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Abstract  

A new approach to determine motion from multiple images of a sequence is presented. 
Motion is regarded as orientation in a three-dimensional space with one time and two space 
coordinates. The algorithm is analogous to an eigenvalue artalysis of the inertia tensor. Besides 
the determination of the displacement vector field it allows the classification of four regions with 
regard to motion: a) constant regions, where no velocity determination is possible; b) edges, 
where the velocity component perpendicular to the edge is determined; c) corners, where both 
components of the velocity vector are calculated; d) motion discontinuities, which are used to 
mark the boundaries between objects moving with different velocities. 

The accuracy of the new algorithm has been tested with artificially generated image se- 
quences with known velocity vector fields. An iterative refinement technique yields more ac- 
c.urate results than the usage of higher order approximations to the first spatial and temporal 
derivatives. Temporal smoothing significantly improves the velocity estimates in noisy images. 
Displacements between consecutive images can be computed with an accuracy well below 0.1 
pixel distances. 

1 In t roduc t ion  

Classical image sequence processing analyses motion from only two consecutive images 
of a sequence [16,17,18]. Since digital image processing hardware has become powerful 
enough to store, process, and display image sequences with many frames, considerable 
efforts have been made to extend these approaches to the simultaneous analysis of many 
images or the whole sequence. Heeger [6] used a set of similar but differently oriented 
space-time quadrature filter to determine the displacement vector field. A least square 
method is applied to compute the two-dimensional displacement vector field from the 
set of filter responses. In a similar approach, Fleet and Jepson [4] decompose an image 
~,~equenceby a family of spatiotemporal velocity-tuned linear filters, but they calculate the 
velocity component normal to the filtered spatial orientation from local phase information. 
]In a second step, the normal displacements are combined to gain the two-dimensionM 
displacement vector. 

Common to both approaches is the usage a large sets of velocity-tuned filters. It arises 
the question whether it is not possible to calculate the displacement more directly. 

In this paper, a technique is discussed which originates from an analysis of the local 
orientation in the three-dimensional image sequence space with one time and two space 
coordinates. Such an approach to motion analysis has a long history in biological vision 
[1], but'the developments presented here have rather been triggered by a complex physical 
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application for image sequence processing, the analysis of the motions of small scale waves 
on a water surface [9,10,8,12]. 

In the first section of the paper the concept of motion determination by analysis of 
orientation is outlined and it is shown that determining the local orientation in the st-  
space is equivalent to the eigenvalue analysis of the inertia tensor. 

The rest of the paper is committed to the important issue of the accuracy of the 
velocity determination. Basically, three classes of errors can be distinguished: 

• errors inherent to the algorithms used to compute the displacement vector field; 
• errors caused by the imaging sensor such as signal noise, nonuniformity of the sensor 

elements, and geometrical distortions; 
• errors due to the fact that the optical flow on the image plane and the two-dimensional 

motion field which is the perspective projection of the three-dimensional motion field 
in the observed scene are not identical. In a recent paper, Verri and Poggio [21] nicely 
demonstrate that both are in general different. Nagel [19] discusses additional terms 
to be included in the constraint equations for optical flow. 

This paper deals only with the first class of errors. T o  separate algorithm related errors 
from sensor related errors, only computed image sequences have been used. 

2 Mot ion  and  Or ienta t ion  in x t -Space  

2.1 The  Concep t  

As an introduction to the concept, let us take an object g(~) in the image sequence 
which moves with constant speed u. In this case it can be described by 

g ( = , t )  = g ( .  - , , t )  (1) 

This equation is known as the general solution of the differential equation for waves in 
a non-dispersive medium in physics. The usage of the three-dimensional space with one 
time and two space coordinates offers the advantage that motion can also be analyzed 
in the corresponding Fourier space which will be denoted by kw-space. Correspondingly, 
the abbreviation rot-space will be used. 

An object moving with a constant velocity has a simple representation in the kw-space. 
Fourier transformation of (1) gives 

~ ( k , ~ )  = ~(k) 5(k,* - w) (2) 

where 5 is the Dirac distribution. With constant motion only one plane in the k~-space 
is occupied by the wavenumber spectrum ~(k) of the object which is given by 

= h ,  (3) 

This plane intersects the klk2-plane perpendicularly to the direction of the motion, be- 
cause in this direction the scalar product ku  Vanishes. The slope of the plane is propor- 
tional to the velocity. 

The plane cannot be determined unambiguously if the wavenumber spectra lies on a 
line. In this case, the spatial structure of the object is oriented only in one direction (local 
spatial orientation respectively edge-like structure). Then only the velocity component 
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perpendicularly to the edge can be determined. This problem is the well known aperture 
problem [16,7]. 

So far, the considerations have been limited to continuous zt- and kw-spaces. Yet all 
conclusions remain valid for discrete image sequences if the sampling theorem is satisfied. 
Then the image sequence can be exactly reconstructed from its samples. For image 
sequences there is a sampling condition both for the space and time coordinates [7] which 
requires that both the highest frequencies and wavenumbers are sampled at least twice 
per period and wavelength respectively. 

2.2 The  Analogy:  Eigenvalue Analysis of the  Iner t i a  Tensor  

In the previous section it has been discussed that motion and orientation analysis are 
equivalent. Therefore algorithms for orientation can also be used for motion analysis. 
One approach uses a set of directional quadrature filter pairs [14]. All filters show the 
same shape but only differ in the direction they select. Combining the filter outputs in a 
suitable way gives an estimate of the orientation. Such a procedure has been implemented 
by Heeger [6] for two-dimensional motion analysis using a set of ~t-Gabor filters. 

A more direct way has recently be presented by Bigiin and Granlund [2]. They point 
out that the determination of local orientation in a multidimensional space is equivalent 
to a line fit through the origin in Fourier space. Local orientation in a neighborhood 
corresponds to t:he mathematical term of linear symmetry defined by 

g(~) = g(~k0) (4) 

where ko denotes the orientation of the greyvalue structure. For the sake of simplicity 
time is regarded as one component of the ~-vector and the frequency w as one component 
of the k-vector. The greyvalue is constant in a plane perpendicular to k0. Thus linear 
symmetry is equivalent to a line in the Fourier space. 

The analysis of the distribution of the spectral energy in the kw-space can be performed 
by referring to a physical analogy. If we consider the spectral density as the density of a 
rotary body rotating about the axis ko, the inertia is given by 

o o  

g = ] d2(k, k0)]~(k)[ 2 dk (5) 
--OO 

where d is the (Euclidian) distance function between the vector k and the line presented 
by k0. 

Using this analogy, it will now be shown that an eigenvalue analysis of the inertia tensor 
will allow a motion analysis. The inertia tensor corresponding to the inertia defined by 
(5) has the following elements [5,2] 

diagonal elements Jii = f k]l (k)l dk 
j~ - i_  oo (6) o ?  

nondiagonal elements Jis = - ] k~ksl~(k)[Zdk 
- - 0 0  

Now let us consider different shapes of the spectral distribution: 



164 

• Point at origin. This corresponds to a region of constant greyvalues. The inertia is 
zero for rotation about all possible axes, consequently all eigenvalueS of the inertia 
tensor are zero. No motion can be detected since no plane can be fitted through a 
point at the origin. 

• Line through origin. In this case, a spatially oriented pattern is moving with constant 
speed. It is only possible to detect the velocity component perpendicularly to the 
spatial orientation. One eigenvalue of the inertia tensor is zero, since the rotation 
about the axis coinciding with the line has no inertia. The orientation of this line and 
thus the spatial orientation and the normal velocity are given by the eigenvector to 
the eigenvalue zero. 

• Plane trough origin. This case corresponds to a region of constant motion with a spa- 
tially distributed pattern. Rotation about a axis normal to the plane has a maximum 
inertia~ thus the eigenvector to the maximum eigenvalue gives the orientation of the 
plane and thus both components of the velocity. 

• Three-dimensional rotary body. Now motion is no longer constant in the region. 

2.3 Calculat ion of the  iner t ia  t ensor  in xt-space 

The tensor elements (6) can readily be calculated in the s-space since they contain 
scalar products of the form 

k l (k)l 2 = likA(k)l 2 (7) 
and 

k, kjl (k)[ 2 = ik, (k) [ikA(k)]* (8) 
where the superscript * denotes the conjugate complex. According to Parseval's theorem 
the integral (6) in k-space can also be performed in the z-space using the inverse Fourier 
transform of the corresponding expressions: 

diagonalelements d,i = ~".~ J.i¢'-,~ \~x~)  ( Og'~2 dz 

(9) 
nondiagonal elements Jq = - ~ / Og ag d~, 

Ox~ Oxj 

Finally, a weightingfunction w(=) is used to limit the determination of the inertia tensor 
to a certain local neighborhood in the image sequence: 

diagonal elements Jii(~o) = w(~ - Zo) \ ~ x j ]  d~ 
J¢-~o (10) 

T v _ g ff~gx j d z nondiagonal elements Jij(~0) = - I w(~ - $ o ) ~  
- - C O  

The width of the weighting function w determines the spatial resolution of the algo- 
rithm. In discrete images the operations contained in (10) can be performed as convolu- 
tions with appropriate operators and summarized in the operator expression 

diagonal elements ii ~-~B(Dj • Di) 
(11) 

nondiagonal elements ij B(D¢ • D~) 
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Fig. 1: Transfer function (imaginary part, the real part is zero) of the convolution masks 
(13) used to approximate the derivative operator. The straight line shows the transfer 
function of an ideal derivative operator. 

The symbol Di denotes a partial derivation with respect to the coordinate i, B a smooth- 
ing operator. Smoothing is performed over all coordinates. Finally, the symbol • denotes 
the p0intwise multiplication of the filter results of the two derivations. This is a non- 
linear operation which cannot be interchanged with the smoothing operation B. In the 
following, the results of the operations ( t l )  applied on the image sequence G will be 
abbreviated with the notation 

Gij = [B(DI • Dj )]G (12) 

Efficient algorithms for the eigenvalue and eigenvector analysis in two and three dimen- 
sions, i.e. for one- and two dimensionM velocity determination, are discussed in another 
paper [11]. 

3 Er ro r  considerat ions  

Kearney et al. [13] give a detailed analysis of the gradient-based optical flow deter- 
mination. They point out that highly textures surfaces, i.e. just the region with steep 
gradients where the flow can be detected most easily are most seriously effected by errors 
because of larger higher order spatial derivatives. Actually, this is not correct. It can be 
proven that any region with constant motion (1) yields an accurate velocity estimate in 
the one- and two dimensional case. 

The problem is rather the discrete approximation of the spatial and temporal deriva- 
tives. The simple 1/2(1 0 -1)-operator is a poor approximation for higher wavenumbers 
(Figure 1). Therefore higher order approximations have been used with the following 
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convolution masks [7] 

0)D, = 1/2(1 0 - 1) 
(2)D, = 1 / 1 2 ( - 1 8 0  - 8 1 )  
(3)Di -- 1/60(1 - 9 4 5 0  - 4 5 9  - 1 )  

(13) 

The corresponding transfer functions in Figure 1 show that these masks approximate an 
ideal derivative operator better with increasing size of the mask, but even the largest 
mask shows considerable deviations for wavenumbers larger than 0.6 times the Nyquist 
wavenumber. 

Because of this bad performance, also the idea of iterative refinement has been tested. 
The next determination is computed in a coordinate system which is moving with the 
previously estimated velocity. If the previous estimate has diminished the residual ve- 
locity, the temporal frequencies are smaller. Consequently, the temporal derivative will 
be calculated more accurately. It should be expected that the iteration finally converges 
to the correct solution provided a) the spatial interpolation necessary to calculate the 
temporal derivative is accurate enough and b) the image sequence includes no aliasing. 

4 Experimental Results 

4.1 Computed Image Sequences 

The accuary of the algorithms has been tested with different computed image se- 
quences. All experiments have been performed with 12-bit images. All convolutions and 
multiplications were computed in 16-bit integer arithmetic with appropriate scaling. All 
intermediate results were stored with 12-bit accuracy directly in a 12-bit frame buffer 
(FG-100 from Imaging Technology). Smoothing of the multiplications of the derivative 
operators in (11) was performed by a 17 x 17 × 5 binomial kernel. Only the last steps 
of calculating the velocity components and the classification were performed in floating 
point arithmetic. 

4.2 Accuracy: Dependence on spatial and temporal scales 

The first set of experiments deals with the accuracy of the velocity estimate. Con- 
stantly moving sinusoidal patterns provided a means to test the influence of the wavenum- 
ber of the spatial structure on motion determination. To study subpixel accuracies non- 
integer values for the displacements and wavelengths have been used. Non-zero Gaussian 
noise with a standard deviation of 50 was added to the sinusoidal pattern with an am- 
plitude of 500. A low displacement of only 0:137 pixels/frame was chosen to introduce 
no significant error in the temporal derivative. Figure 2a shows the computed displace- 
ment as a function of the wavelength using the three different approximations to the first 
derivative as discussed in section 3. 

As expected, the deviations from the correct value increase with decreasing wavelength 
and are larger for lower order approximations. Towards larger wavelengths the estimated 
displacements converge to a value which deviates by less than 0.007 pixels from the correct 
value. This residual deviation is probably due to round-off errors caused by the 16-bit 
integer arithmetic and storage of intermediate results with only 12 bits accuracy. Taking 
this error limit, we can conclude that the first order approximation for the derivation 



167 

0.5 

0.4 

0.3 

U 

0.2 

0.1 

0.05 

0.04 

(I.03 

~'u 

(I.02 

0.01 

I I 1 I 

+ 

1 I t I 1 

0 + 

+ 

+ 

2 

I 
b 

I I 
4 6 

I i 

I I I I I I I 
8 10 12 14 16 18 20 22 

wavelength 

I I i I i I i L 

X 

X X 

X 

x#<x x 

+ 

~ + ~  

X 

X 

X 

+ 
+ 

o 

0 I 1 I 1 I 1 I I I I I 
0 2 4 6 8 10 12 14 16 18 20 22 

wavelength 

Fig. 2: a) Displacement estimate in an image sequence with a noisy sinusoidal pattern 
(amplitude 500~ standard deviation of the Gaussian noise 50) moving with 0.137 pix- 
els/frame as a function of the wavelength. Different discrete approximations for the first 
partial derivatives (13) have been used: + (1)Di, • (2)Di, D (3)D i. b) standard deviation 
of the displacement distribution in the image as a function of the wavelength, symbols as 
in a) but an additional case with (1)Di where no temporal smoothing has been applied. 
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Fig. 3: A contracting sinusoidal pattern generates a linearly changing 1D-motion field. 
The contraction rate has been adjusted to result in displacements of half a wavelength at 
the left and right side of the image. The thick line marks the given velocity field, while 
the thin line show the computed results with different derivation operators (13): solid, 
1++2(1 0 -1); dashed, 1/12 (-1 8 0 -8 1); dotted, 1/60 (1 -9 45 0 -45 9 -1). Wavelength of 
the pattern 5.10 pixets. 

operator can be taken only if the wavelength is larger than 8 pixels, while the third order 
approximation yields about the same error at wavelengths as short as 3.5 pixels. This 
is still a factor of about two short to the smallest wavelength allowed by the sampling 
theorem with a wavelength of two pixels. 

A linearly changing velocity nicely demonstrates the combined errors caused by both 
the spatial and temporal derivates. Since the displacement changes from - ,V2 to +V2 
over the image, just the frequencies are covered which are allowed by the sampling theo- 
rem. W~th low displacements, the error is dominated by the spatial derivative (Figure 3). 
The estimated displacements are too high and decrease with the order of approximation. 
For high displacements the error is dominated by the temporal derivative. Towards dis- 
placements of half a wavelength, the estimates even decrease and go towards zero. The 
computed behavior excellently agree with the expected one since it just resembles the 
transfer functions of the derivative operator shown in Figure 1. Interestingly, there is one 
point were the estimates are correct though both derivates are erroneous. This happens 
with a displacement of one pixel since then the temporal and spatial derivative are equal. 
Thus it has to be taken great care not to use integer displacements to test the accuracy 
of motion determination. 

So far, there is the limitation that both the spatial and temporal frequencies must be 
well below the Nyquist limit. To overcome this problem the accuracy and convergence of 
the iterative refinement technique discussed in section 3 have been investigated. A 1/2 (1 
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Fig. 4: Test of the method of iterative refinement with a sinusoidal pattern of a wavelength 
of 5.13 pixels. The computed displacements are shown as a function of the number of 
iterations for velocities between 0.317 and 2.413 pixels/frame. The thick lines mark the 
correct values. 
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Fig. 5: Same as Figure 3 but displacements computed iteratively using the simple 1/2(1 0 
-1) derivation operator. The iteration steps are indicated. Amplitude of the pattern 800; 
standard deviation of added zero mean Gaussian noise: 50. 
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10 
20 
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100 
200 

A = 4.13 
0.1520 0.0017 
0.1521 0.0027 
0.1523 0.0058 
0.1521 0.0116 
0.1706 0.0321 

= 6.13 
0.1142 0.0021 
0.1142 0.0032 
0.1143 0.0067 
0.1138 0.0135 
0.1231 0.0354 

= 8.13 
0.1004 0.0027 
0.1000 0.0041 
0.1001 0.0087 
0.1000 0.0174 
0.1064 0.0430 

TABLE 1: Dependence of the standard deviation of the displacement estimate a~ on the 
standard deviation of the added Ganssian noise an for a sinusoidal pattern of an amplitude 
of 500, moving with 0.1 pixels/frame. 

0 -1) derivative operator and linear interpolation to estimate intergrid image points were 
applied. Despite the relative crude estimates in each step, the results are surprisingly 
good. Figures 4 and 5 show that the algorithm converges nearly in the whole possible 
displacement range of ±~/2.  Of course the convergence is slower at higher displacements 
because the poor initial estimates allow only a slow decrease in the residual displacement 
but within 6 iterations the final values have been reached. The small deviations from the 
expected values are less than 0.03 pixels and obviously depend on the actual displacement. 

4.3 Influence of  Noise 

The last section clearly showed that accurate estimates of the velocities can be com- 
puted. Now the standard deviation of the estimates is closer examined. First we take a 
look at the dependence of the standard deviation on the wavelength of the image structure 
at a constant noise level. Then standard deviation basically is proportional to the wave- 
length (Figure 2b). This fact results from the decrease of the spatial derivative with the 
wavelength. Only at small wavelengths were the estimate becomes erroneous (Figure 2a), 
it increases again. 

In a second experiment the noise level was increased in a sequence with a sinusoidat 
pattern of 4.13 pixel wavelength, an amplitude of 500 and a displacement of 0.137 pix- 
els/frame. Table 1 shows that' standard deviation of the velocity estimate c% is roughly 
proportional to the noise level an. Only at the highest noise level, with almost a signal-to- 
noise ratio of one, the increase is more than proportional and the estimate is biased, but 
well within the standard deviation. The fact that the bias is larger at smaller wavelength 
clearly indicates that it is caused by the local nonlinearity in the transfer function of the 
partial derivative which is larger at higher wavenumbers (Figure 1). 

The robustness of the estimate using the iterative refinement technique in noisy images 
with linearly changing velocity field is demonstrated in Figure 5b. 

4.4 Moving random pattern 

So far rather unrealistic images with periodicM patterns have been studied which 
helped to understand the dependence of the errors on various parame~rs. In contrast, 
a moving random pattern (Figure 6a) includes spatial scales of all sizes and should thus 
give a good estimate of the errors in real images. 
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b 

d 

Fig. 6: Detection of motion discontinuities: a) One image of a sequence with random 
pattern which is moving 0.5 pixels/frame to the left and right in the upper left and right 
quadrants respectively. The lower half is not moving, b) Confidence level for motion 
detection, c) Computed 1D-velocity shown on a greyscale where zero velocity indicates a 
mean greyvalue, d) Measure indicating the degree of constant motion. 

technique u a~, 
first order appr. -0.555 0.015 
second order appr. -0.516 0.012 
third order appr.' -0.501 0.019 
iterative refinement -0.494 0.020 

TABLE 2: Displacement estimates for a random pattern (% = 362) moving with -0.5 
pixels/frame and o',~ = 50) using different techniques: different orders of approximation 
for the discrete partial derivatives or the iterative refinement technique. 

Figure 6 shows several parameters. The sum of the squared derivatives is taken as a 
confidence level whether a velocity can be determined at all. The quantity 7 measures 
the degree of constant motion and nicely shows the motion discontinuities (Figure 6c, d). 

Table 2 show's that quite similar results as with the sinusoidal patterns are gained. 
The estimates get better for higher order approximations of the discrete derivatives. For 
the third order and the iterative refinement technique, the estimates agree within the 
standard deviation with the correct values. Despite the quite low signal-to-noise ratio of 
7.2, the standard deviation is between 0.012 and 0.020 pixels. These values are three to 
four times higher than in comparable signal-to-noise ratios for sinusoidal pattern. 

There is an easy explanation for this effect. In contrast to the sinusoidal pattern, the 
random pattern includes many regions with lower confidence levels for velocity estimates 
(Figure 6b). This measure averaged over the whole image is about four times lower 
for the random pattern than for the sinusoidal pattern. The noise sensitivity should be 
accordingly higher and this is exactly what has been observed. Thus the random pattern 
should give a realistic estimat.e of the influence of noise on the statistical error of the 
velocity estimate. 
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5 Conclusions 

A new algorithm has been outlined for the analysis of motion in image sequences in the 
xt-space. Several tests performed with the 1D-algorithm indicate that a promising new 
approach to image sequence analysis opens up which is especially suitable for scientific 
and industrial applications. Accurate velocity determinations are possible even with noisy 
images. The algorithm proved to be superior to the standard optical flow approach using 
only two consecutive images of a sequence. The method of iterative refinements gives the 
most accurate results, which no detectable bias within the statistical error. 

The algorithm is best used in a multigrid approach. The experiments demonstrated 
that the statistical errors are minimal for wavelengths between 3 to 6 pixel (Figure 2b). 
Therefore the image sequence may be spatially decomposed into, a Laplacian pyramid 
[3,7] which is constructed in such a way that the maximum of the transfer function in 
each level coincides with the optimum wavenumber. In this way, also velocity information 
can also be gained from large scale structures, which otherwise would be lost. If no 
motion superimpostion is present, large displacements can be determined in a coarse-to- 
fine strategy. 

Acknowledgements 

The author gratefully acknowledges financial support by the German Science Foun- 
dation, the European Community (twinning contract with several Dutch organizations 
within the VIERS-1 project), the California Space Institute, and the Office of Naval 
Research. 

References  

1. E. If. Adelson, J. R. Bergen, Spatio-temporal energy models for the perception of motion, 
J. Opt. Soc. America, A2, 284-299 (1985). 

2. J. Big(in, G. It. Granhnd, Optimal orientation detection of linear symmetry, In Proc. Int. 
Conference Computer Vision, London 1987, , ed., pp. 433-438, IEEE Computer Society 
Press, Washington (1987). 

3. P. J.B~rt, E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. 
Comm., 31,532-540 (1983). 

4. D. J. Fleet, A. D. Jepson, Hierarchical construction of orientation and velocity selective 
filters, IEEE Trans. Pattern Analysis and Machine Intelligence, 11,315-325 (1989). 

5. If. Goldstein, Klassische Meehanik, Aula, Wiesbaden (1985). 
6. D. J. IIeeger, Optical flow using spatiotemporal filters, Int. J. Comp. Vision, 1, 279-302 

(1988). 
7. B. J~hne, Digitale Bildverarbeitung, Springer, Berlin, Heidelberg (1989). 
8. B. J£hne, Energy balance in small-scale waves - -  an experimental approach using optical 

slope measuring technique and image processing, In Radar scattering from modulated wind 
waves, G. Komen, W. Oost, eds., pp. 105-120, Reidel, Dordrecht (1989). 

9. B. J~hne, Image sequence analysis in environmental physics: water surface waves and 
air-sea gas exchange (in German), In Mustererkennung 1986, Proc. 8. DAGM-Symposium, 
Paderborn, G. Hartmann, ed., pp. 201-205, Springer, Berlin (1986). 

10. B. J~hne, Image sequence analysis of complex physical objects: nonlinear small scale water 
surface waves, In Proc. Int. Conference Computer Vision, London 1987, pp. 191-200, IEEE 
Computer Society Press, Washington (I987). 



173 

11. B. J£hne, Motion determination in Space-Time Images, In Image Processing III, Conf. 
Proceedings 1135, SPIE, Washington (1989 in press). 

12. B. J~hne, S. Waas, Optical measuring technique for small scale water surface waves, 
In Advanced Optical Instrumentation for Remote Sensing of the Earth's Surface, Conf. 
Proceedings 1129, SHE, Washington (1989 in press). 

13. J. K. Kearney, W. B. Thompson, D. L. Boley, Optical flow estimation: an error analysis 
of gradient based methods with local optimization, IEEE Trans. Pattern Analysis and 
Machine Intelligence, 9, 229-244 .(1987). 

14. It. Knutsson, Filtering and reconstruction in image processing, Dissertation, LinkSping 
University (1982). 

15. R. Lenz, Zur Genauigkeit der Videometrie mit CCD-Sensoren, In Mustererkennung 1988, 
Proc. 10. DAGM-Symposium, Z~rich, pp. 179-189, Springer, Berlin (1988). 

16. II. Nagel, Analyse und Interpretation von Bildfolgen I, Informatik Spektrum, 8, 178-200 
(1985). 

17. H. Nagel, Analyse und Interpretation von Bildfolgen II, Informatik Spektrum, 8, 312-327 
(1985). 

18. H. Nagel, Image sequences - -  ten (octal) years - -  from phenomenology towards a theoret- 
ical foundation, In Proc. Int. Conf. Pattern Recognition, Paris 1986, , ed., pp. 1174-1185, 
IEEE Computer Soc. Press, Washington (1986). 

19. H. Nagel, On the constraint equation for the estimation of displacement rates in image 
sequences, IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 13-30 (1989). 

20. E. van ttalsema, B. J~i~ne, W. A. Oost, C. Calkoen, P. Snoeij, First results of the VIERS-1 
experiment, In Radar scattering from modulated wind waves, G. Komen, W. Oost, eds., 
p. , Reidel, Dordrecht (1989). 

21. A. Verri, T. Poggio, Motion field and optical flow: qualitative properties, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 11,490-498 (1989). 


