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A b s t r a c t :  We argue that some standard tools from model theory provide a better semantic 
foundation than the more syntactic and operational approaches usually used in logic 
programming. In particular, we show how initial models capture the intended semantics of both 
functional and logic programming, as well as their combination, with existential queries having 
logical variables (for both functions and relations) in the presence of arbitrary user-defined 
abstract data types, and with the full power of constraint languages, having any desired built-in 
(computable) relations and functions, including disequality (the negation of the equality relation) 
as well as the usual ordering relations on the usual built-in types, such as numbers and strings. 
These results are based on a new completeness theorem for order-sorted Horn clause logic with 
equality, plus the use of standard interpretations for l~Lxed sorts, functions and relations. Finally, 
we define "logical programming," based on the concept of institution, and show how it yields a 
general framework for discussions of this kind. For example, this viewpoint suggests that the 
natural way to combine functional and logic programming is simply to combine their logics, 
getting Horn clause logic with equality. 

1 I n t r o d u c t i o n  

This paper argues that some very significant benefits are available to logic programming from using 
certain concepts from first order model theory, namely: 

• order-sorted logic and models; 
• initial models; 
• interpretation into rLxed models for certain fLxed sorts, functions and relations; and 
• true semantic equality. 

These techniques, which are all standard in the theory of abstract data types [17, 22, 14], provide an 
attractive alternative to the more syntactical and operational approaches generally favored in logic 
programming. Moreover, they provide a powerful approach that supports: 

• user-defined abstract data types; 
• built-in data types; 

• combined logic and functional programming; and 

• constraint-based programming, in a way that can utilize standard algorithms for standard 
problems, such as linear programming. 

In addition, we suggest that the more recent theory of institutions [I0] may provide conceptual insight 

and clarification, as well as a broadening of the general scope of logic programming, so as to 

encompass any logical system satisfying certain simple restrictions. 

In a sense, this paper is an attempt to explicate our previous paper on Eqlog [II], by giving a fuller 

account of its mathematical semantics, as well as further details, polemics, and comparisons with the 

1Supported in part by Office of Naval Research Contracts N00014-85-C-0417 and N00014-86-C-0450, and a gift from 
the System Development Foundation. 



existing literature° One reason that [11] may have been obscure to many readers, is the large number 
of new ideas that it tried to introduce all at once~ here, we attempt to highlight certain ideas by 
ignoring others. Among the features of Eqlog deliberately downplayed here are: modules~ both 
hierarchical and generic; theories and views; and "attributes" of operators (e.g., associativity and 
commutativity}. Although these features greatly increase the expressive power of Eqlog, they would 
also distract from the basic foundational and semantic issues that we wish to emphasize here. For 
similar reasons, this paper does not develop most issues concerning the operational semantics of the 
various systems that are discussed. Thus, unification, term rewriting, narrowing and resolution are 
only touched upon. They are discussed in somewhat more detail in [11], and will receive full 
treatment in [23] and [26]. 

1.1 Order -Sor ted  Logic 

Ordinary unsorted logic offers the dubious advantage that anything can be applied to anything; for 
example, 

3 * f i r s t - n a ~ e ( a g e ( f a l s e ) )  < 2 birth-placo(teuperature(329)) 

is a well-formed expression. Although beloved by hackers of Lisp and Prolog, unsorted logic is too 
permissive. The trouble is that the usual alternative, many-sorted logic, is too restrictive, since it does 
not support overloading of function symbols such a s _ *  for integer, rational, and complex numbers. 
In addition, an expression like 

( -4  / -2)  
does not, strictly speaking, parse (assuming that factorial only applies to natural numbers). Here, we 
suggest that order-sor ted  logic, with subsorts and operator loading, plus the additional twist of 
r e t r a c t s  (although they are not discussed here; see [14]), really does provide sufficient expressiveness, 
while still banishing the truly meaningless. 

Although the specialization of many-sorted logic to many-sorted algebra has been very successfully 
applied to the theory of abstract data types, many-sorted algebra can produce some very awkward 
specifications in practice, primarily due to difficulties in handling erroneous expressions, such as 
dividing by zero in the rationals, or taking the top of an empty stack. In fact there is no really 
satisfactory way to define either the rationals or stacks with MSA. However, order-sorted algebra 
overcomes these obstacles through its richer type system, which supports subsorts, overloaded 
operators, and total functions that would otherwise have to be partial. Moreover, order-sorted algebra 
is the basis of both OBJ [9] and Eqlog [11]. Finally, order-sorted algebra solves the 
constructor-selector  problem, which, roughly speaking, is to define inverses, called selectors, for 
constructors; the solution is to restrict selectors to the largest subsorts where they make sense. For 
example, pop and top are only defined for non-empty stacks. [15] shows not only that order-sorted 
algebra solves this problem, but also that many-sorted algebra cannot solve it. 

The essence of order-sorted logic is to provide a subsort partial ordering among the sorts, and to 
interpret it semantically as subset inclusion, among the carriers of a model, and to support operator 
overloading that is interpreted as restricting functions to subsorts. Two happy facts are that order- 
sorted logic is only slightly more difficult than many-sorted logic, and that essentially all results 
generalize from the many-sorted to the order-sorted case without complication. See [14] for a 
comprehensive treatment of order-sorted algebra. This paper broadens the logical framework to allow 



not only algebras, but also models of arbitrary first-order signatures, with both function and predicate 
symbols, including equality, and gives rules of deduction for Horn clauses in such a logic~ proving their 
completeness and several other basic results that are directly relevant to our model-theoretic account 
of logic and functional programming, including initiality and Herbrand theorems. 

1.2 Mode l s  

Perhaps the origins in proof theory explain the obsession of logic programming theorists with syntactic 
and proof theoretic constructions. In any case, we believe that  more semantic and more abstract tools 
provide a basis that  is both broader and more powerful. In particular, we feel that  the usual Herbrand 
Universe construction is too syntactic and is also unnecessarily restrictive, because: 

1. it does not provide for built-in types, such as numbers and infinite trees; 

2. it does not provide for user-defined abstract data types; 
3. it does not (directly) address the phenomenon of representation independence for terms and for 

data types, whether built-in or user-defined; and 
4. the proofs are more concrete and computational than necessary 2. 

Of course, these deficiencies can all be patched without great difficulty - for example, [19] shows how 
to include built-in numbers - but after a few such patches, you have something enough like the initial 
model approach that you might as well, or better, take advantage of the powerful machinery 
associated with that tradition. 

The reasgn for being interested in models is just that  a standard model can provide the implementer 
with a clear standard for correctness, and can also provide the programmer and user with a clear 
model for what to expect when programs are actually run. 

The reason for being interested in standard interpretations into particular semantic domains on some 
sorts, functions and relations (while leaving others free) is that then one can use standard algorithms 
to solve particular problems over such domains, for example, linear programming algorithms over the 
real numbers. This gives a great deal of flexibility, since one can still use initiality (i.e., abstraction) 
over other sorts. We argue below that this provides an elegant foundation for constraint-based 
programming. 

1.3 E q u a l i t y  

Equational logic, which is essentially the logic of substitution of equals for equals, provides a 
foundation for functional programming languages. For example: [18] gives (what can be seen as) an 
equational description of Baekus' FP [2]; [24] describes an "equational programming" language3; 

and [9] describes OBJ2, a language that combines initial algebra semantics for executable "objects" 
(defined bY very general sets of user-supplied conditional order-sorted equations), with "loose" algebra 
semantics for non-executable "theories" (defined by arbitrary sets of equations). 

2Not everyone will regard this as a deficiency! 

3This language has some very strong restrictions, including: no repeated variables on lefthand sides, no overlap among 
equations, only one sort of data, no conditional equations, and a strong sequentiality condition; on the other hand, it is 
much easier to compile efficient code from sets of equations that satisfy such restrictions. 



In the context of fh-st order logic, equality is generally treated as a special relation~ interpreted as real 
semantic equality in models, rather than merely axiomatized. This is the sense in which one speaks of 

"first order logic with equality" and of "Horn clause logic with equality." Complete sets of rules of 
deduction are well-known for these logical systems, and the latter has been used to combine logic and 
functional programming [11]. This paper later gives corresponding rules for order-sorted Horn clause 
logic with equality. 

Equality is also useful in understanding constraint-based programming, because equations can be used 
to define the basic data structures, and then various relations of special interest can be defined 
recursively over these data structures, and/or provided as built-ins. 

1.4 I.nitialRy 

Initial models free one from commitment to any particular representation; that is, they support 
abstraction. In particular, initiality handles abstract data types for logical programming languages 
with great fluency and convenience, and similarly it can be used to defme functions and relations over 
built-in types [11]. Initial models also provide an account of the conceptual world of a program, in the 
sense of being "closed worlds" or "standard models." In particular, they provide a standard of 
correctness for the implementer, as well as a model for what results to expect for the programmer. 

Finally, initiality is a so-called "universal property," that there exists a unique mapping satisfying 
certain conditions, and it is well-known that, in many cases, one gets a much cleaner mathematical 
theory, with simpler and more conceptual proofs, from using universal characterizations of objects of 

interest, as compared to using concrete constructions for them [21]. In fact, the familiar 
characterization of "free" by the existence of a unique mapping with certain properties that extends 
another, is a special case of initiality. 

One can better understand initiality through the so-called "no junk" and "no confusion" conditions 
(originally from [7]}; these can also be seen as "completeness" and "soundness" conditions, 
respectively. Assume that signatures provide symbols for construcing sentences, including functions 
and constants (in ~) and relations (in H}, and that models contain "data  elements." Given a signature 
~,H and a set C of ~,II-sentences, call a ~,H-model s t a n d a r d  if and only if: 

1. N o  junk:  Every data item is denoted by a term using the function (and constant} symbols in •. 
(A data item that  cannot be so constructed is "junk."} 

2. No  confusion: a predicate holds of some data elements if and only if it can be proved from the 
given sentences; in particular, two elements are identified if and only if they can be proved equal 
from the given sentences. (Two data items that are equal but cannot be proved so are 
"confused.") 

For Horn clause logic, either with or without equality, either order-sorted, many-sorted, or unsorted, 
these two conditions define the data items uniquely up to renaming, i.e., they define a model up to 
isomorphism. Moreover, "no junk" is equivalent to structural induction over the signature, and the 
two conditions together are equivalent to the "unique homomorphism" condition called in l t ia l i ty  
(see [22] for details}. 



1.5 Cons t ra in t s  

In its general sense, a cons t ra in t  is a logical relation that one wishes to impose on a set of potential 

solutions. In principle, such constraints could be arbitrary first order sentences involving arbitrary 
(interpreted and uninterpreted) relations; but in practice, constraints are limited to sets of atomic 
sentences, such as 

a * X + b * Y <  c * g + d ,  
a * X * X + b * X * c = 0 ,  
a *  X *  Y U b *  X + c __ Z, 

where the variables in the first two constraints range over some kind of number (e.g., integers, or 
rationals, or complexes), and in the second range over sets of strings from some fixed alphabet (* is 
multiplication in the first two, and is concatenation, extended to sets, in the third). Although Prolog 
would, in principle, be ideal for constraint-based programming, it does not suffice in practice, because 
of the limited capabilities of the built-in relations. Moreover, the usual semantic basis of Prolog does 
not extend to built-ins without some extra fuss and awkwardness {e.g., as in [19]). 

We refer to sorts, functions, and relations upon which interpretation into a fLxed (standard) model are 

imposed as built-ins. Two obvious examples of such models are numbers and infinite trees, with their 

usual functions and relations. The pioneering work of Jaffar and Lassez [19] and of Jaffar and 
Michaylov [20] treat these and a number of other examples, in the context of a constraint logic 
programming language called CLP. These authors also treat a number of other topics, some of which 
are not considered here, including negation as failure and compactness conditions [19]. 

1.6 Logical Programming 

Various aspects of programming languages are captured by various aspects of logic. The functional 
aspect of programming is captured by equational logic [9]. Strong typing is captured by many-sorted 
logic. Logic programming (which might be less misleadingly called relational or Horn clause 
programming) is captured by Horn clause logic. Object-oriented programming is captured by 
reflective logic, in which there is an abstract data type of program texts built into the language [12]. 

The perspective of logical programming suggests that the right way to combine various programming 
paradigms is to discover their underlying logics, combine them, and then base a language upon the 
combined logic. This permits one to mix and match various programming language features. For 
example, combined functional and logic programming is captured by Horn clause logic with 
equality [11]. Combined functional and object-oriented programming is captured by reflective 
equational logic (we call this language FOOPS, see [12]). We currently feel that reflective order-sorted 
Horn clause logic with equality is a good candidate for unifying the functional, relational and object- 
oriented paradigms into a single simple programming language which also has powerful database 
capabilities. 

The theory of institutions [10] can provide a formal basis for the notion of logical programming. 
Informally, an institution is a logical system, with formal notions of sentence, model, and satisfaction. 
Then, a logical programming language L has an associated logical system (i.e., institution) I such 
that: 

• the statements of L are sentences from I; 
• the operational semantics of L is (a reasonably efficient) deduction in I; and 

• the denotational semantics of L is given by a class of models in 1 (preferably initial models)o 



2 O r d e r - S o r t e d  A l g e b r a  

The following assumes familiarity with S-sorted sets and functions (for S a family of sorts) and with 
many-sorted algebra signatures (S,S), Z-algebras and F_~-homomorphisms [22], and generalizes these 
concepts to order-sorted algebra. 
Def in i t ion  1: An o r d e r - s o r t e d  s i g n a t u r e  is a triple (S,<~,~) such that (S,~) is a many-sorted 
signature, (S,~} is a partially ordered set 4, and the operators satisfy the following m o n o t o n i e i t y  
conditionS: 

if OE~wl,sln~w2,s 2 and if wl  w2, then s l ~ s 2 .  
When the sort set S is clear, we write E for (S,Z). Similarly, when the partial order (S ,~)  is clear, we 
write ~ for (S,_~,E). Also, we may write a: w--,s for OEEw, s to emphasize that  a denotes a function 
with a r i t y  w and co-arity (or va lue  sort} s. An important special case is w~-~, the empty string; 

then aE~,),,s denotes a c o n s t a n t  of sort s. I"1 

Regular signatures allow one to define the least sort of a term, and to give an order-sorted 
generalization of the usual term algebra construction. Intuitively, regularity says that overloaded 
operators with argument sorts greater than a given sort string are consistent under the restriction of 
arguments to subsorts. 
Def ini t ion 2: An order-sorted signature E is regular iff given w0_~wl in S* and a in ~wl.sl there is 
a least (w,s)ES*xS such that  ~ w , s  and w0_~w. If, in addition, each connected componentL6 of the 
sort poset has a top element, then the regular signature is called coherent .  D 
Def ini t ion 3: Let (S,_~,E) be an order-sorted signature. Then an (S,_~,E)-algebra is an 
(S,~.)-algebra A such that 

(1) s ~ s  ~ in S implies AsC__A s, and 

(2) O~wl,slnEw2,s 2 with sl_~s2 and wl_~w2 implies An: Awl--+Asl equals An: Aw2--.As2 on Awl .  
When (S,<:) is clear, (S,~,E)-algebras may be called o r d e r - s o r t e d  F_,-alsebras. We may write A w's (Y 

instead of An: Aw-*A s . 
Def in i t ion 4: Let (S,~,E)  be an order-sorted signature, and let A and B be order-sorted 
(S,<~_,E)-algebras. Then a (S ,_~ ,E)-homomorphism h: A-*B is a (S,E)-homomorphism satisfying the 
following r e s t r i c t i on  condition 

s_~s ! and aEA s imply hs(a)=hs(a ) . 
When the partially ordered set (S,<:) is clear, (S, ~,E)-homomorphisms are also called o r d e r - s o r t e d  
E - h o m o m o r p h l s m s .  The (S,_~,~)-algebras and (S,~,~)-homomorphisms form a category that  we 

denote OSAlg  E . E1 
Order-sorted algebra strictly generalizes many-sorted algebra, in the sense that any many-sorted 
(S,E)-algebva is an order-sorted (S,~,E)-algebra for ~ the trivial ordering on S, with s<:s ~ fff s----st; 

4We extend the ordering < on S to strings of equal length in S* by s. s <s t. s I iff sisal i for l<~i<~n. Similarly, *~ 
, - -  l t t 1"'" n ~  1 " "  n ~ - -  extends to pairs (w,s) in S X S by {w,s)~(w ,s~ iff w~w and s~s.  

5Although not needed for validity of our results, this very natural condition rules oat some bizarre models. 

0Given a poset (S,_~), let -- denote the transitive and symmetric closure of _~. Then ------- is an equivalence relation 
whose equivalence classes are the connected eomponetJ of (S,_~). 



then OSAlgE-~AIg E and the forgetful funetor OSAIgE--+AIg E is the identity~ Similarly, the rules of 
order-sorted deduction given later specialize to many-sorted rules for this ordering. 
Defini t ion 5: For (S,_~,E) an order-sorted signature and A an order-sorted T-algebra, an 
order-sorted ~-congruence ------ on A is a many-sorted ~.-congruence ~------{~-s I sES} such that 

for each s,sJES and a,a%As, whenever s ~ s  t then a--sat iff a--da m . 

E1 

Let f: A-+B be an order-sorted E-homomorphism. Then the kernel  of f is an S-sorted family of 
equivalence relations ----f defined by a- - .  a t iff f (a)w~-f (a r) and denoted ker(f). It is easy to check that 

l ,S S S 

ker(f) is an order-sorted E-congruence. For (S,<~,r.) a coherent order-sorted signature, A an order- 
sorted E-algebra, and ----- an order-sorted T.-congruence on A, the quo t i en t  of A by ---- is the order- 
sorted ~-algebra A/---- defined as follows: for each sort s, the carrier of maximal sort in its connected 

component is (A/----)max(s) ~- Amax(s)/------max(s) and the carrier of sort s is (A/-----)s ---- qmax(s)(hs), for 
qmax(s): Amax(s)-+(A/-----)max(s) the natural projection of each element a into its ----max(s)-equivalence 

.... s - A n A a -- class. The operation are defined by: ( /-----)a([al],...,[a ]) ---- [ a( 1,...,an)l, which is well-defined since 

-- is an order-sorted E-congruence. The order-sorted algebra A/----- has a natural surjective order- 

sorted Z-homomorphism q: A-*A/-- defined by restricting the qmax(s) to the remaining sorts and such 

that ker(q) ----- ----. This homomorphism is called the quotient map associated to the congruence ___. 

Lemma 6: Universal Property of Quotients: Let E be a coherent order-sorted signature, A an order- 

sorted E-algebra and ------ an order-sorted congruence on A. Then the quotient map q: A--*A/~- 

satisfies the following universal property: If f: A-*B is any order-sorted r.-homomorphism such that 

------Cker(f), then there is a unique Z-homomorphism u: A/--------*B such that uoq~f. VI 

Given an order-sorted signature E, we construct the o rde r - so r t ed  F_,-term algebra T£ as the least 
family {T27,s I sES} of sets satisfying the following conditions (note our somewhat pedantic, but 
temporary, use of ~ and ~ for parentheses as formal syntactic symbols): 

• EX,s___Ts, s for sGS; 
• T~,s,C T~:,s if s '<s; 
• if oE~.w, s and if tiET2~,s i where w----sl...sn~L then (the string) 4tl . . . tnlETE, s . 
• Also, for oEZw, s let Ta: Tw--*T s send tl,...,tn to (the string) ~ t l . . . t n l .  

These terms are ground terms, i.e., they involve no variables. Terms with variables arise from ground 
terms by enlarging the signature Z with additional constants for the variables. We assume that each 
variable comes with a unique associated sort, so that variables form an S-sorted set X with Xsf'~st-----O 
if s:~gs w. This gives an extended signature Z(X) (that is also regular) and an algebra T£(X) also denoted 
TE(X ). Although a term in an order-sorted term algebra may have many different sorts, we still have 
F a c t  7: For Z a regular signature, each term t in T E has a least sort, denoted LS(t). [7 
Defini t ion 8: Let E be an order-sorted signature. Then an order-sorted E-algebra I is Init ial  in the 
class of all order-sorted E-algebras iff there is a unique order-sorted ~.-homomorphism from I to any 
other order-sorted E-algebra. I-I 
Theorem 9: Let E be a regular order-sorted signature. Then T,~ is an initial order-sorted 
E-algebra. V1 
Fact 10: Let A he an order-sorted E-algebra, X an S-sorted set of variables, and let f: X-*A be an 
S-sorted function (with X disjoint from Z); such a function is called an a ~ i s n m e n t  from X to 
A. Then (by initiality) there is a unique order-sorted Z-homomorphism f*: TL~X)--*A that extends f. 
This fact is usually expressed by saying that T~(X) is the f ree  order-sorted F_~algebra on X. 



For (S,~,~) a coherent order-sorted signature and X,Y two S-sorted variable sets~ a subs t i tu t ion  is 
an S-sorted map e: X--*T~Y); this is a special assignment, where the values of variables lie m a term 
algebra. The unique order-sorted E-homomorphism 0*: T~X)---*TL~Y } that extends 0 is also be 

denoted 0. 

3 Order-Sorted Model  T h e o r y  

Order-sorted models generalize order-sorted algebras by allowing predicates instead of just function 
symbols, and order-sorted Horn clause logic allows arbitrary Horn clauses instead of just conditional 
equations. Order-sorted Horn clause logic has a number of advantages over unsorted logic; in general, 
these advantages are extensions of the advantages of order-sorted algebra over unsorted algebra, such 
as the great expressive power given by overloading and strong but still flexible typing, and the 
capacity to handle errors. An additional advantage of order-sorted Horn clause logic that has great 
practical importance is that sometimes the search space and required time for theorem proving can by 
drastically cut by making use of subsorts, and shown, for example, by work of Walther [27] on the 

steamroller example. 

This section first extends the basic notions from algebras to models, and then gives rules of deduction 

for order-sorted Horn clause logic with equality, with a proof of their completeness. We then construct 
the initial model associated to a set of Horn clauses, and prove Herbrand's theorem, both in general, 
and for the special case where all sorts are non-empty. Finally, we prove the existence of free 
extensions, and apply this to built-ins. 

3.1 Basic Definitions 

Definition 11: An order-sorted signature with predlcate~ is a quadruple (S,<~,~., H) such that 
(S,_~,~) is a coherent order-sorted signature, and H~{H w [ wES +} is a family of predicate symbols 
satisfying the conditions below. We use capital letters P,Q,PI,P2,... to denote predicate symbols. We 
may write "P: w" for PEH w and then call w an a r i ty  of P. As with function symbols, we allow 
overloading of predicate symbols, i.e., P can have several arities. We assume the following two 
conditions: 

1. There is an equality predicate symbol ---- of arity ss in H iff s is the top of a connected 
component of the sort poset S. 

2. Regularity: For each wO such that there is a P: wl with wO<wl, there is a least w such that P: 
w and w0 w. 

When the sort set S and partial order ~ are clear, we write E,H for (S,~,~,H). El 
Definltlon 12: Let (S,<~,~,H) be an order-sorted signature with predicates. Then an 
(S,_~,~,II)-model is an order-sorted (S,<~,~.)-algebra M together with an assignment to each P: w in H 
of a subset MWpCMw such that: 

(i) for P the identity predicate ~ : ss the assignment is the identity relation, i.e., 
(M~ffi)={(a,a) [ aEM }; and 

(ii) whenever P: wl and P: w2 and wl<(w2 then MWlp----MwlrLMW2p. 

E1 
Definition 13: Let ~,H be an order-sorted signature with predicates and let M and MS be order- 
sorted ~,II-models. Then a ~ ,H-homomorphlsm h: M--*bf is an order-sorted ~,H-homomorphism 
such that for each P: w in H, 



fw(al,...,an)EM~p whenever (al,.o,an)EMW P. 
The ~,H-models and E,H-homomorphisms form a category that we denote ModE,/ /°  ~] 
Order-sorted model theory strictly generalizes many-sorted model theory, in the sense that any many- 
sorted (S,~,H}-model is an order-sorted (S,_~,Z,H}-model for ~ the trivial ordering on S, with s_(s ~ iff 
s----s( Similarly, the rules of order-sorted deduction given later specialize to rules for many-sorted 
deduction for the trivial ordering. 

Given an order-sorted signature Z,H with predicates, we can define the E,H-model T£,II consisting of 
the Z-term algebra T E and having (TEj/W)p----$ for each P: w in H different from the identity 
predicate ( ~  is of course interpreted as actual identity). For X an S-sorted set of variables disjoint 

form Z, the model TE,/-/(X } is defined in a similar way by enlarging E with the constants in X. It  is 

then immediate to generalize to models the notion of an initial algebra and to check the following: 
T h e o r e m  14: Let ~,H be an order-sorted signature with predicates. Then T% H is an initial order- 
sorted F.,H-model. [-1 
F a c t  15: Let M be an order-sorted ~,H-model, X an S-sorted set of variables disjoint from Z, and let 

f: X ~ M  be an S-sorted assignment. Then, by initiality, there is a unique order-sorted 
]C,II-homomorphism f*: T£,//(X)~M that extends f. This fact is usually expressed by saying that 

T£,11(X ) is the f ree  ~.,H-model on X. [7 

We now introduce additional notation for atoms and Horn clauses. For ~,H an order-sorted signature 

with predicates we define E ,H-a toms  as expressions P(tl,...,tn) such that the t r . . . , t  n are F__~-terms 
(possibly with variables} and there is a w----Sr..S a with P: w in H such that t i has sort s i for i----1,...,n. 
Thus, an equation t~-t  ~ is an atom where P is the identity relation. We will use symbols A,B,A1,A2,... 
for atoms. For 0 a substitution and A=P(tl , . . . , tn) an atom, 0A denotes the atom A=P(0[tl],...,0[tn] ). 
We interpret a set of atoms {Ar...,An} as a conjunction. Although we may drop the curly brackets 
and write A1,...,A n we still assume that this denotes a set, so that the order does not matter and there 
are no repeated atoms. The empty set of atoms has the empty notation, i.e., it is denoted as a blank. 
By a ~ ,H-Horn  c lause  we mean an expression 

(VX) A ~ B1,...,B m 
where X contains all the variables occurring in all the terms in the atoms A,B1,...,B m. We call A the 
head and the set B1,...,B m the body.  When the body is empty, the Horn clause is called an atomic  
(universal) sen tence  and the notation "(VX) A ¢=" is abbreviated to "(VX) A." When all atoms have 
the equality predicate as their predicate symbol, the Horn clause is called a eondl t |onal  equation; if, 
in addition, the body is empty it is called an equation.  
Def init ion 16: For E,H an order-sorted signature with predicates, M a ~,H-model and 

(VX) A ¢= B1,...,B m a Z,H-Horn clause, we say that M n t i s f l e s  (~X) A ¢= BI,...,B m if (assuming 

A-~Q(tl,...,tn) , Bi-----Pi(tir.-.,tin )) for any assignment f: X ~ M  such that  7 

(f*(til),...,f*(tini))EMWipi ~ r  i--l , . . . ,m, 
then also 

(f*(tl),...,f*(t,))EMWQ. 

Similarly, for C a set of horn clauses we say that M satisfies C iff it satisfies each clause in C; such a 
model is then called a ~,H,C-model,  and the category of all such models is denoted M o d  ~,/-/, C. [-I 

7Note that, by regularity, the least arity wi of Pi is uniquely defined. 
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S.2 Order-Sorted Deduct |on 

This section presents a new completeness theorem for order-sorted Horn clause logic with equality. 
This theorem provides a basis for the correctness of implementations for languages like Eqlog [11], as 
well as the basis for our development of a semantic theory for constraint languages. 

Given an order-sorted signature ~,II with predicates and a set ¢ of E,H-Horn clauses, the following are 
the rules for deriving atomic sentences: 

(1) Reflexivity: Each equation (VX) t----t is derivable. 
(2) Symmetry: If (VX) t----t' is derivable, then so is (VX) t'-----t. 
(3) Transitivity: If the equations (VX) t-----~t I, (VX) t~----t " are derivable, then so is (VX) t~-~t n. 

(4) Congruence: If ti,tliET~X)s for i----1,...,n, and if (VX) t i=t t  i is derivable for i----l,.., n, then: 
. _ ~  ° " • I t " " • for any a: s l...s n s m ~ the equatmn (VX) a(tl,...,ta)-----a(t 1,...,t n) Is derivable; 

• for any P: Sl...s n in II (other than the identity predicate) if the sentence (~X) P(tl,...,ta) is 
derivable, then so is (VX) P(tll,...,tta). 

(5) Modus Ponens: If (VX) A ~ BI,...,B m is in ¢ and if 0: X--,TE(Y ) is a substitution such that for 
each B i in the body of the clause the atomic sentence (VY) 0B i is derivable, then so is (VY) 0A. 

For X an S-sorted set of variables, we define a E,II-model TB,H,C(X ) as follows: First, notice that for t 
and t t terms of the same sort, the property 

(VX) t = t  r is derivable from C using rules (1)-(5) 
defines an order-sorted ~-congruence ~ X ~ o n  TAX ) since, by rules (1)-(4), "~x)  is a many-sorted 
E-congruence relation and, in addition, "~('x) is an order-sorted E-congruence relation, since for any 
sort s such that t, ttET#X)s we have t--~),st~,__ iff (VX) t = t  ~ is derivable from C using rules (1Hs), a 

property that does not depend on s. Thus, we can define an order-sorted F_,-algebra T/:,c(X) as the 
o t ~ C  qu tien of TAX ) by the order-sorted congruence (x)" We can then give a E,II-model structure 

TE,H,c(X) to TE, c(X ) by defining ([tl],...,[tn])eTE,H,¢(X)Wp iff {VX) P(tl,...,tn) is provable from ¢ by 
{1)-(5) (where w----Sl,...,s n and t i has sort si). This definition is independent of the representatives t i by 
(4). We can now prove 
L e m m a  17: TE,//,¢(X ) satisfies C. 

Proof: Let (VY) A ~ BI,...,B m be a Horn clause in ¢ (with, say, A=Q(tl, . . . , tn) , Bi=Pi(til,...,tin )) and 
let 0o: Y--* T~ H ¢(X) he an S-sorted assignment such that (00*(til),...,0o*(tin))ET E H C(X)W~P f°r i  

' ' . i ' ' . i  i----1,...,m. By choosing a representative tET~X)s for each [t]=e0(y), yEY s , we then obtain a 
substitution 0: Y-*T~(X) such that, by hypothesis (and by initiality of T~,//(Y) making eo*=qo0 for q 
the quotient homomorphism q: TE,B(X)--*Tv,,II,¢(X)) we have (VX) 0B 1 derivable from ¢ using rules 
(1)-(5) for i~l , . . . ,m. Thus, by (5) we then have (VX) eA derivable from ¢ using rules (1)-(5), i.e., we 

have (o0*(tl),...,Oo*(tn))ETE,ll,¢(X)W'Q as desired. 17 
Theorem 18: Completeness Theorem: For ~,II an order-sorted signature, ¢ a set of V,,H-Horn 
clauses and (VX) A a E,II-atomic sentence, the following are equivalent: 

• (VX) A is derivable from ¢ using rules (1)-(5). 
• (VX) A is satisfied by all order-sorted ~-algebras that satisfy C.  

Proof: We leave the reader to check soundness, i.e., that the first assertion implies the second, and 
concentrate here on proving completeness, i.e., that any sentence that is satisfied is provable. Let 
(VX) P(tl,...,tn) be a sentence satisfied by all E,H,C-models. Then, it is satisfied by T~,H,¢(X ). In 
particular, for the assignment q: X-*TE,II,¢(X ) associated to the quotient homomorphism 

q: T2:,II(X)---.TE,FI, c(X)) we have 



]] 

([tl],.--,[tnl)ETE,n,c(X)Wp 
which by definition just means that the sentence (VX) P(t 1 ..... tn) is derivable from C with rules (1)-(5). 

I1 
Coro l l a ry  19: Initiality Theorem: For ~,H an order-sorted signature with predicates and ¢ a set of 
~,II-Horn clauses, TE,1I,¢(~ ) (henceforth denoted T£,//,¢} is an initial model in the class of all 
~,H,¢-models, and TF,,H,¢(X ) is a free model on X in that same class. 
P roof :  Let M be an order-sorted model satisfying ¢, and let a: X--*M be an assignment. We have to 
show that there is a unique order-sorted ~,II-homomorphism a&: TEj/,¢(X)--.M extending _a, i.e., such 
that _a&(q(x))=_a(x) for each xeX, where q denotes the quotient homomorphism q: T,F, jI{X)-....TE,II,¢(X). 
Existence of a_ ~ follows from the Completeness Theorem, by (i) and (ii} below: 

(i) a*(t)=_a(t'} for each equation (VX) t--~t r provable from ¢ by the rules (1}-(5). 

This means that ~-,~x)Cker(_a*) and by the universal property of quotients (Lemma 6) there is a unique 
order-sorted ~-homomorphism _a~: T~,c(X)--*M with a*~_a~oq. 

(ii) ([tl],...,[tn])eT27,/-/,¢(X~W p iff (for representatives t i of sort si, with w-----Sl,...,s ) (VX) P(tl,...,tn) is 
provable from ¢ by the rules (1)-(5} iff (by the Completeness Theorem} (VX) P(tl,...,tn} holds in 
all models that satisfy ¢. 

Thus, (_a~[tl],...,_a~[ta])-----(a*(tl),...,_a*(t~))EMWp which shows that a ~ is a ~,H-homomorphism. 
& 

Uniquenes of _a then follows by combining the universal property of T~ .~/(~ as a free order-sorted 
model on X with the universal property of q as a quotient. Indeed, let a : TE,H,C(X)~M be another 
order-sorted homomorphism such that _a$(q(x))=a(x} for each xeX. Then, since TE,/7(X} is a free 
order-sorted model on X, we have a*~-a$oq and by the universal property of q as a quotient we have 
a$----a & as desired. For X-----$ the empty S-sorted family, this proves that T~,II, C($)=T,~,I-I, ¢ is an 
initial model in the class of models that satisfy C. E1 

3.3 Herbrand's  T h e o r e m  

Usual logic programming practice considers queries of the form B1,...,B n. Such queries are answered 
positively if a substitution o is found such that each oB i is provable from the clauses C that constitute 
the program. Such a query is simply an existential formula of the form ( ~ )  BI,...,B n and what is 
being established is that the formula holds for all models that satisfy C. Herbrand's theorem reduces 
provability of such a formula to satisfaction in the initial model. This subsection extends the rules of 
order-sorted deduction to handle existential quantification of conjunctions of atoms by giving a very 
simple proof of a general Herbrand's theorem that hold for any order-sorted Horn clause logic with 
equality specification (E],H,C). Before the advent of resolution in the theorem-proving literature [25], 
the methods used to prove that an existential formula was satisfied were brute-force, "saturation" 
methods that enumerated all possible elements of the initial model until a successful instance was 
found. Assuming that all the sorts of the initial model are nonempty, we can give simpler rules of 
deduction that dispense with explicit quantification, and we can prove a second version of Herbrand's 
Theorem. This second version provides a foundation for proofs by resolution in the extended context 
of order-sorted logic with equality. 
Def in i t ion  20: For E],H an order-sorted signature with predicates, we call an existential formula of 
the form (HX) B1,...,B n where X is an S-sorted variable set that contains all variables that appear in 
terms of the E,H-atoms BI,...,B a a E,H-exlstentlal  con junc t ion  (of  atomm). Given a El,H-model M, 
we say that M sat i s f ies  the above existential conjunction iff there is an assignment a_: X--~M, called a 

witness  such that (assuming, say, Bi---=Pi(til,...,tiai) with P: sl...s n and t i of sort si) we have 
(_a*(tl),...,_a*(ta))EMWp. F'] 
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T h e o r e m  21: Herbrand's Theorem: For ~,II an order-sorted signature with predicates, C a set of 
r,,H-Horn clauses, and (3X) BI,...,B n a ~,H-existential conjunction, the following are equivalent: 

• (SX) B1,...,B n is satisfied by all ~,H,C-models. 
• (SX) B1,...,B a is satisfied by the initial ~,H,C-model T,r,,l-l, C. 

Proof :  Of course, if (~{:} B1,...,B n ~ s~tisfied by all ~,II,C-models, it is satisfied by the initial one. 
Conversely, if 0: X~Ty,,II, C is a wi~-:~ for (SX) B1,..,Bn, in TE,II,¢ and if M is a ~,H,C-model with 
h: T~7,I-I,c~M the unique ~,C,H,C-hom~.norphism, then it follows from the homomorphic property of h 

that ho0 is a witness for (~X) B1,...,B n in M. [3 
Coro l l a ry  22: Adding the following rule to the rules (1}-(5} of order-sorted deduction gives a sound 
and complete set of rules to derive, for C a set of ~,H-Horn clauses, all valid universal atomic formulas 
and all valid existential conjunctions of atoms. 

{6) Existential Introduction: If, for 1----1,..,n, (V0)eB i is derivable, with e: X--*T~, 

then (~X) B1,...,B n is derivable. 

[3 

So far nothing in this paper has required that all sorts of a model are nonempty. There are good 
reasons for not imposing such a restriction on the models. Indeed, excluding empty sorts one would in 
general fail to have initial models, and parameterization would be awkward [13]. Nevertheless, in the 
context of existential quantification there are definite advantages in the case where models do not have 
empty sorts. This happens exactly when all the sorts of the initial algebra T• are nonempty, for ~ the 
order-sorted signature of function symbols in question; we will then say that the order-sorted signature 
with predicates ~,II has n o n e m p t y  sorts .  We will show that the rules of deduction become simpler 
in this case. We first prove a lemma that holds for any signature at all. The simplest proof of this 
lemma would be a model-theoretic soundness proof. However, we prefer to give a proof-theoretic 
proof that shows explicitly why the substitution rule is not needed. 
L a m i n a  23 :  Substitution Lemma: For ~.,II an order-sorted signature with predicates and C a set of 
~,II-Horn clauses, 

Substitution: If (VX) A is derivable from C by (1)-(5) and if e: X--*T~Y} is a substitution, then 

(VY) OA is also derivable. 
P r o o f :  The derivable formulas can be obtained in a countable number of stages, with stage n+ l  
adding the new formulas that can be obtained from the those in stage n by (1)-(5) using C. In the first 
stage, we just have all equations (VX) t----t (by reflexivity) and all atomic sentences (VY) eA for each 
(VX) A in C and arbitrary 0X--*TL.(Y ) (by Modus Ponens). Consequently, the first stage is trivially 
closed under substitution. Let us assume as our induction hypothesis that stage n is closed under 
s~bstitution; we only need to show that stage n+ l  also is: 

• If (VX) t----t l is in stage n, then, by symmetry, {VX) t ' = t  is in stage n + l  and so is (VY) e(tf)-----e(t) 
since (VY) e(t)~e(t r) is in stage n by hypothesis. 

• If the equations (VX) t ~ f ,  (VX) t'-----t ~ belong to stage n, then by transitivity, (VX) t----t ~ belongs 
to stage n + l  and so is (VY') e(t)---~e(t w) since (VY) e(t)----0(t'), (VY) e(te)--~e(t W) are in stage n by 

hypothesis. 
• If ti,tt.ET~ ~(X)si, i-----1,..,k, and if the equations (VX) ti----~tt i belong to stage n for i~l , . . . ,k,  then by 

congruence: 
o for any a: Sr..sk-+S in E the equation (VX) a(tr...,tk)--a(fl,...,t 'k) belongs to stage n+ l  and 

so does the equation (VY) o(0(tlJ,...,e(tk))~o~0(t#l),...,e(trk)), by applying the induction 
hypothesis to the original equations; 



]3 

13 

o for any P: Sl...s k in H (other than the identity predicate) if the sentence (VX) P(tl,.°o,tk) 
belongs to stage n, then (VX) P(tWl,...,tlk) belongs to stage n+l  and so does (VY) P(tnl,..:t~k) 
by applying the induction hypothesis to the original equations and to (VX) P(troo.,tk). 

• If (VX) A ~= B1,...,B m is in C, and if o: X-*T~Y) is a substitution such that for each B i in the 
body of the clause the atomic sentence (VY) eB i belongs to stage n, then, by Modus Ponens, 
(VY) 0A belongs to stage n+ l  and so does (VZ) peA by applying the induction hypothesis to the 
sentences (VY) eB i i----1,...,m. 

Using the Substitution Lemma we can now establish the following version of Herbrand's Theorem for 
signatures with nonempty sorts: 
Corol lary  24: Herbrand's Theorem for Nonempty Sorts: For E,II an order-sorted signature with 
predicates and nonempty sorts, C a set of ~,II-Horn clauses, and (~() BI,...,B n a E,H-existential 
conjunction the following are equivalent: 

. ( ~ )  B1,...,B n is satisfied by all E,H,C-models. 

. There is a substitution e: X--,TL-(Y ) such that (VY) 9B i is provable from C using (1)-(5) for 
i----1,...,n. 

Proof:  By Herbrand's Theorem we only have to prove that the second condition is satisfied by some 
substitution 8: X~T~Y)  iff it is satisfied by some ground term substitution t:  X--.T E. This is so since, 
by the nonempty sort assumption, we can always define a substitution p: Y--,T E and, by the 
Substitutivity Lemma, we can satisfy the condition with d=poo. 17 

Nonempty sorts allow dispensing with quantification over sets of variables. This also follows easily 
from the Substitutivity Lemma, by the following corollary, which says that the choice of a superset X 
of the set of variables occurring in an atom A is immaterial for the validity of the universally 
quantified sentence: 

Corol lary 25: For ~,II an order-sorted signature with predicates and nonempty sorts, for A a 
~,H-atom, and C a set of ~,II-Horn clauses, then 

(VX) A is provable from ¢ using (1)-(5) iff (Vvars(A)) A is also, 
where vars(A) is the S-sorted set of variables occurring in A (and, of course, vars(A)_CX). 
Proof:  The "if" part is clear, using rule of substitution applied to the inclusion vars(A)_X_ T~X). 
For the "only if" part, by the nonempty sort assumption one can always define a substitution 
X--*T~vars(A)) that is the identity on vars(A) by sending the variables in X-vats(A) to ground terms. 

D 

We finish this subsection with a simplified and generalized set of sound and complete proof rules for 
the case of nonempty sorts. We leave the universal quantification implicit for atoms and Horn clauses, 
and treat not only atomic sentences, but also conjunctions B1,...,B a. Similarly, we simplify existential 
quantification by omitting the set of variables, since our last corollary, combined with Herbrand's 
Theorem for nonempty sorts, shows that choice of a superset of variables is also immaterial for 
existential quantification; we just write 3 Br...,B n. Here are the rules of deduction for ~,H an order- 
sorted signature with predicates and nonempty sorts and C a set of ]C,H-Horn clauses to derive 
(implicitly universal) conjunctions of atoms and existential conjunctions of atoms: 

(1) Reflexivity: Each equation t--~t is derivable. 
(2) Symmetry: If t ~ f  is derivable, then so is twit. 
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(3) Transitivity: If t-----t~,t~---t ~ is derivabie~ then so is t~---t ~. 

(4) ConKruence: If ti,ttiETL.(X)s ' for i----1,.oo,n, and if tl-~gl,. . . , tu=t~ a are derivable then: 

• for any a: Sr..Sn--+s in ~E the equation ~tl,...,tn)~t~l,.oo,t~n) is denvable~ 
• for any P: Sl...s a in H (other than the identity predicate) if P(tl,...,tn} is derivable, then so 

is P(tSl,...,ttu). 
(5) Modus Ponens: If A ¢= BI,...,B m is in C, and if 8: X-*T~-~) is a substitution such that  0B1,...,0B n 

is derivable, then so is 0A. 

(6) Conjunctioa Introduction: If B 1 and ... and B m are derivable, then B1,...,B m is derivable. 
(7) Existential Introduction: If 0B1,..,eB a is derivable for some substitution 0, then 3 B1,...,Bra is 

derivable. 

By assigning extra variables from X to elements of a model M denoted by ground terms it is easy to 

check that, for signatures with nonempty sorts, satisfaction of a Horn clause or an existential 
conjunction of atoms does not depend on the superset of variables being quantified, and can thus be 
defined for implicitly quantified sentences. Satisfaction of a conjunction B1,...,B m is defmed as 
simultaneous satisfaction of each one of its conjuncts. We then obtain, 

T h e o r e m  26: C0mpleteness Theorem for nonempty sorts: For E,H an order-sorted with predicates 
and nonempty sorts, for C a set of E,H-Horn clauses and S a (impicitly universal) conjunction B1,...,B m 
of E,H-atoms, or an existential conjunction of E,H-atoms _~ B1,...,B m the following are equivalent: 

. (VX) S is derivable from C using rules (1)-(7). 
• (VX) S is satisfied by all order-sorted E-algebras that satisfy C.  

E1 

The rules (1)-(7) are the foundation for the much more efficient operational semantics rules for Eqlog, 

which is based on term rewriting, narrowing, order-sorted unification, and resolution. Since Eqlog 
computation is restricted to objects, and not allowed for theories, we can allow nonempty sorts in 
theories for convenience with parameterization, while still requiring nonempty sorts for the executable 
parts. For example, the theory P0SET of partially ordered sets can have an empty g l m e n t  sort, but 
any instantiation along a view from P 0 ~ T  to an object should map Element to a nonempty sort. 

3.4 O p e r a t i o n a l  s e m a n t i c s  

The two sets of rules of deduction that we have given, one fully general, and the other for the case 
where all sorts are non-empty, are not in themsleves efficient enough to implement a langauge that 
would really be used for programming, although the second is an improvement on the first. Rather, 
~ e  purpose of these rule sets is to support theoretical developments, such as completeness and 
Herbrand theorems~ and to serve as a bridge to a really efficient operational semantics. Thus, our 
view is that an operational semantics for a logical programming language is just an efficient proof 
theory for its logic. For example, order-sorted rewriting [16] provides an efficient proof theory for 
order-sorted equational logic, and thus for oBJ [9], just as ordinary term rewriting provides an efficient 
proof theory for ordinary equational logic. Similarly, Horn clause resolution (with some tricks for the 
incremental accumulation of substitutions, etc.} provides an efficient operational semantics for 
ordinary Horn clause logic, and thus for Prolog. Finally, the efficient operational semantics for 
Eqlog [11] is a combination of order-sorted resolution with order-sorted narrowing (which itself is a 
combination of rewriting and unification); our joint work with Gert  Smolka on the order-sorted 
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operational semantics of Eqlog [26], and more specifically on order-sorted unification [23]~ spells all this 

out in detail. 

3.5 Free Extensions 

So far we have considered initial and free models for order-sorted Horn clause logic with equality. 
However, initiality and freeness can be considered in a relative way: given a model of a 
subspecification, can we extend it to a model of a snperspecification so that  the extension is initial or 

free? This is a question naturally associated with the semantics of parameterized modules, where a 
model of a (parameter) requirement theory is freely extended to a model of of the theory of the 
"body." Free extensions are also associated with models that are partly built-in and partly interpreted 
as initial models of a set of axioms (i.e., a program) in that these models are just free extensions of 
their built-in parts. This subsection proves that such free extensions exist and can be obtained by a 
proof-theoretic construction. With slight variations to accomodate changes in syntax and possibly 
noninjective maps between sorts, our proof generalizes straightforwardly to give a construction of free 
extensions along a specification morphism (called a view in Eqlog and OBJ) V: (Z,H,C)--*(E',IT,C'), i.e., 
to a proof that order-sorted Horn clause logic with equality is a liberal institution (in the sense of [10]). 

Consider a containment of order-sorted Horn clause logic with equality specifications 
J: (E,H,C)__.(L'I,IT, C'), i.e., Z C ~ ,  H_CI1 ~, and CCC'. Then any ~, iT,~-model  M' can be regarded as a 
E,H,C-model just by forgetting the operations in T-L" and the predicates in H-IT; of course, this 
process of "forgetting" is a functor Mod~,ff ,C--*ModE,/ /C" Intuitively, by an "extension" of a 
Z,H,¢-model M we probably understand a L~,IT,¢'model ~ such that M is a E,H,¢-submodel of M'. 
However, if we insist on the submodel relation, such an M ~ in general may not exist, due to the fact 
that C' (having more axioms than C) may force identifying different elements of M. Thus, it is better 
to generalize our intuitive notion and just require that M and M' are linked by a Z,H-homomorphism 

f: M~M' ,  i.e., that  M' contain an image of M. In this way we obtain a category Ext j(M) with objects 
all such extensions f: M--*M' and with morphisms h: (f: M---,M')--*(f: M--,M ~) those 

~',II '-homomorphisms h that  preserve the image of M, i.e., such that  f'----hof. The existence problem 
for free extensions can then be made precise by asking the following question: 

Does E x t j ( M )  have an initial object~ 
This is exactly the same question as whether the forgetful functor Mod~,ff, C,--,ModE,ll, C has a left 
adjoint [21]. The answer is Yes, and we denote such an initial object by Fj(M). We will actually show 
that Ext j (M) can be axiomatized as a class of models definable by Horn clauses, and since we have 
already proved that  those classes have initial models the result then follows directly. We need only 
construct the signature E'(M) that adds the elements of M disjointly as new constants, and introduce 
the notion of the positive diagram of the model M, denoted Diag+(M), which is just the set of 
E(M),II-sentences of the form (V~) dal, . . . ,an)=MW (al,...,an) for (al,...,an)EM w and o: w--*s in E, or 
of the form (V¢) P(al,...,an) for (al,...,an)EMWp and P:w in H. 

Lemma 27: For J: (Z,H,C)C(~',IT, C') an inclusion of order-sorted Horn clause logic with equafity 

specifications and M a Z,H,¢-model, the categories Exts(M) and Modff(M),ff, CtUDiag+(M } are 
isomorphic. 

P roof :  Giving a Z'(M),iT,¢'-model is the same as giving a ~',iTg'-model M' together with an S-sorted 
function f: M--*M' that  gives an interpretation in M' for each constant in M (S is the set of sorts for E). 
~;~nilarly, a E'(M),iT-homomorphism is just a L't,iT-homomorphism h: lVI~--*M n that "preserves the 
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constants" in M, i.e., such that t*~hof for f and f the functions interpreting the M-constants m M* and 
M n. So, we just need to check that a L~(M),iT,Ce-model f: M ~ M '  satisfies Diag÷(M) iff f is a 

Z,H-homomorphism, and this is trivial by construction. [~ 
C o r o l l a r y  28: For ~,H an order-sorted signature with predicates and M a ~,H-model, we have 

M:"  T~(M),H, Diag+(M ) " 
P r o o f :  Pick J to be the identity inclusion (E,H,O)_C(~,H,~) and notice that  then the identity 
homomorphism 1M: M - , M  is obviously the initial model of Extj(M).  I"1 

We can now discuss a particular kind of free extension where the E,H-model M is considered to be 
"built-in" and no new sorts or function symbols are added, but only new predicate symbols, yielding a 
new predicate signature IT with a new "program" C t axiomatizing the new predicate symbols, which is 
a set of Horn clauses with only predicates in IT-II in their heads. This is also the approach taken 
by [19], but our free extension construction obtains by general principles what they describe as the 
"least fixpoint" of a somewhat complicated continuous operator. 

C o r o l l a r y  29: For J: (~,II,0)C(E,IT,C t) an inclusion of order-sorted Horn clause logic with equality 

specifications, with C * a set of ~,,iT-Horn clauses such that all the heads are in 1T-H, and M a 
~,H-model, the extension map M--*Fj(M) is a ~,H-isomorphism. 

P r o o f :  Fj(M)~TEiM),H, CtUDiag+(M) but, considering the rules of order-sorted deduction, it is clear 
that the clauses in ~ do not contribute any new ~,H-sentenees to those obtainable from Diag+(M). 
Since the function symbols are the same, this just means that, after forgetting about the predicate 

symbols in IT-H, T V,(M),H, CrUDiag+iM) becomes T~(M),H, Diag+(M ) and we have already seen that this last 
model is isomorphic to M. f-1 

3 . 6  B u i l t - I n s  a n d  C o n s t r a i n t  L a n g u a g e s  

A ~.,H-model M can alway be axiomatized by its diagram. However, such an axiomatization is not in 
general finite. Even if there is a finite axiomatization satisfying the requirements for correctness of the 
operational semantics (e.g., that the equations are confluent and terminating rewrite rules, etc.) and 
one could rely on it to solve queries using the standard operational semantics for order-sorted algebra 
with equality, one would still prefer to have more efficient "built-in" special-purpose algorithms to 
solve such queries. Such algorithms are available for many widely used models, such as numbers, 
infinite trees, etc. Simplifying the picture a bit, we are assuming an algorithm Sol M that when given a 
query (i.e., an existential formula 3 B1,...,Bn) provides a solution iff the formula is satisfied by M. Such 

an algorithm is complete iff it enumerates a c o m p l e t e  s e t  o f  s o l u t i o n s ,  i.e., a set SOlM(B1,...,Bn) of 
substitutions e such that  every witness f: X--*M solving 3 B1,...,B n factors as f------fo0 for some 0 in the 
set, and conversely, every composition of one such e with any assignment to M is a witness. In other 
words, every "concrete" solution f is described by some member of a family of "generic" solutions. 

Suppose now that we want to build in the 2~,FI-model M using an algorithm Sol M and that  we also 
want to freely extend M by some additional predicates and clauses 8 in such a way that the map 

8This is the case treated by [19] using least fLxpoint techniques, and is actually rather restrictive. In general, one might 
want to extend M by additional sorts and functions, as well as predicates and clauses, in such a way that the free 
extension Fj(M) proteeta the built-in model M, i.e., such that when Fj(M) is resticted to the signature of the built-in, one 
gets a model isomorphic to M. If the additional function symbols involved are all canstructors, what we say here 
generalizes easily. However, the most general case needs further study. 
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M--*Fj(M) is an isomorphism. The last subsection already proved that  it is an isomorphism when the 
heads of the new clauses only involve new predicate symbols, and this subsection will assume that 
condition throughout. 

How can we combine a solution algorithm Sol M with the standard order-sorted operational semantics 
for the non built-in part  of the extension in order to get a complete algorithm to solve queries? An 

answer can be gathered from the description of the free extension Fj(M) as the initial model 

T U(Mj,Yg,CrUDiag+(M } where (~,II~,C t) is the specification (with nonempty sorts) containing the old 
function symbols and both the old and new predicates, and the new Horn clauses. Now, any query to 

be solved is necessarily of the form 3 C1,...,C.,B1,...,Bk,j where the C1,...,C i are Z,H-atoms (i.e., only 
use the syntax of the built-in) and the B i are all atoms whose predicate symbol is in II'-H. By 
Herbrand's Theorem, the query has a solution iff there is a witness f: X---,Fj(M). Such a witness is a 

fortiori a witness for the query 3 C1,...,C j so that  there is a substitution 0ESOIM(C1,...,Ci) such that f 
factors through 0. This means that the query 3 C1,...,Ci,B1,...,B k will have a solution if][ for some 
0ESolM(C1,...,Cj) the query 3 0B1,...,SB k has a solution. Now, remember that 

Fj(M)_~TE(M),II,,CStADias+(M). Thus, after choosing to explore a particular 0 in SOlM(C1,...,Cj) , an 
additional step in the search for a possible solution is, of course, resolution. This can only take place 
with the clauses in C ~, since the positive diagram only involves the old predicate symbols. Specifically, 

if eBi----P(tl,...,tn) and C' contains a clause of the form P(tl',...,t ' ) ~ C'I,...,C'p,B*I,...,B' q then we can 
create a new subgoal by replacing 0B 1 by tl----ttl,...,tn-----twn,C'l,...,C'p,B~l,...,B~ . An additional next step 
can then be to choose a substitution d in Sol (t ----~t e , ,t -----t t ,C* , ,C I ), thqus yielding the overall M 1 1"" n n 1"" p 
subgoal dB'l,...,dB'q,doeB2,...,do0Bk. Proceeding in this way, that  is, by alternating calls to Sol M with 
resolution steps using the clauses in ¢', gives a complete strategy for solving our original query. 

However, this strategy may be too costly if calls to Sol M are expensive. And it may be impracticable if 

our simplifying assumption that  Sol M applies to any conjunction of the ]E,H-sentences does not hold, in 
a case where the acceptable sentences for some algorithm have a more restricted form that can ony be 
reached after being sufficient instantiated by substitutions. Thus, an alternative, and equaly complete 
strategy, is to delay calls to Sol M until after all the atoms involving new predicates have been removed 
from the goal by resolution steps. This means "giving the benefit of the doubt" to atoms involving the 
built-in predicates, so that the search space, although it can be explored faster as far as the non-built- 
in predicates are concerned, is nevertheless broadened. It is also possible to have a "mixed" strategy, 
in which Sol M is called immediately for certain predicates for which it happens to be efficient (such as 
perhaps equality, which might reduce to unification when only constructors are involved, or to 
unification without the occur check when M consists of infinite trees), whereas calls to Sol M could be 
delayed for predicates where it is inefficient or where certain instantiations of the arguments are 
required by the algorithm. All these alternatives remain complete, since all are equivalent to 
satisfaction in the model TE(M),IIt, CIUDmg+(M } which is our standard for correctness. 

The above sketches an approach to constraint langauges based upon order-sorted Horn clause logic 
with equality. Denotational semantics is given by any model which is initial among all those having 
some fixed sorts, functions, and relations interpretated into a fLxed order-sorted model (a "built-in"); 
and operational semantics is given by a combination of resolution and built-in algorithms. The main 
reason for taking this approach is to implement such a language efficienly, and we have discussed some 
of the more delicate issues that arise in this regard. 
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4 Logica l  P r o g r a m m i n g  

This section discusses our broad perspective on logic programming, based on the notion of 
"institution" [10], which combines formal syntax with model theory and deduction at a very high level 
of generality~ At the present stage of development, we cau only claim that institutions provide a 
useful general framework and viewpoint, rather than a formal foundation for all aspects of our 
research on programming paradigms and their combinations. However, what we have so far actually 
supports most of our research, and also provides much broader perspective toward what might be the 
proper concern of "logic programming" than any other available foundation. Moreover, the areas that 
are not yet fully formalized represent some interesting opportunities for further research. 

The abstractness and generality of the material treated here makes it very appropriate to use category 
theory as a language for expressing the concepts and developing their properties. Since a paper of this 
length cannot develop from scratch the category theory that will be needed, we assume that the render 
is already familiar with the basics; for some introduction to these concepts, see [21, 1]. 

4.1 Institutions and Logical Programming Languages 

Today's computer science is undergoing enormous growth, in both its artifacts and its theories. This 
creates an equally enormous need for conceptual unification, since otherwise we will drown in the flood 
of undigested information. In particular, there is a population explosion among the logical systems 
that are being used by computer scientists, including first order logic, equational logic, modal logic, 
higher order logic, temporal logic, intuitionistic logic, dynamic logic,Lorder-sorted Horn clause logic, 
and the many specialized logics used in various verification systems and theorem provers. 
Institutions [10, 6] formalize the notion of a logical system, and seem useful in capturing programming 
and specification language paradigms and features independently of any specific language or logic, as 
well as in unifying programming paradigms. Institutions avoid commitment to any particular logical 
system by doing constructions once and for all at a higher level of generality. In addition to the 
sentences, models and satisfaction already mentioned, institutions also encompass homomorphisms of 
models and proofs between sentences. One view is that institutions generalize classical model theory 
by relativizing it over signatures. This intuition is stated in the following slogan: 

Truth is invariant under change of  notation. 
This subject is closely related to "abstract model theory" as studied by logicians, e.g., [3]. The formal 
definition will use the following notation: categories are underlined, and IC__l denotes the class of objects 
of C. 
Definition 30: An institution 2" consists of: 

• a category Sign of signatures 
• a functor Mod: Sign~Cat °p giving Z-models and ~-morphisms 
• a functor Sen: Si~--*Cat giving E-sentences and E-proofs 
• a satisfaction relation I=~  C IMod(Z)[ x [Sen(E) I for each EG]Sign I 

such that 
• satisfaction: m'l=z,Sen(~)s iff Mod(¢)m'[=L-s for each m'6lMod(L~}[, s6[Sen(E)[, ¢: E--*L ~ in 

Sign, and 
• soundness: ml=L.s and s-*s'ESen(~) imply ml=L~s' for mElMod(~)[. 

E1 
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We now give a somewhat informal explication of the notion of ~ogical prograxaming. 

D e f i n i t i o n  31:  A l o g i c a l  p r o g r a m m i n g  l anguage  L has an associated institution I such ~h~t; 
• a p r o g r a m  P of L consists of a signature E from X and a finite set of ~:-sentencesg; 

• the o p e r a t i o n a l  s e m a n t l c s  of an L-program P is given by proofs in I, from some given query 
to an answer in some normal form1°; and 

• the d e n o t a t i o n a i  s e m a n t i c s  of an / . -program P with signature E is given by a class of 
E-models in X 11. 

E1 

Functional programming takes some institution of equational logic as its basis, perhaps unsorted, 
many-sorted, or order-sorted, perhaps first order or higher order, and then computation reduces a 
given sentence to a normal form. FP [2] uses a fLxed higher order program P, and computation 
reduces nser-supplied expressions to their normal form. OBJ [0] is based on first order order-sorted 
equational logic; the user first supplies the program P, perhaps only implicitly as a combination of 
smaller programs (i.e., "modules"); computation is again reduction of a well-formed expression to a 

normal form. Pure logic programming takes some institution of first order Horn clause logic as its 
basis, perhaps unsorted, many-sorted, or even order-sorted. The user supplies a program P and a 

"query" Q containing some variables; the operational semantics then tries to prove some substitution 
instance of Q from P, and returns the substitution if it succeeds. Eqlog [11] does much the same, but 
is based on the order-sorted Horn clause logic with equality institution, so that its sentences are much 

more general than in ordinary logic programming. Eqlog returns both the substitution and the 
substitution instance of the query, so that functional programming in the general style of OBJ is also a 
special case. FOOPS [12] is a combination functional and object-oriented programming language, based 
upon a "reflective" first order, order-sorted equational logic, and not only the user-supplied expression, 

but also the program, are modified by computation. Although we know the sentences and rules of 
deduction for this logic, we do not yet know what models are appropriate, so it is not yet an 
institution. 

Actually, Definition 31 is even more general than we have led you to believe, since it also includes 
specification languages. The difference between a logical programming language and a specification 

language is the efficiency of deduction. Since this is partly subjective, and partly a matter of 
technology, we have not put it in a formal definition. Rather, we can just say that a s p e c i f i c a t i o n  

l anguage  is an inefficient logical programming language. Some specification languages are "loose", 
in the sense that  they take the class of all models that satisfy the given sentences as their denotation; 
for example, Clear [5]. In this case, the language needs some rather fancy sentences, such as the "data  
: ~nstraints" [10], to define abstract data types. Other specification languages take just the initial 

models for the denotation for a program, such as ACT ONE (see [8]), and some are even restricted to a 
fLxed set of data structures, such S-expressions or numbers; for example, the original Boyer-Moore 

0In practice, some sort of modularization mechanism, perhaps based on colimits as in [6], may be provided to facilitate 
constructing a new program by combining old programs. 

IOin general, the answer will consist not only of some/-sentence which has been proven, but also some information 
obtained during the proof, such as a substitution. 

llln many cases, this class will be the class of initial models satisfying P. 
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theorem prover [4]. Instead of giving an expression to be reduced or a query to be answered, the ~ser 
of a specification language can usually pose quite general hypotheses about the properties of a 
program; therefore, computation is rather general theorem proving. Also, the mode of user interaction 

is generally much freer than for a programming language, with the user directly participating in some 
aspects of the proof process. In this context, OBJ and Eqlog are "wide spectrum" languages, in that 

they have subsets which are quite efficient, other subsets that are tollerably efficient and would be 
useful for rapid prototyping (e.g, associative commutative matching}, and still other subsets {e.g., the 
verification of theories} that are really only suitable for specification and design. 

5 C o n c l u s i o n s  

This paper has suggested that techniques somewhat more model-theoretic than those usually used in 
the logic programming literature may have some advantages, for example, in giving the semantics of 
constraint languages, as well as in combining logic and functional programming, and in reaping the 
various benefits of order-sorted logic that we have tried to make clear. We have also argued that 
order-sorted Horn clause logic with equality, especially in connection with built-ins, provides about as 
expressive and general a logical programming language as one might want, provided one is willing to 

do without states and objects. Moreover, we have given further details of the semantics of Eqlog that 
complete the picture given in [11]; in particular, we have given two sets of rules of deduction for order- 
sorted Horn clause logic with equality, one fully general, and the other for the case where all sorts are 
non-empty, and we have also proven completeness, initiality, Herbrand and free extension theorems. 
It is the latter which serves as a semantic foundation for constraint languages, and we argue that this 
model-theoretic approach is an attractive alternative to more syntactic approaches. One nice point is 
that abstraction, i.e., representation independence, is an explicit part of the formalism. We have also 
developed in some detail a very general framework for "logical programming," based upon the 
institution notion, and we have shown how the various cases discussed in the paper fit into that 
framework. Finally, a number of new questions have been raised, including various more general free 

extension theorems, and finding an appropriate model theory for object-oriented programming. 
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