
Deriving Annotations for Tight Calculation of
Execution Time*

Andreas Ermedahl 1 and Jan Gustafsson 2

1 Dept. of Computer Systems, Uppsala University, Sweden, ebbe~docs.uu, se
2 Dept. of Computer Engineering, M~lardalens hSgskola, Sweden, jgn¢mdh, se

Abs t r ac t . A number of methods have been presented to calculate the
worst case execution time (WCET) of real-time programs. However, to
properly handle semantic dependencies, which in most cases is needed
to reduce overestimation, all these methods require extra semantic infor-
mation to be given by the programmer (manual annotations for paths,
loops and recursion depth). To manually derive these annotations is of-
ten difficult and the process is error-prone. In this paper we present a
new method to automatically derive safe and tight annotations for paths
and loops. We illustrate our method by giving some examples and by
presenting a prototype tool, implementing the method for a subset of C.

1 I n t r o d u c t i o n

Real-t ime systems are systems in which the correctness depends not only on the
results of computations, but also on the time at which the result is produced. To
be able to guarantee the deadlines of a real-time system, the software execution
t ime is needed before run-time.

The execution t ime of most programs depends on the input da ta and the sys-
tem state. For programs with some complexity, it is intractable to find the da ta
and the state which causes the actual worst case execution t ime (WCETA). This
approach is therefore not a feasible method. Instead, static analysis, which from
the source code derives the calculated worst case execution t ime (W C E T c) , has
been proposed by many researchers. The calculation must be sa# (i.e., W C E T c
> WCETA), yet as tight as possible, to avoid waste of resources.

To achieve a tight W C E T c , more information about the program behaviour,
than what is contained in the flow graph, is needed. False paths (non-executable
paths, i.e., paths that never can be taken) must be identified and excluded from
the calculation. Maximum number of iterations in loops and max imum depth o]
recursion calls must be given, because to calculate them is, in the general case,
equivalent to the well-known halting problem.

Existing methods require this information to be given as manual annotations.
However, a fundamental problem with this approach, beside being difficult and

* This work is performed within the ART-project within the Advanced Software Tech-
nology (ASTEC) competence centre, and is supported by the Swedish board for tech-
nical development (NUTEK), IAR Systems AB, Mecel AB and Uppsala University.

1299

time-consuming for the programmer, is that the annotations may be incorrect.
The W C E T c may be untight or, worse, unsafe.

In this paper we present a static analysis method which automatically derives
safe and tight annotations from the program semantics. It can be seen as a first
phase in a tight W C E T c calculation. These annotations can be used by the
following phase, an object code analysis, which also considers modern hardware
architectures. If simple hardware is used, this next phase may be unnecessary,
and the W C E T c calculated by our method can be used.

The remainder of the paper is organised as follows: The next section illus-
trates how our approach relates to other methods. In section 3, we introduce
our new method. In section 4 we present our tool and an illustrative example.
Finally, section 5 gives some results, conclusions and ideas for future work.

2 R e l a t e d w o r k

Timing analysis of software has been an important area in real-time research
during the last 8 - 10 years. The issues this research has dealt with are:

1. Mapping the high-level source code constructions to the corresponding object
code instructions by static analysis. Compiler optimisations will make this
more difficult [19].

2. Deriving dynamic properties of programs, i.e., how many times each instruc-
tion will be executed in the worst case. Information of false paths, maximum
number of iterations in loops and maximum depth o] recursion calls are nor-
mally given as manual annotations. However, symbolic execution methods
has been proven to find some false paths automatically [1,4].

3. Calculating the W C E T c using the static and dynamic information above.
Timing schema [15,16] analysis calculates W C E T c by recursively adding the
times for the constructs in the program. Another method is Integer Linear
Programming (ILP) [9,17] analysis, which is used in most recent research. It
transforms the program to a flow graph where each edge corresponds to a
basic block. For each edge, the worst execution time is calculated from the
instructions in the basic block. The total execution time is represented as a
linear expression, and the W C E T c is calculated by finding the maximum of
the expression with linear programming optimisation.

4. Modern hardware with cache and pipeline is analysed in extensions to TS
[11], ILP [10] or using constraint techniques [13]. This analysis must take into
consideration the current cache and pipeline contents before each instruction
execution. To get a tight calculation, detailed information on dynamic pro-
gram behaviour, especially nested loops, is needed.

As we can see, all published methods rely more or less on manual annotations to
work and to give a small overestimation. But to give these annotations is extra
work for a stressed programmer, and it is certainly easy to find very simple
examples where, e.g., the maximum number of iterations in a loop is very hard
to calculate (see Fig. 4(a) for an example). And what happens if the manual

1300

annotat ion is incorrect? One possible effect is that a program could be given a
too small t ime slot in a schedule, ending up in a missed deadline, with possible
catastrophic consequences.

Park discusses this problem in [14], proposing a method tha t verifies the cor-
rectness of the annotations. But why not let the analysis method t ry to find the
annotat ions automatically, as they are inherent in the semantics of the program?

3 D e r i v i n g A n n o t a t i o n s

In our analysis of a program we will use da ta flow analysis to find out values
of variables at different points in the program. Using this information we can
automatical ly derive pa th and loop annotations.

Contro l points , co, C l , . . " , Cm, are introduced at points in the program where
the value of a variable may change (after assignments), or when we can constrain
the possible values of variables (after conditions). For an example, see Fig. l(a).

With each control point, c~, we associate an e n v i r o n m e n t , a h. An environment
holds all combinations of variables values tha t are possible at the control point
in a program execution, a h = {a l ~-+ v l , ' " , am ~ Vm) denotes an environment
where the variables a l , " • , am have been assigned the values v l , . • • , Vm, respec-
tively. We will by the index h separate between different passings of the same
control point, e.g., in loops and continuations after selection s tatements (h will
in the sequel only be included when necessary).

[co] 0.0 0.0 ---- {a ~-+ 1, b ~-+ 4}
a = 5 ; [cl] az = [a = 5]ao al = {a ~-+ 5, b ~-~ 4}
b=b-2; [C2] 0.2=[b=b-2]al 0.2={a~+5, b ~ 2 }
a =a+b; [c3] 0"3 : [a=a+b]0.2 0.3 :{a~+7, b~2}

(a) (b) (c)

0.0 = {a ~ 1..3, b ~+ 2..4 V 7}
al = {a ~t 5, b ~+ 2..4 V 7}
a2 = {a ~-+ 5, b ~+ 0..2 V 5}
a3 = {a ~ 5..7 V 10, b ~-+ 0..2 V 5}

(d)

Fig. 1. The statements (with inserted control points) in (a) gives the semantic rules in
(b) and the concrete and abstract evaluation in (c) respectively (d).

3.1 C o n c r e t e a n d a b s t r a c t s e m a n t i c s

The concrete s e m a n t i c s (meaning) of a program is defined as the environments
tha t can be generated by the program description [12]. We will use a semantic
function, H , that takes an environment, a, and a r u l e on how to modify (or
constrain) the environment and return a modified environment: a~ = [rule~a.
Depending on the nature of the rule, i.e., if it is a s tatement or a condition, we will
further subdivide [.] into $[.] and g[.] l . See Fig. 1(5) for the semantic rules tha t
corresponds to the statements in l(a) . If each variable in the initial environment,
a0, is assigned to a single value, like ao = {a ~+ 1,b ~-~ 4}, the evaluation of the
equations will correspond to a "normal" execution of the program, see Fig. l(c).

1 ,~ stands for statement and C for condition rule.

1301

For our analysis, we will define an abstract environment where variables can
be assigned to several values. For each concrete semantic rule, in the program-
ming language, a corresponding abstract rule is defined. For example, our ab-
s tract version of the '+' operator handles sets of values. An abstract evaluation
can be seen in Fig. l(d). Note tha t the abstract evaluation corresponds to a
set of concrete evaluations and that each concrete evaluation corresponds to a
possible execution.

In this paper, and in our tool (see section 4), we will represent abst ract values
with split integer intervals. For example, b ~ 2..4 V 7 means tha t b:s value is
either 7 or between 2 and 4. This representation has some drawbacks, e.g., it
does not express conditions between variables in an environment, on the other
hand it is simple to manipulate and allows efficient implementations.

The domain of the environments is in the general case a partially ordered
set (poset), (:D, C_, J_, U, n), The set :D contains possible combinations of value
tuples for variables. The bottom element, J_, means that one or several of the
variables within the environment can not have any value at all. crl _C a2 is true
if[at least all tuples of variable value combinations that exists in ch also exists
in a2. (rl U a2 creates a new environment that holds exactly all tuples of variable
value combinations in both al and a2.

The cost, in terms of time and memory, to express an exact environment,
i.e., all possible tuples of variables value combinations, is often to expensive. The
representation can then be simplified by a safe abstraction, e.g., a ~-~ 1 V3 V.. V 99
can be safely approximated to be in the interval I..99. The approximation must
be safe (possible values must not be removed), tight (as few extra values as
possible), and efficient (in terms of time and memory). We will face a trade-off
between cost of computation and quality of results. For the above reason we will
also use an approximative meet operator tA t that applied on al and a2 creates a
new environment that holds at least all tuples of variable value combinations in
crl and g2. Abstract interpretation techniques [5] can be used to define a correct
relation between the abstract and the concrete domains.

3.2 F i n d i n g fa lse p a t h s

We will use a sequence of i f - s t a t ement s to illustrate how dependencies between
different program parts can be found.

A condition can be seen as a constraint to be applied on the variables in a
given environment. Fig. 2(c) shows how the s tar t environment, ao = {a ~+ 0..20},
will be constrained 2 by the conditions in the two i f - s t a t emen t s in Fig. 2(b). The
evaluation in Fig. 2(c) has the disadvantage tha t it does not take into account the
dependencies between the i f - s t a t ement s (a > 10 implies a > 5). Thus, it will
not detect tha t S1 --+ $4 is a false path. Our solution is to continue the analysis
from each of the two environments tha t are generated after an i f - s t a t emen t ,
giving the semantic rule in Fig. 2(a).

2 We are assuming that a will not be changed in any of the statements $1. • • $4.

1302

S I i : f (C) S1 e l s e $210. : { 0 2 , 0 4 }
where

0.1 = CIC]~
0.2 = SISdl0.~
0.3 = C[~Cl0.
0" 4 = S[S21(y 3

(a)

[co]
i~(~ > io> [~] s~ [~]
else [c3] $2 [c4]
[~]
if(~ > s> [~] & [~]
else [c8] $4 [e9]
[c~o]

(b)

0.0 = {a ~ 0..20}
0.1 = 0.2 = {a ~ 11..20}

0.a = 0.4 = {a ~ 0..10}
0.5 = {a ~-~ 0..20}

0.~ = 0.7 = {a ~-> 6..20}
0.s = 0.9 = {a ~ 0..5}

0.1o = {a ~ 0..20}
(c)

0.0 = {a~-~0..20}
0.1 = 0.2 = {a~->ll . .20}

0.3 = 0.4 = {a~-~0..10}

a~ 2 = {a~-~11..20} 0.~4 = {a~+O..lO}
0.~2 C2 {ab-~ c4 c4 {a~-+6..lO} =0.7 = 11..20} 0.6 =0.s =

0.~°' = 0.~°~ = { a ~ + ± } ¢~ = 0.~°4 = { ~ 0 . . 5 }

0.1g '¢v = {a~-+11..20} 0.1~ ''~ = {a~-+±} ai~ ''~ = {a~-+6..10} 0.[8 ''° = {a~-+O..5}
(d)

Fig . 2. The semantic rule for an if-statement in (a) gives for the program in (b) the
evaluation in (d) instead of the one in (c).

As seen in Fig. 2(d) each i f - s t a tement will now genera te two different envi-
ronmen t s . I t can now be seen t h a t the p a t h S1 --+ S4 is a false pa th .

3 .3 F i n d i n g t h e n u m b e r o f i t e r a t i o n s i n loops

We will use a w h i l e - s t a t e m e n t to i l lus t ra te how our analys is m e t h o d will work
for loops. T h e core idea is to t r ans fo rm t h e m into i f - s t a t e m e n t s , giving the
s eman t i c rule in Fig. 3(a). The i f - s t a t e m e n t yields two env i ronment s each t ime
it is ana lysed (as before):
1. T h e env i ronmen t in which the loop shall be execu ted again , atrue .
2. T h e env i ronmen t in which the loop t e rmina t e s , af~lse.

,_q[while(C) S~0. =
Slif(CXS; while(C) S}]ff

(a)

while (a < 9) { [a~r~e]
at = a + 2;

(b)

Iter atrue
0 { ~ 0..2 v 5 }
1 {a ~-+ 2..4 V 7}
2 {a~-+ 4..6}
3 {a ~ 6..8}
4 {a ~+ 8}
5 {a ~+ ± }

O'false
{~ ~ ±}

{a ~-+ 9}
{a ~+ ±}
{. ~ 9 . . lo}
{a ~ 10}

(c)

min = 2

m a x = 5

F ig . 3. The semantic rule for loop-evaluation in (a) gives for the program in (b) the
table in (c).

1303

A loop is "rolled out" until it cannot execute again, or until the t ime budget is
exceeded (see section 3.5). For example, with the start environment a = {a
0..2 V 5}, the code in Fig. 3(a) will generate the table in Fig. 3(b). The analysis
shows tha t the loop will i terate at least two times (since 2 iterations is needed
to set af~lse # _L) and at most 5 times (since after 5 iterations a t r ~ = J-, which
means tha t we cannot enter the loop again). The analysis also shows tha t a
always will be in the interval 9..10 after the loop.

3.4 M e r g i n g environments

Environments will, for several reasons, be merged (using the U or U ~ operations)
at certain points during the analysis. In our current tool the chosen merge points
are the ends of loops, functions and programs. The reasons for merging are:

1. Many evaluations from O']als e- environments will be redundant. For example,
hl hj hi afals e C Or.false , means tha t aiazs ~ is redundant since the evaluation from
hj h i 3 ai~ts e will include all possible executions tha t could result from ~false '

2. To reduce the number of continuous evaluations. For example, a loop body
with n if-statements will generate 2 n environments for each iteration. Merg-
ing of (possible) non-redundant environments will reduce the computat ional
cost. However, overestimation may occur.

3. The goal for the analysis of a program is to generate annotat ions for the
corresponding flow graph. Several methods for low level cache- and pipeline-
analysis demands this [8,10,11,13]. The annotations must then be true for
all iterations of each loop.

3.5 Introducing t ime

The analysis described so far will often not terminate if the program does not
terminate. To terminate our analysis, we will use the fact that a real-time pro-
g ram must complete its task within a given deadline. A program is given a t ime
budget, Tbud~et, which should be a realistic upper t ime limit for the program on
a given hardware. The t ime budget may be calculated during the design phase
and can be seen as par t of the specification of the program. The Tb~dget is the
only manual "annotat ion" needed by our method 4.

Each s ta tement or program block has a minimum and a max imum execu-
tion time, t,~i,~ and tmax~. For each analysed s ta tement the corresponding t ime
interval will be added to a accumulated time. The time for the longest path,
Tmi T,~ax~, will be compared to the t ime budget during the analysis. Three
cases can be identified:

In Fig. 3(b) the continuing analysis from afal~ in both the second and fifth iteration
can be included in the continuing analysis from a false in the fourth iteration.

4 Note that our time annotation is different from the annotations of other methods.
Erroneous path or loop annotations may lead to wrong WCETc, but an erroneous
Tbudget may in the worst case only lead to too early ending of the analysis.

1304

1. Tminc < Tma~c < Tbudget: In this case we can guarantee that the program
will not exceed its time budget.

2. Tminc < Tbudget < Tmaxc: There is now a risk that the program does not
terminate within the time budget. Our analysis tool (see section 4) will stop
and generate a warning message. If we suspect that the time budget is too
narrow, we may extend it and continue further.

3. Tbudg~t < Tmin~ < Tma,¢: In this case we know that the program will exceed
its t ime budget. The analysis will normally not reach this point.

Thus, our method calculates W C E T c for the program. However, note that the
main reason for this calculation is not to get the W C E T c for the program, but
to make sure that the analysis terminates.

4 I m p l e m e n t a t i o n a n d E x a m p l e

To test the described ideas a prototype tool has been implemented in the pro-
gramming language Erlang [2]. The tool uses a split integer interval represen-
tat ion of environments. So far only a subset of C is handled, including inte-
ger variables and the standard arithmetical operations (+, - , *, /) , decla-
rations, assignments, selection statements (i f - and i f - e l s e - statements) and
loop-constructs (while- and for-statements) . Still, this simple language serves
to illustrate our ideas. To add more types (e.g., floats), more complicated con-
structions, (e.g., arrays and structs) will be relatively simple. Functions calls,
dynamic memory and pointers demands a much more complicated analysis.

There is also an option in our tool to annotate the code manually with
possible input values. This can be used by the programmer to, for instance,
study the program behaviour for different inputs.

4.1 E x a m p l e

The information retrieved from the analysis of the program in Fig. 4(a) is pre-
sented in Fig. 4(b) and (c). We are assuming that both a and b are within the in-
terval 1..30 at the beginning of the program, that is: a0 = {a ~ 1..30, b ~ 1..30).
The values presented in Fig. 4(d) and (e) has been extracted by running the pro-
gram for all its possible combinations of input values, in this case: 30 * 30 = 900
executions ~. For a program with large number of arguments, with varying input
values, this is not a feasible option. Our analysis tool extracted, among other
things, the following information:

- A safe estimation of the minimum and maximum number of iterations in the
outer loop, Fig. 4(a).

- A safe estimation of the minimum and maximum number of iterations in the
inner loop for each iteration of the outer loop, Fig. 4(c).

- The fact that the a = a + 10; statement never will be executed and there-
fore is dead code.

5 Without any abstractions the analysis would derive these values as well.

1305

- A safe es t imat ion of the possible values for a and b within the program,
(1..41 and - 9 . . 8 7 respectively).

An interest ing compar ison can be made between the actual m a x i m u m number
of i terat ions in the inner loop: 13, (given by a0 = {a ~ 1,b ~ 7}), the number
derived wi thout abstract ions: 40, the number derived with our tool: 66, and a
coarse manua l anno ta t ion given by a p rog rammer 6, which could be 300. The
reason for the difference, between the actual m ax imum number of i terat ions in
the inner loop and the values given by the analysis tool, is t ha t the analysis
result includes all possible executions and reduces the computa t iona l cost by
using abstract ions. W h e n the p rogram iterates very differently depending on the
input values our analysis results will of course deteriorate.

while(a < 30)
[lout]
{

while(b < a)

{
if(b > 5)

b=b*3;
else

b=b+ 2;
if(b >= I0 &g~

b <= 12)
a= a+ I0;

else
a=a+ 1;

}
a=a+2;

b=b- 10;
}

min max min max
lout lout lout

lo Out 15 0 111
(b) (d)

max values giving max
li~ ~ of iterations

0 5 {a ~-> 18, b e-~ 1)
0 9 {a ~ 1,b ~ 1)
0 8 {a ~+ 1,b ~-~ 13)
0 7 {a ~+ 1,b ~+ 25}
0 4 { a ~ 2 , b ~ + 2 3 }
0 2 {a F-+ 2, b ~-> 22)
0 1 {a ~-+ 1,b ~-+ 1}
0 1 {a ~ 1, b ~ 9}
0 1 {a ~-~ 1, b ~ 2}
0 1 {a ~-+ 1,b ~-+ 5}
0 1 { a ~ l , b ~ 3 0 }
0 4O

min max
lout lin lin

1 0 5
2 0 10
3 0 9 # min
4 0 8 lout lln
5 0 7 1]
6 0 6 21
7 0 5 31
8 0 4 4
9 0 3 5

10 0 2 6
11 0 2 7
12 0 1 8
13 0 1 9]
14 0 1 10
15 0 1 11
E 0 66 E

(c) (a) (e)
Fig. 4. For the program in (a) our tool gives the estimated min and max iterations in
the outer (b) respectively inner (c) loop. The actual values are those in (d) and (e).

6 A programmer may see that a increases with at least 2 every outer iteration, giving
30/2 = 15 iterations in the outer loop. He may also note that b increases with at
least 2 for each iteration in the inner loop. As b also is decreased with 10 for each
iteration in the outer loop, the maximum number of iterations in the inner loop will
be: (30 + 10)/2 = 20 times. This gives a total of 15 * 20 = 300 iterations.

1306

5 C o n c l u s i o n s , r e s u l t s a n d f u t u r e w o r k

We have presented a static analysis method which automatically derives safe
and tight annotations from the semantics of the source-code program. Normally,
these annotations are given manually, but to derive them is often difficult and
error-prone. The analysis shall be seen as a first phase in a tight worst case
execution time (WCETc) calculation. The derived annotations can be used by
the following phase, an object (micro- or assembler) code analysis, which also
considers modern hardware architectures.

A short summary of the information derivable with our method are:

- Information of false paths and dead code within programs (section 3.2).
- Safe estimations of maximum and minimum of iterations both for single and

nested loops (section 3.3).
- Possible values for all variables in each point 7, program block or entire pro-

gram s 9
- A W C E T c that can be used on simple hardware architectures (section 3.5).

As future work we plan to investigate other forms of environment represen-
tation. General constraint techniques is one of the candidates [18].

We also plan to investigate how the degree of merging affects the analysis
result. We can in one extreme analyse all paths, without merging, but such an
analysis will be both very time- and space-consuming. On the other hand, too
much merging will generate a lot of pessimism in the analysis.

Backward analysis [6] can be of interest to further enhance our analysis. It
is performed by analysing a program backwards from the goal environments.

An obvious future task is to extend the analysed language. An interesting
extension will be functions, since a function may have different possible input
values at different invocations. These input values can be derived automatically
through our method and may lead to a tighter W C E T c 1°

Future work will also be to investigate how programmers of hard real-time
systems are writing their programs. Is there a need for complicated construc-
tions? Should the programmer be forced to write his programs in a certain way,
to allow analysis? Can we abandon recursion in real-time programs? An investi-
gation of the programming style used in real-time companies will be performed
during spring 1997 to give answers to these and similar questions [7].

References
1. P. Altenbernd. On the false path problem in hard real-time programs. In Pro-

ceedings of the Eight Euromicro Workshop on Real-Time Systems, pages 102-107,
June 1996.

Derived by merging all n environment generated at the i:th control point: j=Y.n o'hj . _ .
s Derived by merging all environments generated at all different control points.
9 This information can be used for compiler optimisations (e.g., reduction of size of

variables) and program verification (e.g., index checking) [3].
lo The only other method we know that considers input values for WCETc calculation

is [4], but it relies on manual annotations.

1307

2. J. Armstrong, R. Virding, C. WikstrSm, and M. Williams. Concurrent program-
ming in Erlang. Prentice Hall, 2 edition, 1996. ISBN 0-13-508301-X.

3. F. Bourdoncle. Abstract debugging of high-order imperative languages. In Pro-
ceedings of SIGPLAN'93 Conference on Programming Language design and Imple-
mentation, pages 46-55, 1993.

4. R. Chapman, A. Burns, and A. Wellings. Integrated program proof and worst-case
timing analysis of SPARK Ada. In A CM Sigptan Workshop on Language, Compiler
and Tool Support for Real-Time Systems, June 1994.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified model for static
analysis of programs by construction or approximation of fixpoints. In ~th ACM
Syrup. on Principles of Programming Languages, pages 238-252, 1977.

6. P. Cousot and R. Cousot. Compm'ing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Programming Language
Implementation and Logic Programming, Proceedings of the Fourth International
Symposium, PLILP'92, volume Lecture Notes in Computer Science 631, pages
269-295, Aug 1992.

7. A. Ermedahl and J. Gustavsson. Real-time industry inquiry of execution time
analysis tools. Technical report, Department of Computer Systems, Uppsala Uni-
versity, Sweden, 1997. To be published.

8. M. Harmon, T. Baker, and D. Whalley. A retargetable tecnique for predicting
execution time of code segments. The Journal of Real-Time Systems, 7, 1994.

9. Y.-T. Li and S. Malik. Performance analysis of embedded software using implicit
path enumeration. In ACM Workshop on Lang., Comp. and Tools for RTS, May
1995.

10. Y.-T. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Beyond
direct mapped instruction caches. In 17th IEEE Real-Time Systems Symposium,
RTSS'96, pages 254 - 263, 1996.

11. S. Lim, Y. Bae, G. Jang, B.-D. Rhee, S. Min, C. Park, H. Shin, K.Park, S.-M.
Moon, and C. Kim. An accurate worst case timing analysis for rise processors.
IEEE Trans. on Software Engineering, 21(7):593 -604, July 1995.

12. H. R. Nielson and F. Nielson. Semantics with Applications. John Wiley ~z Sons,
1992.

13. G. Ottosson and M. SjSdin. Worst-case execution time analysis for modern hard-
ware architectures, tn Proc. SIGPLAN 1997 Workshop on Languages, Compilers
and Tools for Real-Time Systems, June 1997. To appear.

14. C. Park. Predicting program execution times by analyzing static and dynamic
program paths. The Journal of Real-Time System, 5:31-62, 1993.

15. C. Park and A. Shaw. Experiments with a program timing tool based on a source-
level timing schema. Proceeding of 11th IEEE Real-Time Systems Symposium,
pages 72-81, Dec 1990.

16. P. Puschner and C. Koza. Calculating the maximum execution time of real-time
programs. The Journal of Real-Time Systems, 1(2):159-176, Sep 1989.

17. P. Puschner and A. Sc~edl. Computing maximum task execution times with lin-
ear programming techniques. Technical report, Report, Techn. Univ., Inst. fiir
Technische Informatik, Vienna, April 1995.

18. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
19. A. Vrchoticky. The Basis for Static Execution Time Prediction. Phi) thesis, Institut

f/ir Technische Informatik, Technische Universit~t Wien, Austria, April 1994.

