions are good for recognition and which regions are 
not. Second, to recognize a test image we must  measure the distance to the lin- 
ear subspace for each person. While this in an improvement  over a correlation 
scheme that  needs a large number of images for each class, it is still too com- 
putationally expensive. Finally, from a storage standpoint ,  the Linear Subspace 
algorithm must keep three images in memory  for every person. 

2.4 F i sherfaces  

The Linear Subspace algorithm takes advantage of the fact that  under ideal con- 
ditions the classes are linearly separable. Yet, one can perform dimensionMity 
reduction using linear projection and still preserve linear separability; error free 
classification under any lighting conditions is still possible in the lower dimen- 
sional feature space using linear decision boundaries. This is a strong argument 
in favor of using linear methods for dimensionality reduction in the face recog- 
nition problem, at least when one seeks insensitivity to lighting conditions. 

Here we argue that  using class specific linear methods for dimensionality re- 
duction and simple classifiers in the reduced feature space one gets better recog- 
nition rates in substantially less t ime than with the Linear Subspace method. 
Since the learning set is labeled, it makes sense to use this information to build 
a more reliable method for reducing the dimensionality of the feature space. 
Fisher's Linear Discriminant (FLD) [10] is an example of a class specific method, 
in the sense that  it tries to "shape" the scatter in order to make it more re- 
liable for classification. This method selects W in such a way that  the ratio 
of the between-class scatter and the within-class scatter is maximized. Let the 
between-class scatter matr ix  be defined as 

i=1  

and the within-class scatter matr ix  be defined as 

SW -~ ~ Z (Xk -- /li)(Xk -- ]1i) T 
i=1  xk6xi 

where/li  is the mean image of class Xi, and ]Xil is the number  of samples in class 
Xi. If Sw is nonsingular, the optimal  projection Wopr is chosen as that which 
maximizes the ratio of the determinant of the between-class scatter matr ix  of 
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Fig. 2. A comparison of principal component anMysis (PCA) and Fisher's linear dis- 
criminant (FLD) for a two class problem where data for each class lies near a linear 
subspace. 

the projected samples to the determinant of the within-class scatter matrix of 
the projected samples, i.e. 

Lw~s~wL -[Wl w~. . .  ~ ]  (3) 
Wopt = arg m~x IWT Sw W I 

where {w~ I i = 1, 2 , . . . ,  m} is the set of generalized eigenvectors of S~ and Sw 
corresponding to set of decreasing generalized eigenvalues {Ai I i = 1, 2 , . . . ,  m}, 
i . e .  

S B W i  = , ~ i S w W i  , i = 1, 2 , . . . ,  m. 
Note that an upper bound on m is c -  1 where c is the number of classes. See [9]. 

To illustrate the benefits of the class specific linear projections, we con- 
structed a low dimensional analogue to the classification problem in which the 
samples from each class lie near a linear subspace. Figure 2 is a comparison of 
PCA and FLD for a two-class problem in which the samples from each class are 
randomly perturbed in a direction perpendicular to the linear subspace. For this 
example N = 20, n = 2, and m = 1. So the samples from each class lie near a 
line in the 2-D feature space. Both PCA and FLD have been used to project the 
points from 2-D down to 1-D. Comparing the two projections in the figure, PCA 
actually smears the classes together so that they are no longer linearly separable 
in the projected space. It is clear that  although PCA achieves larger total scat- 
ter, FLD achieves greater between-class scatter, and consequently classification 
becomes easier. 

In the face recognition problem one is confronted with the difficulty that the 
within-class scatter matrix Sw E IR ~x~ is always singular. This stems from the 
fact that the rank of Sw is less than N - c, and in general, the number of pixels 
in each image (n) is much larger than the number of images in the learning 
set (N). This means that it is possible to chose the matrix W such that the 
within-class scatter of the projected samples can be made exactly zero. 

In order to overcome the complication of a singular Sw,  we propose an alter- 
native to the criterion in Eq. 3. This method, which we call Fisherfaces, avoids 



52 

this problem by projecting the image set to a lower dimensional space so that  
the resulting within-class scatter matr ix  Sw is nonsingular. This is achieved by 
using PCA to reduce the dimension of the feature space to N - c and then, 
applying the standard FLD defined by Eq. 3 to reduce the dimension to c - 1. 
More formally, Wopt is given by 

where 

Wopt : WfldWpca (4) 

Wpca = arg m~x lWT ST Wl 

IWTW oSBWpcoWl 
WI,d = arg IWTW aSw Wpco WI " 

Note that  in computing Wpca we have thrown away only the smallest c principal 
components. 

There are certainly other ways of reducing the within-class scatter while 
preserving between-class scatter. For example, a second method which we are 
currently investigating chooses W to maximize the between-class scatter of the 
projected samples after having first reduced the within-class scatter. Taken to 
an extreme, we can maximize the between-class scatter of the projected samples 
subject to the constraint that  the within-class scatter is zero, i.e. 

Wopt = arg max IWT SBWI (5) 
WEYV 

where W is the set of n x m matrices contained in the kernel of Sw. 

3 E x p e r i m e n t a l  R e s u l t s  

In this section we will present and discuss each of the aforementioned face recog- 
nition techniques using two different databases. Because of the specific hypothe- 
ses that  we wanted to test about  the relative performance of the considered 
algorithms, many  of the standard databases were inappropriate.  So we have 
used a database from the Harvard Robotics Laboratory in which lighting has 
been systematically varied. Secondly, we have constructed a database at Yale 
that  includes variation in both facial expression and lighting. 3 

3.1 Variation in Lighting 

The first experiment was designed to test the hypothesis that  under variable 
illumination, face recognition algorithms will perform better if they exploit the 
fact that  images of a Lambert ian surface lie in a linear subspace. More specif- 
ically, the recognition error rates for all four algorithms described in Section 2 
will be compared using an image database constructed by Hallinan at the Har- 
vard Robotics Laboratory [13, 14]. In each image in this database, a subject 
held his/her head steady while being illuminated by a dominant light source. 
The space of light source directions, which can be parameterized by spherical 
angles, was then sampled in 150 increments. From a subset of 225 images of 
five people in this database, we extracted five subsets to quantify the effects of 
varying lighting. Sample images from each subset are shown in Fig. 1. 

3 The Yale database is available by anonymous ftp from daneel.eng.yale.edu. 
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S u b s e t  1 contains 30 images for which both of the longitudinal and lati tudinal 
angles of light source direction are within 15 o of the camera axis. 

S u b s e t  2 contains 45 images for which the greater of the longitudinal and lat- 
itudinal angles of light source direction are 300 from the camera axis. 

S u b s e t  3 contains 65 images for which the greater of the longitudinal and lat- 
itudinal angles of light source direction are 45 ~ from the camera axis. 

S u b s e t  4 contains 85 images for which the greater of the longitudinal and lat- 
itudinal angles of light source direction are 60 ~ from the camera axis. 

S u b s e t  5 contains 105 images for which the greater of the longitudinal and 
latitudinal angles of light source direction are 75 ~ from the camera axis. 

For all experiments, classification was performed using a nearest neighbor 
classifier. All training images of an individual were projected into the feature 
space. The images were cropped within the face so that  the contour of the head 
was excluded. 4 For the Eigenface and correlation tests, the images were normal-  
ized to have zero mean and unit variance, as this improved the performance of 
these methods. For the Eigenface method,  results are shown when ten principal 
components are used. Since it has been suggested that  the first three principal 
components are primarily due to lighting variation and that  recognition rates can 
be improved by eliminating them, error rates are also presented using principal 
components four through thirteen. Since there are 30 images in the training set, 
correlation is equivalent to the Eigenface method using 29 principal components.  

We performed two experiments on the Harvard Database: extrapolat ion and 
interpolation. In the extrapolation experiment,  each method was trained on sam- 
ples from Subset 1 and then tested using samples from Subsets 1, 2 and 3. 5 Figure 
3 shows the result from this experiment. 

In the interpolation experiment, each method was trained on Subsets 1 and 
5 and then tested the methods on Subsets 2, 3 and 4. Figure 4 shows the result 
from this experiment. 

These two experiments reveal a number of interesting points: 

1. All of the algorithms perform perfectly when lighting is nearly frontal. How- 
ever as lighting is moved off axis, there is a significant performance difference 
between the two class-specific methods and the Eigenface method.  

2. It has also been noted that  the Eigenface method is equivalent to correla- 
tion when the number of Eigenfaces equals the size of the training set [22], 
and since performance increases with the dimension of the Eigenspace, the 
Eigenface method should do no better  than correlation [3]. This is empiri- 
cally demonstrated as well. 

3. In the gigenface method, removing the first three principal components re- 
sults in better performance under variable lighting conditions. 

4. While the Linear Subspace method has error rates that  are competi t ive with 
the Fisherface method, it requires storing more than three times as much 
information and takes three times as long. 

4 We have observed that the error rates are reduced for all methods when the contour 
is included and the subject is in front of a uniform background. However, all methods 
performed worse when the background varies. 

s To test the methods with an image from Subset 1, that image was removed from the 
training set, i.e. we employed the "leaving-one-out" strategy [9]. 
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Fig. 3. Ex t rapo la t ion :  When each of the methods is trained on images with near 
frontal illumination (Subset 1), the graph and corresponding table show their relative 
performance under extreme light source conditions. 
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Fig. 4. In te rpo la t ion :  When each of the methods is trained on images from both 
near frontal and extreme lighting (Subsets 1 and 5), the graph and corresponding table 
show the methods' relative performance under intermediate lighting conditions. 

5. The Fisherface method had error rates many  times lower than the Eigenface 
method and required less computat ion time. 

3.2 V a r i a t i o n  in Fac ia l  E x p r e s s i o n ,  E y e w e a r ,  a n d  L i g h t i n g  

Using a second database constructed at the Yale Vision and Robotics Lab, we 
constructed tests to determine how the methods compared under a different 
range of conditions. For sixteen subjects, ten images were acquired during one 
session in front of a simple background. Subjects included females and males 
(some with facial hair), and some wore glasses. Figure 5 shows ten images of 
one subject. The first image was taken under ambient lighting in a neutral facial 
expression, and the person wore his/her glasses when appropriate.  In the second 
image, the glasses were removed if glasses were not normally worn; otherwise, 
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Fig.  5. The Yale database contains 160 frontal face images covering sixteen 
individuals taken under ten different conditions: A normal image under ambient 
lighting, one with or without glasses, three images taken with different point 
light sources, and five different facial expressions. 
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Fig. 6. As demonstrated on the Yale Database, the variation in performance of the 
Eigenface method depends on the number of principal components retained. Dropping 
the first three appears to improve performance. 

a pair of borrowed glasses were worn. Images 3-5 were acquired by il luminating 
the face in a neutral expression with a Luxolamp in three position. The last five 
images were acquired under ambient lighting with different expressions (happy, 
sad, winking, sleepy, and surprised). For the Bigenface and correlation tests, 
the images were normalized to have zero mean and unit variance, as this im- 
proved the performance of these methods. The images were manually centered 
and cropped to two different scales: The larger images included the full face and 
part  of the background while the closely cropped ones included internal struc- 
tures such as the brow, eyes, nose, mouth and chin but did not extend to the 
occluding contour. 

In this test, error rates were determined by the "leaving-one-out" s trategy 
[9]: To classify an image of a person, that  image was removed from the da ta  set 
and the dimensionality reduction matr ix  W was computed. All images in the 
database, excluding the test image, were then projected down into the reduced 
space to be used for classification. Recognition was performed using a nearest 
neighbor classier. Note that  for this test, each person in the learning set is 
represented by the projection of ten images, except for the test person who is 
represented by only nine. 

In general, the performance of the Eigenface method varies with the number  
of principal components. So, before comparing the Linear Subspace and Fisher- 
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Fig. 7. The graph and corresponding table show the relative performance of the algo- 
rithms when applied to the Yale database which contains variation in facial expression 
and lighting. 

face methods with the Eigenface method,  we first performed an experiment to 
determine the number of principal components that  results in the lowest error 
rate. Figure 6 shows a plot of error rate vs. the number of principal components 
when the initial three principal components were retained and when they were 
dropped. 

The relative performance of the algorithms is self evident in Fig. 7. The 
Fisherface method had error rates that  were better  than half that  of any other 
method.  It  seems that  the Fisherface method learns the set of projections which 
performs well over a range of lighting variation, facial expression variation, and 
presence of glasses. 

Note that  the Linear Subspaee method faired comparatively worse in this 
experiment than in the lighting experiments in the previous section. Because 
of variation in facial expression, the images no longer lie in a linear subspace. 
Since the Fisherface method tends to discount those portions of the image that  
are not significant for recognizing an individual, the resulting projections W 
tend to mask the regions of the face that  are highly variable. For example, the 
area around the mouth is discounted since it varies quite a bit for different 
facial expressions. On the other hand, the nose, cheeks and brow are stable 
over the within-class variation and are more significant for recognition. Thus, we 
conjecture that  Fisherface methods,  which tend to reduce within-class scatter 
for all classes, should produce projection directions that  are good for recognizing 
other faces besides the training set. Thus, once the projection directions are 
determined, each person can be modeled by a single image. 

All of the algorithms performed better  on the images of the full face. Note 
that  there is a dramatic  improvement  in the Fisherface method where the error 
rate was reduced from 7.3% to 0.6%. When the method is trained on the entire 
face, the pixels corresponding to the occluding contour of the face are chosen as 
good features for discriminating between individuals, i.e., the overall shape of 
the face is a powerful feature in face identification. As a practical note however, 
it is expected that  recognition rates would have been much lower for the full 
face images if the background or hairstyles had varied and may even have been 
worse than the closely cropped images. 
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4 C o n c l u s i o n  

The experiments suggest a number of conclusions: 

1. All methods perform well if presented with an image in the test set which is 
similar to an image in the training set. 

2. The Fisherface method appears to be the best at extrapolating and interpo- 
lating over variation in lighting, although the Linear Subspace method is a 
close second. 

3. Removing the initial three principal components does improve the perfor- 
mance of the Eigenface method in the presence of lighting variation, but  
does not alleviate the problem. 

4. In the limit as more principai components are used in the Eigenface method,  
performance approaches that  of correlation. Similarly, when the first three 
principal components have been removed, performance improves as the di- 
mensionality of the feature space is increased. Note however, that  perfor- 
mance seems to level off at about  45 principal components. Sirovitch and 
Kirby found a similar point of diminishing returns when using gigenfaces to 
represent face images [27]. 

5. The Fisherface method appears to be the best at simultaneously handling 
variation in lighting and expression. As expected, the Linear Subspace method 
suffers when confronted with variation in facial expression. 

Even with this extensive experimentation, interesting questions remain: How 
well does the Fisherface method extend to large databases. Can variation in 
lighting conditions be accommodated if some of the individuals are only observed 
under one lighting condition? i.e., how can information about the class of faces 
be exploited? 

Additionally, current face detection methods are likely to break down under 
extreme lighting conditions such as Subsets 4 and 5 in Fig. 1, and so new detec- 
tion methods will be needed to support  this algorithm. Finally, when shadowing 
dominates, performance degrades for all of the presented recognition methods,  
and techniques that  either model or mask the shadowed regions may be needed. 
We are currently investigating models for representing the set of images of an 
object under all possible illumination conditions; details will appear in [1]. 
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