
Models and Equality for Logical Programming I

Joseph A. Gognen and Josd Meseguer
SRI International, Menlo Park CA 94025

Center for the Study of Language and Information, Stanford University 94305

A b s t r a c t : We argue that some standard tools from model theory provide a better semantic
foundation than the more syntactic and operational approaches usually used in logic
programming. In particular, we show how initial models capture the intended semantics of both
functional and logic programming, as well as their combination, with existential queries having
logical variables (for both functions and relations) in the presence of arbitrary user-defined
abstract data types, and with the full power of constraint languages, having any desired built-in
(computable) relations and functions, including disequality (the negation of the equality relation)
as well as the usual ordering relations on the usual built-in types, such as numbers and strings.
These results are based on a new completeness theorem for order-sorted Horn clause logic with
equality, plus the use of standard interpretations for l~Lxed sorts, functions and relations. Finally,
we define "logical programming," based on the concept of institution, and show how it yields a
general framework for discussions of this kind. For example, this viewpoint suggests that the
natural way to combine functional and logic programming is simply to combine their logics,
getting Horn clause logic with equality.

1 I n t r o d u c t i o n

This paper argues that some very significant benefits are available to logic programming from using
certain concepts from first order model theory, namely:

• order-sorted logic and models;
• initial models;
• interpretation into rLxed models for certain fLxed sorts, functions and relations; and
• true semantic equality.

These techniques, which are all standard in the theory of abstract data types [17, 22, 14], provide an
attractive alternative to the more syntactical and operational approaches generally favored in logic
programming. Moreover, they provide a powerful approach that supports:

• user-defined abstract data types;
• built-in data types;

• combined logic and functional programming; and

• constraint-based programming, in a way that can utilize standard algorithms for standard
problems, such as linear programming.

In addition, we suggest that the more recent theory of institutions [I0] may provide conceptual insight

and clarification, as well as a broadening of the general scope of logic programming, so as to

encompass any logical system satisfying certain simple restrictions.

In a sense, this paper is an attempt to explicate our previous paper on Eqlog [II], by giving a fuller

account of its mathematical semantics, as well as further details, polemics, and comparisons with the

1Supported in part by Office of Naval Research Contracts N00014-85-C-0417 and N00014-86-C-0450, and a gift from
the System Development Foundation.

existing literature° One reason that [11] may have been obscure to many readers, is the large number
of new ideas that it tried to introduce all at once~ here, we attempt to highlight certain ideas by
ignoring others. Among the features of Eqlog deliberately downplayed here are: modules~ both
hierarchical and generic; theories and views; and "attributes" of operators (e.g., associativity and
commutativity}. Although these features greatly increase the expressive power of Eqlog, they would
also distract from the basic foundational and semantic issues that we wish to emphasize here. For
similar reasons, this paper does not develop most issues concerning the operational semantics of the
various systems that are discussed. Thus, unification, term rewriting, narrowing and resolution are
only touched upon. They are discussed in somewhat more detail in [11], and will receive full
treatment in [23] and [26].

1.1 Order -Sor ted Logic

Ordinary unsorted logic offers the dubious advantage that anything can be applied to anything; for
example,

3 * f i r s t - n a ~ e (a g e (f a l s e)) < 2 birth-placo(teuperature(329))

is a well-formed expression. Although beloved by hackers of Lisp and Prolog, unsorted logic is too
permissive. The trouble is that the usual alternative, many-sorted logic, is too restrictive, since it does
not support overloading of function symbols such a s _ * for integer, rational, and complex numbers.
In addition, an expression like

(-4 / -2)
does not, strictly speaking, parse (assuming that factorial only applies to natural numbers). Here, we
suggest that order-sor ted logic, with subsorts and operator loading, plus the additional twist of
r e t r a c t s (although they are not discussed here; see [14]), really does provide sufficient expressiveness,
while still banishing the truly meaningless.

Although the specialization of many-sorted logic to many-sorted algebra has been very successfully
applied to the theory of abstract data types, many-sorted algebra can produce some very awkward
specifications in practice, primarily due to difficulties in handling erroneous expressions, such as
dividing by zero in the rationals, or taking the top of an empty stack. In fact there is no really
satisfactory way to define either the rationals or stacks with MSA. However, order-sorted algebra
overcomes these obstacles through its richer type system, which supports subsorts, overloaded
operators, and total functions that would otherwise have to be partial. Moreover, order-sorted algebra
is the basis of both OBJ [9] and Eqlog [11]. Finally, order-sorted algebra solves the
constructor-selector problem, which, roughly speaking, is to define inverses, called selectors, for
constructors; the solution is to restrict selectors to the largest subsorts where they make sense. For
example, pop and top are only defined for non-empty stacks. [15] shows not only that order-sorted
algebra solves this problem, but also that many-sorted algebra cannot solve it.

The essence of order-sorted logic is to provide a subsort partial ordering among the sorts, and to
interpret it semantically as subset inclusion, among the carriers of a model, and to support operator
overloading that is interpreted as restricting functions to subsorts. Two happy facts are that order-
sorted logic is only slightly more difficult than many-sorted logic, and that essentially all results
generalize from the many-sorted to the order-sorted case without complication. See [14] for a
comprehensive treatment of order-sorted algebra. This paper broadens the logical framework to allow

not only algebras, but also models of arbitrary first-order signatures, with both function and predicate
symbols, including equality, and gives rules of deduction for Horn clauses in such a logic~ proving their
completeness and several other basic results that are directly relevant to our model-theoretic account
of logic and functional programming, including initiality and Herbrand theorems.

1.2 Mode l s

Perhaps the origins in proof theory explain the obsession of logic programming theorists with syntactic
and proof theoretic constructions. In any case, we believe that more semantic and more abstract tools
provide a basis that is both broader and more powerful. In particular, we feel that the usual Herbrand
Universe construction is too syntactic and is also unnecessarily restrictive, because:

1. it does not provide for built-in types, such as numbers and infinite trees;

2. it does not provide for user-defined abstract data types;
3. it does not (directly) address the phenomenon of representation independence for terms and for

data types, whether built-in or user-defined; and
4. the proofs are more concrete and computational than necessary 2.

Of course, these deficiencies can all be patched without great difficulty - for example, [19] shows how
to include built-in numbers - but after a few such patches, you have something enough like the initial
model approach that you might as well, or better, take advantage of the powerful machinery
associated with that tradition.

The reasgn for being interested in models is just that a standard model can provide the implementer
with a clear standard for correctness, and can also provide the programmer and user with a clear
model for what to expect when programs are actually run.

The reason for being interested in standard interpretations into particular semantic domains on some
sorts, functions and relations (while leaving others free) is that then one can use standard algorithms
to solve particular problems over such domains, for example, linear programming algorithms over the
real numbers. This gives a great deal of flexibility, since one can still use initiality (i.e., abstraction)
over other sorts. We argue below that this provides an elegant foundation for constraint-based
programming.

1.3 E q u a l i t y

Equational logic, which is essentially the logic of substitution of equals for equals, provides a
foundation for functional programming languages. For example: [18] gives (what can be seen as) an
equational description of Baekus' FP [2]; [24] describes an "equational programming" language3;

and [9] describes OBJ2, a language that combines initial algebra semantics for executable "objects"
(defined bY very general sets of user-supplied conditional order-sorted equations), with "loose" algebra
semantics for non-executable "theories" (defined by arbitrary sets of equations).

2Not everyone will regard this as a deficiency!

3This language has some very strong restrictions, including: no repeated variables on lefthand sides, no overlap among
equations, only one sort of data, no conditional equations, and a strong sequentiality condition; on the other hand, it is
much easier to compile efficient code from sets of equations that satisfy such restrictions.

In the context of fh-st order logic, equality is generally treated as a special relation~ interpreted as real
semantic equality in models, rather than merely axiomatized. This is the sense in which one speaks of

"first order logic with equality" and of "Horn clause logic with equality." Complete sets of rules of
deduction are well-known for these logical systems, and the latter has been used to combine logic and
functional programming [11]. This paper later gives corresponding rules for order-sorted Horn clause
logic with equality.

Equality is also useful in understanding constraint-based programming, because equations can be used
to define the basic data structures, and then various relations of special interest can be defined
recursively over these data structures, and/or provided as built-ins.

1.4 I.nitialRy

Initial models free one from commitment to any particular representation; that is, they support
abstraction. In particular, initiality handles abstract data types for logical programming languages
with great fluency and convenience, and similarly it can be used to defme functions and relations over
built-in types [11]. Initial models also provide an account of the conceptual world of a program, in the
sense of being "closed worlds" or "standard models." In particular, they provide a standard of
correctness for the implementer, as well as a model for what results to expect for the programmer.

Finally, initiality is a so-called "universal property," that there exists a unique mapping satisfying
certain conditions, and it is well-known that, in many cases, one gets a much cleaner mathematical
theory, with simpler and more conceptual proofs, from using universal characterizations of objects of

interest, as compared to using concrete constructions for them [21]. In fact, the familiar
characterization of "free" by the existence of a unique mapping with certain properties that extends
another, is a special case of initiality.

One can better understand initiality through the so-called "no junk" and "no confusion" conditions
(originally from [7]}; these can also be seen as "completeness" and "soundness" conditions,
respectively. Assume that signatures provide symbols for construcing sentences, including functions
and constants (in ~) and relations (in H}, and that models contain "data elements." Given a signature
~,H and a set C of ~,II-sentences, call a ~,H-model s t a n d a r d if and only if:

1. N o junk: Every data item is denoted by a term using the function (and constant} symbols in •.
(A data item that cannot be so constructed is "junk."}

2. No confusion: a predicate holds of some data elements if and only if it can be proved from the
given sentences; in particular, two elements are identified if and only if they can be proved equal
from the given sentences. (Two data items that are equal but cannot be proved so are
"confused.")

For Horn clause logic, either with or without equality, either order-sorted, many-sorted, or unsorted,
these two conditions define the data items uniquely up to renaming, i.e., they define a model up to
isomorphism. Moreover, "no junk" is equivalent to structural induction over the signature, and the
two conditions together are equivalent to the "unique homomorphism" condition called in l t ia l i ty
(see [22] for details}.

1.5 Cons t ra in t s

In its general sense, a cons t ra in t is a logical relation that one wishes to impose on a set of potential

solutions. In principle, such constraints could be arbitrary first order sentences involving arbitrary
(interpreted and uninterpreted) relations; but in practice, constraints are limited to sets of atomic
sentences, such as

a * X + b * Y < c * g + d ,
a * X * X + b * X * c = 0 ,
a * X * Y U b * X + c __ Z,

where the variables in the first two constraints range over some kind of number (e.g., integers, or
rationals, or complexes), and in the second range over sets of strings from some fixed alphabet (* is
multiplication in the first two, and is concatenation, extended to sets, in the third). Although Prolog
would, in principle, be ideal for constraint-based programming, it does not suffice in practice, because
of the limited capabilities of the built-in relations. Moreover, the usual semantic basis of Prolog does
not extend to built-ins without some extra fuss and awkwardness {e.g., as in [19]).

We refer to sorts, functions, and relations upon which interpretation into a fLxed (standard) model are

imposed as built-ins. Two obvious examples of such models are numbers and infinite trees, with their

usual functions and relations. The pioneering work of Jaffar and Lassez [19] and of Jaffar and
Michaylov [20] treat these and a number of other examples, in the context of a constraint logic
programming language called CLP. These authors also treat a number of other topics, some of which
are not considered here, including negation as failure and compactness conditions [19].

1.6 Logical Programming

Various aspects of programming languages are captured by various aspects of logic. The functional
aspect of programming is captured by equational logic [9]. Strong typing is captured by many-sorted
logic. Logic programming (which might be less misleadingly called relational or Horn clause
programming) is captured by Horn clause logic. Object-oriented programming is captured by
reflective logic, in which there is an abstract data type of program texts built into the language [12].

The perspective of logical programming suggests that the right way to combine various programming
paradigms is to discover their underlying logics, combine them, and then base a language upon the
combined logic. This permits one to mix and match various programming language features. For
example, combined functional and logic programming is captured by Horn clause logic with
equality [11]. Combined functional and object-oriented programming is captured by reflective
equational logic (we call this language FOOPS, see [12]). We currently feel that reflective order-sorted
Horn clause logic with equality is a good candidate for unifying the functional, relational and object-
oriented paradigms into a single simple programming language which also has powerful database
capabilities.

The theory of institutions [10] can provide a formal basis for the notion of logical programming.
Informally, an institution is a logical system, with formal notions of sentence, model, and satisfaction.
Then, a logical programming language L has an associated logical system (i.e., institution) I such
that:

• the statements of L are sentences from I;
• the operational semantics of L is (a reasonably efficient) deduction in I; and

• the denotational semantics of L is given by a class of models in 1 (preferably initial models)o

2 O r d e r - S o r t e d A l g e b r a

The following assumes familiarity with S-sorted sets and functions (for S a family of sorts) and with
many-sorted algebra signatures (S,S), Z-algebras and F_~-homomorphisms [22], and generalizes these
concepts to order-sorted algebra.
Def in i t ion 1: An o r d e r - s o r t e d s i g n a t u r e is a triple (S,<~,~) such that (S,~) is a many-sorted
signature, (S,~} is a partially ordered set 4, and the operators satisfy the following m o n o t o n i e i t y
conditionS:

if OE~wl,sln~w2,s 2 and if wl w2, then s l ~ s 2 .
When the sort set S is clear, we write E for (S,Z). Similarly, when the partial order (S ,~) is clear, we
write ~ for (S,_~,E). Also, we may write a: w--,s for OEEw, s to emphasize that a denotes a function
with a r i t y w and co-arity (or va lue sort} s. An important special case is w~-~, the empty string;

then aE~,),,s denotes a c o n s t a n t of sort s. I"1

Regular signatures allow one to define the least sort of a term, and to give an order-sorted
generalization of the usual term algebra construction. Intuitively, regularity says that overloaded
operators with argument sorts greater than a given sort string are consistent under the restriction of
arguments to subsorts.
Def ini t ion 2: An order-sorted signature E is regular iff given w0_~wl in S* and a in ~wl.sl there is
a least (w,s)ES*xS such that ~ w , s and w0_~w. If, in addition, each connected componentL6 of the
sort poset has a top element, then the regular signature is called coherent . D
Def ini t ion 3: Let (S,_~,E) be an order-sorted signature. Then an (S,_~,E)-algebra is an
(S,~.)-algebra A such that

(1) s ~ s ~ in S implies AsC__A s, and

(2) O~wl,slnEw2,s 2 with sl_~s2 and wl_~w2 implies An: Awl--+Asl equals An: Aw2--.As2 on Awl .
When (S,<:) is clear, (S,~,E)-algebras may be called o r d e r - s o r t e d F_,-alsebras. We may write A w's (Y

instead of An: Aw-*A s .
Def in i t ion 4: Let (S,~,E) be an order-sorted signature, and let A and B be order-sorted
(S,<~_,E)-algebras. Then a (S ,_~ ,E)-homomorphism h: A-*B is a (S,E)-homomorphism satisfying the
following r e s t r i c t i on condition

s_~s ! and aEA s imply hs(a)=hs(a) .
When the partially ordered set (S,<:) is clear, (S, ~,E)-homomorphisms are also called o r d e r - s o r t e d
E - h o m o m o r p h l s m s . The (S,_~,~)-algebras and (S,~,~)-homomorphisms form a category that we

denote OSAlg E . E1
Order-sorted algebra strictly generalizes many-sorted algebra, in the sense that any many-sorted
(S,E)-algebva is an order-sorted (S,~,E)-algebra for ~ the trivial ordering on S, with s<:s ~ fff s----st;

4We extend the ordering < on S to strings of equal length in S* by s. s <s t. s I iff sisal i for l<~i<~n. Similarly, *~
, - - l t t 1"'" n ~ 1 " " n ~ - - extends to pairs (w,s) in S X S by {w,s)~(w ,s~ iff w~w and s~s.

5Although not needed for validity of our results, this very natural condition rules oat some bizarre models.

0Given a poset (S,_~), let -- denote the transitive and symmetric closure of _~. Then ------- is an equivalence relation
whose equivalence classes are the connected eomponetJ of (S,_~).

then OSAlgE-~AIg E and the forgetful funetor OSAIgE--+AIg E is the identity~ Similarly, the rules of
order-sorted deduction given later specialize to many-sorted rules for this ordering.
Defini t ion 5: For (S,_~,E) an order-sorted signature and A an order-sorted T-algebra, an
order-sorted ~-congruence ------ on A is a many-sorted ~.-congruence ~------{~-s I sES} such that

for each s,sJES and a,a%As, whenever s ~ s t then a--sat iff a--da m .

E1

Let f: A-+B be an order-sorted E-homomorphism. Then the kernel of f is an S-sorted family of
equivalence relations ----f defined by a- - . a t iff f (a)w~-f (a r) and denoted ker(f). It is easy to check that

l ,S S S

ker(f) is an order-sorted E-congruence. For (S,<~,r.) a coherent order-sorted signature, A an order-
sorted E-algebra, and ----- an order-sorted T.-congruence on A, the quo t i en t of A by ---- is the order-
sorted ~-algebra A/---- defined as follows: for each sort s, the carrier of maximal sort in its connected

component is (A/----)max(s) ~- Amax(s)/------max(s) and the carrier of sort s is (A/-----)s ---- qmax(s)(hs), for
qmax(s): Amax(s)-+(A/-----)max(s) the natural projection of each element a into its ----max(s)-equivalence

.... s - A n A a -- class. The operation are defined by: (/-----)a([al],...,[a]) ---- [a(1,...,an)l, which is well-defined since

-- is an order-sorted E-congruence. The order-sorted algebra A/----- has a natural surjective order-

sorted Z-homomorphism q: A-*A/-- defined by restricting the qmax(s) to the remaining sorts and such

that ker(q) ----- ----. This homomorphism is called the quotient map associated to the congruence ___.

Lemma 6: Universal Property of Quotients: Let E be a coherent order-sorted signature, A an order-

sorted E-algebra and ------ an order-sorted congruence on A. Then the quotient map q: A--*A/~-

satisfies the following universal property: If f: A-*B is any order-sorted r.-homomorphism such that

------Cker(f), then there is a unique Z-homomorphism u: A/--------*B such that uoq~f. VI

Given an order-sorted signature E, we construct the o rde r - so r t ed F_,-term algebra T£ as the least
family {T27,s I sES} of sets satisfying the following conditions (note our somewhat pedantic, but
temporary, use of ~ and ~ for parentheses as formal syntactic symbols):

• EX,s___Ts, s for sGS;
• T~,s,C T~:,s if s '<s;
• if oE~.w, s and if tiET2~,s i where w----sl...sn~L then (the string) 4tl . . . tnlETE, s .
• Also, for oEZw, s let Ta: Tw--*T s send tl,...,tn to (the string) ~ t l . . . t n l .

These terms are ground terms, i.e., they involve no variables. Terms with variables arise from ground
terms by enlarging the signature Z with additional constants for the variables. We assume that each
variable comes with a unique associated sort, so that variables form an S-sorted set X with Xsf'~st-----O
if s:~gs w. This gives an extended signature Z(X) (that is also regular) and an algebra T£(X) also denoted
TE(X). Although a term in an order-sorted term algebra may have many different sorts, we still have
F a c t 7: For Z a regular signature, each term t in T E has a least sort, denoted LS(t). [7
Defini t ion 8: Let E be an order-sorted signature. Then an order-sorted E-algebra I is Init ial in the
class of all order-sorted E-algebras iff there is a unique order-sorted ~.-homomorphism from I to any
other order-sorted E-algebra. I-I
Theorem 9: Let E be a regular order-sorted signature. Then T,~ is an initial order-sorted
E-algebra. V1
Fact 10: Let A he an order-sorted E-algebra, X an S-sorted set of variables, and let f: X-*A be an
S-sorted function (with X disjoint from Z); such a function is called an a ~ i s n m e n t from X to
A. Then (by initiality) there is a unique order-sorted Z-homomorphism f*: TL~X)--*A that extends f.
This fact is usually expressed by saying that T~(X) is the f ree order-sorted F_~algebra on X.

For (S,~,~) a coherent order-sorted signature and X,Y two S-sorted variable sets~ a subs t i tu t ion is
an S-sorted map e: X--*T~Y); this is a special assignment, where the values of variables lie m a term
algebra. The unique order-sorted E-homomorphism 0*: T~X)---*TL~Y } that extends 0 is also be

denoted 0.

3 Order-Sorted Model T h e o r y

Order-sorted models generalize order-sorted algebras by allowing predicates instead of just function
symbols, and order-sorted Horn clause logic allows arbitrary Horn clauses instead of just conditional
equations. Order-sorted Horn clause logic has a number of advantages over unsorted logic; in general,
these advantages are extensions of the advantages of order-sorted algebra over unsorted algebra, such
as the great expressive power given by overloading and strong but still flexible typing, and the
capacity to handle errors. An additional advantage of order-sorted Horn clause logic that has great
practical importance is that sometimes the search space and required time for theorem proving can by
drastically cut by making use of subsorts, and shown, for example, by work of Walther [27] on the

steamroller example.

This section first extends the basic notions from algebras to models, and then gives rules of deduction

for order-sorted Horn clause logic with equality, with a proof of their completeness. We then construct
the initial model associated to a set of Horn clauses, and prove Herbrand's theorem, both in general,
and for the special case where all sorts are non-empty. Finally, we prove the existence of free
extensions, and apply this to built-ins.

3.1 Basic Definitions

Definition 11: An order-sorted signature with predlcate~ is a quadruple (S,<~,~., H) such that
(S,_~,~) is a coherent order-sorted signature, and H~{H w [wES +} is a family of predicate symbols
satisfying the conditions below. We use capital letters P,Q,PI,P2,... to denote predicate symbols. We
may write "P: w" for PEH w and then call w an a r i ty of P. As with function symbols, we allow
overloading of predicate symbols, i.e., P can have several arities. We assume the following two
conditions:

1. There is an equality predicate symbol ---- of arity ss in H iff s is the top of a connected
component of the sort poset S.

2. Regularity: For each wO such that there is a P: wl with wO<wl, there is a least w such that P:
w and w0 w.

When the sort set S and partial order ~ are clear, we write E,H for (S,~,~,H). El
Definltlon 12: Let (S,<~,~,H) be an order-sorted signature with predicates. Then an
(S,_~,~,II)-model is an order-sorted (S,<~,~.)-algebra M together with an assignment to each P: w in H
of a subset MWpCMw such that:

(i) for P the identity predicate ~ : ss the assignment is the identity relation, i.e.,
(M~ffi)={(a,a) [aEM }; and

(ii) whenever P: wl and P: w2 and wl<(w2 then MWlp----MwlrLMW2p.

E1
Definition 13: Let ~,H be an order-sorted signature with predicates and let M and MS be order-
sorted ~,II-models. Then a ~ ,H-homomorphlsm h: M--*bf is an order-sorted ~,H-homomorphism
such that for each P: w in H,

fw(al,...,an)EM~p whenever (al,.o,an)EMW P.
The ~,H-models and E,H-homomorphisms form a category that we denote ModE,/ /° ~]
Order-sorted model theory strictly generalizes many-sorted model theory, in the sense that any many-
sorted (S,~,H}-model is an order-sorted (S,_~,Z,H}-model for ~ the trivial ordering on S, with s_(s ~ iff
s----s(Similarly, the rules of order-sorted deduction given later specialize to rules for many-sorted
deduction for the trivial ordering.

Given an order-sorted signature Z,H with predicates, we can define the E,H-model T£,II consisting of
the Z-term algebra T E and having (TEj/W)p----$ for each P: w in H different from the identity
predicate (~ is of course interpreted as actual identity). For X an S-sorted set of variables disjoint

form Z, the model TE,/-/(X } is defined in a similar way by enlarging E with the constants in X. It is

then immediate to generalize to models the notion of an initial algebra and to check the following:
T h e o r e m 14: Let ~,H be an order-sorted signature with predicates. Then T% H is an initial order-
sorted F.,H-model. [-1
F a c t 15: Let M be an order-sorted ~,H-model, X an S-sorted set of variables disjoint from Z, and let

f: X ~ M be an S-sorted assignment. Then, by initiality, there is a unique order-sorted
]C,II-homomorphism f*: T£,//(X)~M that extends f. This fact is usually expressed by saying that

T£,11(X) is the f ree ~.,H-model on X. [7

We now introduce additional notation for atoms and Horn clauses. For ~,H an order-sorted signature

with predicates we define E ,H-a toms as expressions P(tl,...,tn) such that the t r . . . , t n are F__~-terms
(possibly with variables} and there is a w----Sr..S a with P: w in H such that t i has sort s i for i----1,...,n.
Thus, an equation t~-t ~ is an atom where P is the identity relation. We will use symbols A,B,A1,A2,...
for atoms. For 0 a substitution and A=P(tl , . . . , tn) an atom, 0A denotes the atom A=P(0[tl],...,0[tn]).
We interpret a set of atoms {Ar...,An} as a conjunction. Although we may drop the curly brackets
and write A1,...,A n we still assume that this denotes a set, so that the order does not matter and there
are no repeated atoms. The empty set of atoms has the empty notation, i.e., it is denoted as a blank.
By a ~ ,H-Horn c lause we mean an expression

(VX) A ~ B1,...,B m
where X contains all the variables occurring in all the terms in the atoms A,B1,...,B m. We call A the
head and the set B1,...,B m the body. When the body is empty, the Horn clause is called an atomic
(universal) sen tence and the notation "(VX) A ¢=" is abbreviated to "(VX) A." When all atoms have
the equality predicate as their predicate symbol, the Horn clause is called a eondl t |onal equation; if,
in addition, the body is empty it is called an equation.
Def init ion 16: For E,H an order-sorted signature with predicates, M a ~,H-model and

(VX) A ¢= B1,...,B m a Z,H-Horn clause, we say that M n t i s f l e s (~X) A ¢= BI,...,B m if (assuming

A-~Q(tl,...,tn) , Bi-----Pi(tir.-.,tin)) for any assignment f: X ~ M such that 7

(f*(til),...,f*(tini))EMWipi ~ r i--l , . . . ,m,
then also

(f*(tl),...,f*(t,))EMWQ.

Similarly, for C a set of horn clauses we say that M satisfies C iff it satisfies each clause in C; such a
model is then called a ~,H,C-model, and the category of all such models is denoted M o d ~,/-/, C. [-I

7Note that, by regularity, the least arity wi of Pi is uniquely defined.

10

S.2 Order-Sorted Deduct |on

This section presents a new completeness theorem for order-sorted Horn clause logic with equality.
This theorem provides a basis for the correctness of implementations for languages like Eqlog [11], as
well as the basis for our development of a semantic theory for constraint languages.

Given an order-sorted signature ~,II with predicates and a set ¢ of E,H-Horn clauses, the following are
the rules for deriving atomic sentences:

(1) Reflexivity: Each equation (VX) t----t is derivable.
(2) Symmetry: If (VX) t----t' is derivable, then so is (VX) t'-----t.
(3) Transitivity: If the equations (VX) t-----~t I, (VX) t~----t " are derivable, then so is (VX) t~-~t n.

(4) Congruence: If ti,tliET~X)s for i----1,...,n, and if (VX) t i=t t i is derivable for i----l,.., n, then:
. _ ~ ° " • I t " " • for any a: s l...s n s m ~ the equatmn (VX) a(tl,...,ta)-----a(t 1,...,t n) Is derivable;

• for any P: Sl...s n in II (other than the identity predicate) if the sentence (~X) P(tl,...,ta) is
derivable, then so is (VX) P(tll,...,tta).

(5) Modus Ponens: If (VX) A ~ BI,...,B m is in ¢ and if 0: X--,TE(Y) is a substitution such that for
each B i in the body of the clause the atomic sentence (VY) 0B i is derivable, then so is (VY) 0A.

For X an S-sorted set of variables, we define a E,II-model TB,H,C(X) as follows: First, notice that for t
and t t terms of the same sort, the property

(VX) t = t r is derivable from C using rules (1)-(5)
defines an order-sorted ~-congruence ~ X ~ o n TAX) since, by rules (1)-(4), "~x) is a many-sorted
E-congruence relation and, in addition, "~('x) is an order-sorted E-congruence relation, since for any
sort s such that t, ttET#X)s we have t--~),st~,__ iff (VX) t = t ~ is derivable from C using rules (1Hs), a

property that does not depend on s. Thus, we can define an order-sorted F_,-algebra T/:,c(X) as the
o t ~ C qu tien of TAX) by the order-sorted congruence (x)" We can then give a E,II-model structure

TE,H,c(X) to TE, c(X) by defining ([tl],...,[tn])eTE,H,¢(X)Wp iff {VX) P(tl,...,tn) is provable from ¢ by
{1)-(5) (where w----Sl,...,s n and t i has sort si). This definition is independent of the representatives t i by
(4). We can now prove
L e m m a 17: TE,//,¢(X) satisfies C.

Proof: Let (VY) A ~ BI,...,B m be a Horn clause in ¢ (with, say, A=Q(tl, . . . , tn) , Bi=Pi(til,...,tin)) and
let 0o: Y--* T~ H ¢(X) he an S-sorted assignment such that (00*(til),...,0o*(tin))ET E H C(X)W~P f°r i

' ' . i ' ' . i i----1,...,m. By choosing a representative tET~X)s for each [t]=e0(y), yEY s , we then obtain a
substitution 0: Y-*T~(X) such that, by hypothesis (and by initiality of T~,//(Y) making eo*=qo0 for q
the quotient homomorphism q: TE,B(X)--*Tv,,II,¢(X)) we have (VX) 0B 1 derivable from ¢ using rules
(1)-(5) for i~l , . . . ,m. Thus, by (5) we then have (VX) eA derivable from ¢ using rules (1)-(5), i.e., we

have (o0*(tl),...,Oo*(tn))ETE,ll,¢(X)W'Q as desired. 17
Theorem 18: Completeness Theorem: For ~,II an order-sorted signature, ¢ a set of V,,H-Horn
clauses and (VX) A a E,II-atomic sentence, the following are equivalent:

• (VX) A is derivable from ¢ using rules (1)-(5).
• (VX) A is satisfied by all order-sorted ~-algebras that satisfy C.

Proof: We leave the reader to check soundness, i.e., that the first assertion implies the second, and
concentrate here on proving completeness, i.e., that any sentence that is satisfied is provable. Let
(VX) P(tl,...,tn) be a sentence satisfied by all E,H,C-models. Then, it is satisfied by T~,H,¢(X). In
particular, for the assignment q: X-*TE,II,¢(X) associated to the quotient homomorphism

q: T2:,II(X)---.TE,FI, c(X)) we have

]]

([tl],.--,[tnl)ETE,n,c(X)Wp
which by definition just means that the sentence (VX) P(t 1 tn) is derivable from C with rules (1)-(5).

I1
Coro l l a ry 19: Initiality Theorem: For ~,H an order-sorted signature with predicates and ¢ a set of
~,II-Horn clauses, TE,1I,¢(~) (henceforth denoted T£,//,¢} is an initial model in the class of all
~,H,¢-models, and TF,,H,¢(X) is a free model on X in that same class.
P roof : Let M be an order-sorted model satisfying ¢, and let a: X--*M be an assignment. We have to
show that there is a unique order-sorted ~,II-homomorphism a&: TEj/,¢(X)--.M extending _a, i.e., such
that _a&(q(x))=_a(x) for each xeX, where q denotes the quotient homomorphism q: T,F, jI{X)-....TE,II,¢(X).
Existence of a_ ~ follows from the Completeness Theorem, by (i) and (ii} below:

(i) a*(t)=_a(t'} for each equation (VX) t--~t r provable from ¢ by the rules (1}-(5).

This means that ~-,~x)Cker(_a*) and by the universal property of quotients (Lemma 6) there is a unique
order-sorted ~-homomorphism _a~: T~,c(X)--*M with a*~_a~oq.

(ii) ([tl],...,[tn])eT27,/-/,¢(X~W p iff (for representatives t i of sort si, with w-----Sl,...,s) (VX) P(tl,...,tn) is
provable from ¢ by the rules (1)-(5} iff (by the Completeness Theorem} (VX) P(tl,...,tn} holds in
all models that satisfy ¢.

Thus, (_a~[tl],...,_a~[ta])-----(a*(tl),...,_a*(t~))EMWp which shows that a ~ is a ~,H-homomorphism.
&

Uniquenes of _a then follows by combining the universal property of T~ .~/(~ as a free order-sorted
model on X with the universal property of q as a quotient. Indeed, let a : TE,H,C(X)~M be another
order-sorted homomorphism such that _a$(q(x))=a(x} for each xeX. Then, since TE,/7(X} is a free
order-sorted model on X, we have a*~-a$oq and by the universal property of q as a quotient we have
a$----a & as desired. For X-----$ the empty S-sorted family, this proves that T~,II, C($)=T,~,I-I, ¢ is an
initial model in the class of models that satisfy C. E1

3.3 Herbrand's T h e o r e m

Usual logic programming practice considers queries of the form B1,...,B n. Such queries are answered
positively if a substitution o is found such that each oB i is provable from the clauses C that constitute
the program. Such a query is simply an existential formula of the form (~) BI,...,B n and what is
being established is that the formula holds for all models that satisfy C. Herbrand's theorem reduces
provability of such a formula to satisfaction in the initial model. This subsection extends the rules of
order-sorted deduction to handle existential quantification of conjunctions of atoms by giving a very
simple proof of a general Herbrand's theorem that hold for any order-sorted Horn clause logic with
equality specification (E],H,C). Before the advent of resolution in the theorem-proving literature [25],
the methods used to prove that an existential formula was satisfied were brute-force, "saturation"
methods that enumerated all possible elements of the initial model until a successful instance was
found. Assuming that all the sorts of the initial model are nonempty, we can give simpler rules of
deduction that dispense with explicit quantification, and we can prove a second version of Herbrand's
Theorem. This second version provides a foundation for proofs by resolution in the extended context
of order-sorted logic with equality.
Def in i t ion 20: For E],H an order-sorted signature with predicates, we call an existential formula of
the form (HX) B1,...,B n where X is an S-sorted variable set that contains all variables that appear in
terms of the E,H-atoms BI,...,B a a E,H-exlstentlal con junc t ion (of atomm). Given a El,H-model M,
we say that M sat i s f ies the above existential conjunction iff there is an assignment a_: X--~M, called a

witness such that (assuming, say, Bi---=Pi(til,...,tiai) with P: sl...s n and t i of sort si) we have
(_a*(tl),...,_a*(ta))EMWp. F']

]2

T h e o r e m 21: Herbrand's Theorem: For ~,II an order-sorted signature with predicates, C a set of
r,,H-Horn clauses, and (3X) BI,...,B n a ~,H-existential conjunction, the following are equivalent:

• (SX) B1,...,B n is satisfied by all ~,H,C-models.
• (SX) B1,...,B a is satisfied by the initial ~,H,C-model T,r,,l-l, C.

Proof : Of course, if (~{:} B1,...,B n ~ s~tisfied by all ~,II,C-models, it is satisfied by the initial one.
Conversely, if 0: X~Ty,,II, C is a wi~-:~ for (SX) B1,..,Bn, in TE,II,¢ and if M is a ~,H,C-model with
h: T~7,I-I,c~M the unique ~,C,H,C-hom~.norphism, then it follows from the homomorphic property of h

that ho0 is a witness for (~X) B1,...,B n in M. [3
Coro l l a ry 22: Adding the following rule to the rules (1}-(5} of order-sorted deduction gives a sound
and complete set of rules to derive, for C a set of ~,H-Horn clauses, all valid universal atomic formulas
and all valid existential conjunctions of atoms.

{6) Existential Introduction: If, for 1----1,..,n, (V0)eB i is derivable, with e: X--*T~,

then (~X) B1,...,B n is derivable.

[3

So far nothing in this paper has required that all sorts of a model are nonempty. There are good
reasons for not imposing such a restriction on the models. Indeed, excluding empty sorts one would in
general fail to have initial models, and parameterization would be awkward [13]. Nevertheless, in the
context of existential quantification there are definite advantages in the case where models do not have
empty sorts. This happens exactly when all the sorts of the initial algebra T• are nonempty, for ~ the
order-sorted signature of function symbols in question; we will then say that the order-sorted signature
with predicates ~,II has n o n e m p t y sorts . We will show that the rules of deduction become simpler
in this case. We first prove a lemma that holds for any signature at all. The simplest proof of this
lemma would be a model-theoretic soundness proof. However, we prefer to give a proof-theoretic
proof that shows explicitly why the substitution rule is not needed.
L a m i n a 23 : Substitution Lemma: For ~.,II an order-sorted signature with predicates and C a set of
~,II-Horn clauses,

Substitution: If (VX) A is derivable from C by (1)-(5) and if e: X--*T~Y} is a substitution, then

(VY) OA is also derivable.
P r o o f : The derivable formulas can be obtained in a countable number of stages, with stage n+ l
adding the new formulas that can be obtained from the those in stage n by (1)-(5) using C. In the first
stage, we just have all equations (VX) t----t (by reflexivity) and all atomic sentences (VY) eA for each
(VX) A in C and arbitrary 0X--*TL.(Y) (by Modus Ponens). Consequently, the first stage is trivially
closed under substitution. Let us assume as our induction hypothesis that stage n is closed under
s~bstitution; we only need to show that stage n+ l also is:

• If (VX) t----t l is in stage n, then, by symmetry, {VX) t ' = t is in stage n + l and so is (VY) e(tf)-----e(t)
since (VY) e(t)~e(t r) is in stage n by hypothesis.

• If the equations (VX) t ~ f , (VX) t'-----t ~ belong to stage n, then by transitivity, (VX) t----t ~ belongs
to stage n + l and so is (VY') e(t)---~e(t w) since (VY) e(t)----0(t'), (VY) e(te)--~e(t W) are in stage n by

hypothesis.
• If ti,tt.ET~ ~(X)si, i-----1,..,k, and if the equations (VX) ti----~tt i belong to stage n for i~l , . . . ,k, then by

congruence:
o for any a: Sr..sk-+S in E the equation (VX) a(tr...,tk)--a(fl,...,t 'k) belongs to stage n+ l and

so does the equation (VY) o(0(tlJ,...,e(tk))~o~0(t#l),...,e(trk)), by applying the induction
hypothesis to the original equations;

]3

13

o for any P: Sl...s k in H (other than the identity predicate) if the sentence (VX) P(tl,.°o,tk)
belongs to stage n, then (VX) P(tWl,...,tlk) belongs to stage n+l and so does (VY) P(tnl,..:t~k)
by applying the induction hypothesis to the original equations and to (VX) P(troo.,tk).

• If (VX) A ~= B1,...,B m is in C, and if o: X-*T~Y) is a substitution such that for each B i in the
body of the clause the atomic sentence (VY) eB i belongs to stage n, then, by Modus Ponens,
(VY) 0A belongs to stage n+ l and so does (VZ) peA by applying the induction hypothesis to the
sentences (VY) eB i i----1,...,m.

Using the Substitution Lemma we can now establish the following version of Herbrand's Theorem for
signatures with nonempty sorts:
Corol lary 24: Herbrand's Theorem for Nonempty Sorts: For E,II an order-sorted signature with
predicates and nonempty sorts, C a set of ~,II-Horn clauses, and (~() BI,...,B n a E,H-existential
conjunction the following are equivalent:

. (~) B1,...,B n is satisfied by all E,H,C-models.

. There is a substitution e: X--,TL-(Y) such that (VY) 9B i is provable from C using (1)-(5) for
i----1,...,n.

Proof: By Herbrand's Theorem we only have to prove that the second condition is satisfied by some
substitution 8: X~T~Y) iff it is satisfied by some ground term substitution t: X--.T E. This is so since,
by the nonempty sort assumption, we can always define a substitution p: Y--,T E and, by the
Substitutivity Lemma, we can satisfy the condition with d=poo. 17

Nonempty sorts allow dispensing with quantification over sets of variables. This also follows easily
from the Substitutivity Lemma, by the following corollary, which says that the choice of a superset X
of the set of variables occurring in an atom A is immaterial for the validity of the universally
quantified sentence:

Corol lary 25: For ~,II an order-sorted signature with predicates and nonempty sorts, for A a
~,H-atom, and C a set of ~,II-Horn clauses, then

(VX) A is provable from ¢ using (1)-(5) iff (Vvars(A)) A is also,
where vars(A) is the S-sorted set of variables occurring in A (and, of course, vars(A)_CX).
Proof: The "if" part is clear, using rule of substitution applied to the inclusion vars(A)_X_ T~X).
For the "only if" part, by the nonempty sort assumption one can always define a substitution
X--*T~vars(A)) that is the identity on vars(A) by sending the variables in X-vats(A) to ground terms.

D

We finish this subsection with a simplified and generalized set of sound and complete proof rules for
the case of nonempty sorts. We leave the universal quantification implicit for atoms and Horn clauses,
and treat not only atomic sentences, but also conjunctions B1,...,B a. Similarly, we simplify existential
quantification by omitting the set of variables, since our last corollary, combined with Herbrand's
Theorem for nonempty sorts, shows that choice of a superset of variables is also immaterial for
existential quantification; we just write 3 Br...,B n. Here are the rules of deduction for ~,H an order-
sorted signature with predicates and nonempty sorts and C a set of]C,H-Horn clauses to derive
(implicitly universal) conjunctions of atoms and existential conjunctions of atoms:

(1) Reflexivity: Each equation t--~t is derivable.
(2) Symmetry: If t ~ f is derivable, then so is twit.

14

(3) Transitivity: If t-----t~,t~---t ~ is derivabie~ then so is t~---t ~.

(4) ConKruence: If ti,ttiETL.(X)s ' for i----1,.oo,n, and if tl-~gl,. . . , tu=t~ a are derivable then:

• for any a: Sr..Sn--+s in ~E the equation ~tl,...,tn)~t~l,.oo,t~n) is denvable~
• for any P: Sl...s a in H (other than the identity predicate) if P(tl,...,tn} is derivable, then so

is P(tSl,...,ttu).
(5) Modus Ponens: If A ¢= BI,...,B m is in C, and if 8: X-*T~-~) is a substitution such that 0B1,...,0B n

is derivable, then so is 0A.

(6) Conjunctioa Introduction: If B 1 and ... and B m are derivable, then B1,...,B m is derivable.
(7) Existential Introduction: If 0B1,..,eB a is derivable for some substitution 0, then 3 B1,...,Bra is

derivable.

By assigning extra variables from X to elements of a model M denoted by ground terms it is easy to

check that, for signatures with nonempty sorts, satisfaction of a Horn clause or an existential
conjunction of atoms does not depend on the superset of variables being quantified, and can thus be
defined for implicitly quantified sentences. Satisfaction of a conjunction B1,...,B m is defmed as
simultaneous satisfaction of each one of its conjuncts. We then obtain,

T h e o r e m 26: C0mpleteness Theorem for nonempty sorts: For E,H an order-sorted with predicates
and nonempty sorts, for C a set of E,H-Horn clauses and S a (impicitly universal) conjunction B1,...,B m
of E,H-atoms, or an existential conjunction of E,H-atoms _~ B1,...,B m the following are equivalent:

. (VX) S is derivable from C using rules (1)-(7).
• (VX) S is satisfied by all order-sorted E-algebras that satisfy C.

E1

The rules (1)-(7) are the foundation for the much more efficient operational semantics rules for Eqlog,

which is based on term rewriting, narrowing, order-sorted unification, and resolution. Since Eqlog
computation is restricted to objects, and not allowed for theories, we can allow nonempty sorts in
theories for convenience with parameterization, while still requiring nonempty sorts for the executable
parts. For example, the theory P0SET of partially ordered sets can have an empty g l m e n t sort, but
any instantiation along a view from P 0 ~ T to an object should map Element to a nonempty sort.

3.4 O p e r a t i o n a l s e m a n t i c s

The two sets of rules of deduction that we have given, one fully general, and the other for the case
where all sorts are non-empty, are not in themsleves efficient enough to implement a langauge that
would really be used for programming, although the second is an improvement on the first. Rather,
~ e purpose of these rule sets is to support theoretical developments, such as completeness and
Herbrand theorems~ and to serve as a bridge to a really efficient operational semantics. Thus, our
view is that an operational semantics for a logical programming language is just an efficient proof
theory for its logic. For example, order-sorted rewriting [16] provides an efficient proof theory for
order-sorted equational logic, and thus for oBJ [9], just as ordinary term rewriting provides an efficient
proof theory for ordinary equational logic. Similarly, Horn clause resolution (with some tricks for the
incremental accumulation of substitutions, etc.} provides an efficient operational semantics for
ordinary Horn clause logic, and thus for Prolog. Finally, the efficient operational semantics for
Eqlog [11] is a combination of order-sorted resolution with order-sorted narrowing (which itself is a
combination of rewriting and unification); our joint work with Gert Smolka on the order-sorted

15

operational semantics of Eqlog [26], and more specifically on order-sorted unification [23]~ spells all this

out in detail.

3.5 Free Extensions

So far we have considered initial and free models for order-sorted Horn clause logic with equality.
However, initiality and freeness can be considered in a relative way: given a model of a
subspecification, can we extend it to a model of a snperspecification so that the extension is initial or

free? This is a question naturally associated with the semantics of parameterized modules, where a
model of a (parameter) requirement theory is freely extended to a model of of the theory of the
"body." Free extensions are also associated with models that are partly built-in and partly interpreted
as initial models of a set of axioms (i.e., a program) in that these models are just free extensions of
their built-in parts. This subsection proves that such free extensions exist and can be obtained by a
proof-theoretic construction. With slight variations to accomodate changes in syntax and possibly
noninjective maps between sorts, our proof generalizes straightforwardly to give a construction of free
extensions along a specification morphism (called a view in Eqlog and OBJ) V: (Z,H,C)--*(E',IT,C'), i.e.,
to a proof that order-sorted Horn clause logic with equality is a liberal institution (in the sense of [10]).

Consider a containment of order-sorted Horn clause logic with equality specifications
J: (E,H,C)__.(L'I,IT, C'), i.e., Z C ~ , H_CI1 ~, and CCC'. Then any ~, iT,~-model M' can be regarded as a
E,H,C-model just by forgetting the operations in T-L" and the predicates in H-IT; of course, this
process of "forgetting" is a functor Mod~,ff ,C--*ModE,/ /C" Intuitively, by an "extension" of a
Z,H,¢-model M we probably understand a L~,IT,¢'model ~ such that M is a E,H,¢-submodel of M'.
However, if we insist on the submodel relation, such an M ~ in general may not exist, due to the fact
that C' (having more axioms than C) may force identifying different elements of M. Thus, it is better
to generalize our intuitive notion and just require that M and M' are linked by a Z,H-homomorphism

f: M~M' , i.e., that M' contain an image of M. In this way we obtain a category Ext j(M) with objects
all such extensions f: M--*M' and with morphisms h: (f: M---,M')--*(f: M--,M ~) those

~',II '-homomorphisms h that preserve the image of M, i.e., such that f'----hof. The existence problem
for free extensions can then be made precise by asking the following question:

Does E x t j (M) have an initial object~
This is exactly the same question as whether the forgetful functor Mod~,ff, C,--,ModE,ll, C has a left
adjoint [21]. The answer is Yes, and we denote such an initial object by Fj(M). We will actually show
that Ext j (M) can be axiomatized as a class of models definable by Horn clauses, and since we have
already proved that those classes have initial models the result then follows directly. We need only
construct the signature E'(M) that adds the elements of M disjointly as new constants, and introduce
the notion of the positive diagram of the model M, denoted Diag+(M), which is just the set of
E(M),II-sentences of the form (V~) dal, . . . ,an)=MW (al,...,an) for (al,...,an)EM w and o: w--*s in E, or
of the form (V¢) P(al,...,an) for (al,...,an)EMWp and P:w in H.

Lemma 27: For J: (Z,H,C)C(~',IT, C') an inclusion of order-sorted Horn clause logic with equafity

specifications and M a Z,H,¢-model, the categories Exts(M) and Modff(M),ff, CtUDiag+(M } are
isomorphic.

P roof : Giving a Z'(M),iT,¢'-model is the same as giving a ~',iTg'-model M' together with an S-sorted
function f: M--*M' that gives an interpretation in M' for each constant in M (S is the set of sorts for E).
~;~nilarly, a E'(M),iT-homomorphism is just a L't,iT-homomorphism h: lVI~--*M n that "preserves the

16

constants" in M, i.e., such that t*~hof for f and f the functions interpreting the M-constants m M* and
M n. So, we just need to check that a L~(M),iT,Ce-model f: M ~ M ' satisfies Diag÷(M) iff f is a

Z,H-homomorphism, and this is trivial by construction. [~
C o r o l l a r y 28: For ~,H an order-sorted signature with predicates and M a ~,H-model, we have

M:" T~(M),H, Diag+(M) "
P r o o f : Pick J to be the identity inclusion (E,H,O)_C(~,H,~) and notice that then the identity
homomorphism 1M: M - , M is obviously the initial model of Extj(M). I"1

We can now discuss a particular kind of free extension where the E,H-model M is considered to be
"built-in" and no new sorts or function symbols are added, but only new predicate symbols, yielding a
new predicate signature IT with a new "program" C t axiomatizing the new predicate symbols, which is
a set of Horn clauses with only predicates in IT-II in their heads. This is also the approach taken
by [19], but our free extension construction obtains by general principles what they describe as the
"least fixpoint" of a somewhat complicated continuous operator.

C o r o l l a r y 29: For J: (~,II,0)C(E,IT,C t) an inclusion of order-sorted Horn clause logic with equality

specifications, with C * a set of ~,,iT-Horn clauses such that all the heads are in 1T-H, and M a
~,H-model, the extension map M--*Fj(M) is a ~,H-isomorphism.

P r o o f : Fj(M)~TEiM),H, CtUDiag+(M) but, considering the rules of order-sorted deduction, it is clear
that the clauses in ~ do not contribute any new ~,H-sentenees to those obtainable from Diag+(M).
Since the function symbols are the same, this just means that, after forgetting about the predicate

symbols in IT-H, T V,(M),H, CrUDiag+iM) becomes T~(M),H, Diag+(M) and we have already seen that this last
model is isomorphic to M. f-1

3 . 6 B u i l t - I n s a n d C o n s t r a i n t L a n g u a g e s

A ~.,H-model M can alway be axiomatized by its diagram. However, such an axiomatization is not in
general finite. Even if there is a finite axiomatization satisfying the requirements for correctness of the
operational semantics (e.g., that the equations are confluent and terminating rewrite rules, etc.) and
one could rely on it to solve queries using the standard operational semantics for order-sorted algebra
with equality, one would still prefer to have more efficient "built-in" special-purpose algorithms to
solve such queries. Such algorithms are available for many widely used models, such as numbers,
infinite trees, etc. Simplifying the picture a bit, we are assuming an algorithm Sol M that when given a
query (i.e., an existential formula 3 B1,...,Bn) provides a solution iff the formula is satisfied by M. Such

an algorithm is complete iff it enumerates a c o m p l e t e s e t o f s o l u t i o n s , i.e., a set SOlM(B1,...,Bn) of
substitutions e such that every witness f: X--*M solving 3 B1,...,B n factors as f------fo0 for some 0 in the
set, and conversely, every composition of one such e with any assignment to M is a witness. In other
words, every "concrete" solution f is described by some member of a family of "generic" solutions.

Suppose now that we want to build in the 2~,FI-model M using an algorithm Sol M and that we also
want to freely extend M by some additional predicates and clauses 8 in such a way that the map

8This is the case treated by [19] using least fLxpoint techniques, and is actually rather restrictive. In general, one might
want to extend M by additional sorts and functions, as well as predicates and clauses, in such a way that the free
extension Fj(M) proteeta the built-in model M, i.e., such that when Fj(M) is resticted to the signature of the built-in, one
gets a model isomorphic to M. If the additional function symbols involved are all canstructors, what we say here
generalizes easily. However, the most general case needs further study.

]7

M--*Fj(M) is an isomorphism. The last subsection already proved that it is an isomorphism when the
heads of the new clauses only involve new predicate symbols, and this subsection will assume that
condition throughout.

How can we combine a solution algorithm Sol M with the standard order-sorted operational semantics
for the non built-in part of the extension in order to get a complete algorithm to solve queries? An

answer can be gathered from the description of the free extension Fj(M) as the initial model

T U(Mj,Yg,CrUDiag+(M } where (~,II~,C t) is the specification (with nonempty sorts) containing the old
function symbols and both the old and new predicates, and the new Horn clauses. Now, any query to

be solved is necessarily of the form 3 C1,...,C.,B1,...,Bk,j where the C1,...,C i are Z,H-atoms (i.e., only
use the syntax of the built-in) and the B i are all atoms whose predicate symbol is in II'-H. By
Herbrand's Theorem, the query has a solution iff there is a witness f: X---,Fj(M). Such a witness is a

fortiori a witness for the query 3 C1,...,C j so that there is a substitution 0ESOIM(C1,...,Ci) such that f
factors through 0. This means that the query 3 C1,...,Ci,B1,...,B k will have a solution if][for some
0ESolM(C1,...,Cj) the query 3 0B1,...,SB k has a solution. Now, remember that

Fj(M)_~TE(M),II,,CStADias+(M). Thus, after choosing to explore a particular 0 in SOlM(C1,...,Cj) , an
additional step in the search for a possible solution is, of course, resolution. This can only take place
with the clauses in C ~, since the positive diagram only involves the old predicate symbols. Specifically,

if eBi----P(tl,...,tn) and C' contains a clause of the form P(tl',...,t ') ~ C'I,...,C'p,B*I,...,B' q then we can
create a new subgoal by replacing 0B 1 by tl----ttl,...,tn-----twn,C'l,...,C'p,B~l,...,B~ . An additional next step
can then be to choose a substitution d in Sol (t ----~t e , ,t -----t t ,C* , ,C I), thqus yielding the overall M 1 1"" n n 1"" p
subgoal dB'l,...,dB'q,doeB2,...,do0Bk. Proceeding in this way, that is, by alternating calls to Sol M with
resolution steps using the clauses in ¢', gives a complete strategy for solving our original query.

However, this strategy may be too costly if calls to Sol M are expensive. And it may be impracticable if

our simplifying assumption that Sol M applies to any conjunction of the]E,H-sentences does not hold, in
a case where the acceptable sentences for some algorithm have a more restricted form that can ony be
reached after being sufficient instantiated by substitutions. Thus, an alternative, and equaly complete
strategy, is to delay calls to Sol M until after all the atoms involving new predicates have been removed
from the goal by resolution steps. This means "giving the benefit of the doubt" to atoms involving the
built-in predicates, so that the search space, although it can be explored faster as far as the non-built-
in predicates are concerned, is nevertheless broadened. It is also possible to have a "mixed" strategy,
in which Sol M is called immediately for certain predicates for which it happens to be efficient (such as
perhaps equality, which might reduce to unification when only constructors are involved, or to
unification without the occur check when M consists of infinite trees), whereas calls to Sol M could be
delayed for predicates where it is inefficient or where certain instantiations of the arguments are
required by the algorithm. All these alternatives remain complete, since all are equivalent to
satisfaction in the model TE(M),IIt, CIUDmg+(M } which is our standard for correctness.

The above sketches an approach to constraint langauges based upon order-sorted Horn clause logic
with equality. Denotational semantics is given by any model which is initial among all those having
some fixed sorts, functions, and relations interpretated into a fLxed order-sorted model (a "built-in");
and operational semantics is given by a combination of resolution and built-in algorithms. The main
reason for taking this approach is to implement such a language efficienly, and we have discussed some
of the more delicate issues that arise in this regard.

18

4 Logica l P r o g r a m m i n g

This section discusses our broad perspective on logic programming, based on the notion of
"institution" [10], which combines formal syntax with model theory and deduction at a very high level
of generality~ At the present stage of development, we cau only claim that institutions provide a
useful general framework and viewpoint, rather than a formal foundation for all aspects of our
research on programming paradigms and their combinations. However, what we have so far actually
supports most of our research, and also provides much broader perspective toward what might be the
proper concern of "logic programming" than any other available foundation. Moreover, the areas that
are not yet fully formalized represent some interesting opportunities for further research.

The abstractness and generality of the material treated here makes it very appropriate to use category
theory as a language for expressing the concepts and developing their properties. Since a paper of this
length cannot develop from scratch the category theory that will be needed, we assume that the render
is already familiar with the basics; for some introduction to these concepts, see [21, 1].

4.1 Institutions and Logical Programming Languages

Today's computer science is undergoing enormous growth, in both its artifacts and its theories. This
creates an equally enormous need for conceptual unification, since otherwise we will drown in the flood
of undigested information. In particular, there is a population explosion among the logical systems
that are being used by computer scientists, including first order logic, equational logic, modal logic,
higher order logic, temporal logic, intuitionistic logic, dynamic logic,Lorder-sorted Horn clause logic,
and the many specialized logics used in various verification systems and theorem provers.
Institutions [10, 6] formalize the notion of a logical system, and seem useful in capturing programming
and specification language paradigms and features independently of any specific language or logic, as
well as in unifying programming paradigms. Institutions avoid commitment to any particular logical
system by doing constructions once and for all at a higher level of generality. In addition to the
sentences, models and satisfaction already mentioned, institutions also encompass homomorphisms of
models and proofs between sentences. One view is that institutions generalize classical model theory
by relativizing it over signatures. This intuition is stated in the following slogan:

Truth is invariant under change of notation.
This subject is closely related to "abstract model theory" as studied by logicians, e.g., [3]. The formal
definition will use the following notation: categories are underlined, and IC__l denotes the class of objects
of C.
Definition 30: An institution 2" consists of:

• a category Sign of signatures
• a functor Mod: Sign~Cat °p giving Z-models and ~-morphisms
• a functor Sen: Si~--*Cat giving E-sentences and E-proofs
• a satisfaction relation I=~ C IMod(Z)[x [Sen(E) I for each EG]Sign I

such that
• satisfaction: m'l=z,Sen(~)s iff Mod(¢)m'[=L-s for each m'6lMod(L~}[, s6[Sen(E)[, ¢: E--*L ~ in

Sign, and
• soundness: ml=L.s and s-*s'ESen(~) imply ml=L~s' for mElMod(~)[.

E1

19

We now give a somewhat informal explication of the notion of ~ogical prograxaming.

D e f i n i t i o n 31: A l o g i c a l p r o g r a m m i n g l anguage L has an associated institution I such ~h~t;
• a p r o g r a m P of L consists of a signature E from X and a finite set of ~:-sentencesg;

• the o p e r a t i o n a l s e m a n t l c s of an L-program P is given by proofs in I, from some given query
to an answer in some normal form1°; and

• the d e n o t a t i o n a i s e m a n t i c s of an / . -program P with signature E is given by a class of
E-models in X 11.

E1

Functional programming takes some institution of equational logic as its basis, perhaps unsorted,
many-sorted, or order-sorted, perhaps first order or higher order, and then computation reduces a
given sentence to a normal form. FP [2] uses a fLxed higher order program P, and computation
reduces nser-supplied expressions to their normal form. OBJ [0] is based on first order order-sorted
equational logic; the user first supplies the program P, perhaps only implicitly as a combination of
smaller programs (i.e., "modules"); computation is again reduction of a well-formed expression to a

normal form. Pure logic programming takes some institution of first order Horn clause logic as its
basis, perhaps unsorted, many-sorted, or even order-sorted. The user supplies a program P and a

"query" Q containing some variables; the operational semantics then tries to prove some substitution
instance of Q from P, and returns the substitution if it succeeds. Eqlog [11] does much the same, but
is based on the order-sorted Horn clause logic with equality institution, so that its sentences are much

more general than in ordinary logic programming. Eqlog returns both the substitution and the
substitution instance of the query, so that functional programming in the general style of OBJ is also a
special case. FOOPS [12] is a combination functional and object-oriented programming language, based
upon a "reflective" first order, order-sorted equational logic, and not only the user-supplied expression,

but also the program, are modified by computation. Although we know the sentences and rules of
deduction for this logic, we do not yet know what models are appropriate, so it is not yet an
institution.

Actually, Definition 31 is even more general than we have led you to believe, since it also includes
specification languages. The difference between a logical programming language and a specification

language is the efficiency of deduction. Since this is partly subjective, and partly a matter of
technology, we have not put it in a formal definition. Rather, we can just say that a s p e c i f i c a t i o n

l anguage is an inefficient logical programming language. Some specification languages are "loose",
in the sense that they take the class of all models that satisfy the given sentences as their denotation;
for example, Clear [5]. In this case, the language needs some rather fancy sentences, such as the "data
: ~nstraints" [10], to define abstract data types. Other specification languages take just the initial

models for the denotation for a program, such as ACT ONE (see [8]), and some are even restricted to a
fLxed set of data structures, such S-expressions or numbers; for example, the original Boyer-Moore

0In practice, some sort of modularization mechanism, perhaps based on colimits as in [6], may be provided to facilitate
constructing a new program by combining old programs.

IOin general, the answer will consist not only of some/-sentence which has been proven, but also some information
obtained during the proof, such as a substitution.

llln many cases, this class will be the class of initial models satisfying P.

20

theorem prover [4]. Instead of giving an expression to be reduced or a query to be answered, the ~ser
of a specification language can usually pose quite general hypotheses about the properties of a
program; therefore, computation is rather general theorem proving. Also, the mode of user interaction

is generally much freer than for a programming language, with the user directly participating in some
aspects of the proof process. In this context, OBJ and Eqlog are "wide spectrum" languages, in that

they have subsets which are quite efficient, other subsets that are tollerably efficient and would be
useful for rapid prototyping (e.g, associative commutative matching}, and still other subsets {e.g., the
verification of theories} that are really only suitable for specification and design.

5 C o n c l u s i o n s

This paper has suggested that techniques somewhat more model-theoretic than those usually used in
the logic programming literature may have some advantages, for example, in giving the semantics of
constraint languages, as well as in combining logic and functional programming, and in reaping the
various benefits of order-sorted logic that we have tried to make clear. We have also argued that
order-sorted Horn clause logic with equality, especially in connection with built-ins, provides about as
expressive and general a logical programming language as one might want, provided one is willing to

do without states and objects. Moreover, we have given further details of the semantics of Eqlog that
complete the picture given in [11]; in particular, we have given two sets of rules of deduction for order-
sorted Horn clause logic with equality, one fully general, and the other for the case where all sorts are
non-empty, and we have also proven completeness, initiality, Herbrand and free extension theorems.
It is the latter which serves as a semantic foundation for constraint languages, and we argue that this
model-theoretic approach is an attractive alternative to more syntactic approaches. One nice point is
that abstraction, i.e., representation independence, is an explicit part of the formalism. We have also
developed in some detail a very general framework for "logical programming," based upon the
institution notion, and we have shown how the various cases discussed in the paper fit into that
framework. Finally, a number of new questions have been raised, including various more general free

extension theorems, and finding an appropriate model theory for object-oriented programming.

R e f e r e n c e s

1. Michael A. Arbib and Ernest Manes. Arrows, Structures and Functors. Academic Press, 1975.

2. John Backus. "Can Programming be Liberated from the yon Neumann Style?'. Communications
of the Association for Computing Machinery 21, 8 (1978), 613-641.

3. Jon Barwise. tAxioms for Abstract Model Theory' . Annals of Mathematical Logic 7 (1974),
221-265.

4. Robert Boyer and Moore, J. A Computational Logic. Academic Press, 1980.

S. Rod Burstall and Joseph Goguen. WPutting Theories together to Make Specifications'.
Proceedings, Fifth International Joint Conference on Artificial Intelligence 5 (1977), 1045-1058.

6. Rod Burstall and Joseph Goguen. Lecture Notes in Computer Science. Volume 86: The
Semantics of Clear, a Specification Language. In Proceedings of the 1979 Copenhagen Winter School
on Abstract Software Specification,
Springer-Verlag, 1980, pp. 292-332.

2]

7. Rod Burstall and Joseph Gogueno Algebras, Theories and Freeness: An Introduction for Computer
Scientists. In Proceedings, 1981 Marktoberdorf NATO Summer School,
Reidel, 1982.

8. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Springer-Verlag, 1985.

9. Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud and Jos~ Meseguer. Principles of
OBJ2. In Proceedings, Symposium on Principles of Programming Languages,
Association for Computing Machinery, 1985, pp. 52-66.

10. Joseph Goguen and Rod Burstall. Institutions: Abstract Model Theory for Computer Science.
CSLI-85-30, Center for the Study of Language and Information, Stanford University, 1985. Also
submitted for publication; a preliminary version appears in Proceedings, Logics of Programming
Workshop, edited by Edward Clarke and Dexter Kozen, Volume 164, Springer-Verlag Lecture Notes in
Computer Science, pages 221-256, 1984.

U. Joseph Goguen and Josd Meseguer. Eqlog: Equality, Types, and Generic Modules for Logic
Programming. In Functional and Logic Programming, Douglas DeGroot and Gary Lindstrom, Eds.,
Prentice-Hall, 1986, pp. 295-363. An earlier version appears in Journal of Logic Programming,
Volume 1, Number 2, pages 179-210, September 1984.

12. Joseph Goguen and Jos~ Meseguer. Extensions and Foundations for Object-Oriented
Programming. In preparation for Research Directions in Object-Oriented Programming, edited by
Bruce Shriver and Peter Wegner. Preliminary version in SIGPLAN Notices, Volume 21, Number 10,
pages 153-162, October 1986.

13. Joseph Goguen and Jos~ Meseguer. mRemarks on Remarks on Many-Sorted Equational Logic'.
Bulletin of the European Association for Theoretical Computer Science 80 (October 1986), 66-73.
Also to appear in SIGPLAN Notices..

14. Joseph Goguen and Josg Meseguer. Order-Sorted Algebra I: Partial and Overloaded Operations,
Errors and Inheritance. To appear, SRI International, Computer Science Lab, 1987. Given as lecture
at Seminar on Types, Carnegie-Mellon University, June 1983.

IlL Joseph Goguen and Jos~ Meseguer. Order-Sorted Algebra Solves the Constructor-Selector
Problem. In preparation.

16. Joseph Goguen, Jean-Pierre Jouannaud and Jos~ Meseguer. Operational Semantics of Order-
Sorted Algebra. In Proceedings, 1985 International Conference on Automata, Languages and
Programming,
Springer-Verlag, 1985. Summary presented at IFIP WG2.2 (Boston MA) June 1984.

17. Joseph Goguen, James Thatcher and Eric Wagner. An Initial Algebra Approach to the
Specifieation, Correctness and Implementation of Abstract Data Types. RC 6487, IBM T. J. Watson
Research Center, Oetober, 1976. Appears in Current Trends in Programming Methodology, ~ edited
by Raymond Yeh, Prentice-Hall, 1978, pages 80-149.

18. Joseph Y. Halpern, John H. Williams, Edward L. Wimmers and Timothy Winkler. Denotational
Semantics and Rewrite Rules for FP. In Proceedings, Symposium on Principles of Programming
Languages,
Association for Computing Machinery, 1985, pp. 108-120.

19. Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. Monash University,
Australia, 1986. Draft.

22

20. Joxan Jaffar and Spiro Michaylovo Methodology and Implementation of a Constraint LogSe
Programming System. Monash University, Australia, 1986. Draft°

21. Saunders Mac Lane. Categories for the Working Mathematieian~ Springer-Verlag, 1971.

22. Jos~ Meseguer and Joseph Goguen. Initiality, Induction and Computability. In Algebraic
Methods in Semantics, Maurice Nivat and John C. Reynolds, Eds., Cambridge University Press, 1985,
pp. 459-541. Also SRI CSL Technical Report 140, December 1983.

23, Jos6 Meseguer, Joseph Goguen and Gert Smolka. Order-Sorted Unification. SRI International,
1987. In preparation.

24. Michael O'Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

25. J. Alan Robinson. mA Machine-oriented Logic Based on the Resolution Principle'. Journal of
the Association for Computing Machinery 12 (1965}.

26. Gert Smolka, Joseph Goguen and Jos6 Meseguer. Order-Sorted Equational Computation. SRI
International, 1987. In preparation.

27. C. Walther. Unification in Many-sorted Theories. In Advances in Artificial Intelligence -
Proceedings, Sixth European Conference on Artificial Intelligence,
North-Holland, 1984, pp..

