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Abs t r ac t .  A number of methods have been presented to calculate the 
worst case execution time (WCET) of real-time programs. However, to 
properly handle semantic dependencies, which in most cases is needed 
to reduce overestimation, all these methods require extra semantic infor- 
mation to be given by the programmer (manual annotations for paths, 
loops and recursion depth). To manually derive these annotations is of- 
ten difficult and the process is error-prone. In this paper we present a 
new method to automatically derive safe and tight annotations for paths 
and loops. We illustrate our method by giving some examples and by 
presenting a prototype tool, implementing the method for a subset of C. 

1 I n t r o d u c t i o n  

Real-t ime systems are systems in which the correctness depends not only on the 
results of computations,  but also on the time at which the result is produced. To 
be able to guarantee the deadlines of a real-time system, the software execution 
t ime is needed before run-time. 

The execution t ime of most programs depends on the input da ta  and the sys- 
tem state. For programs with some complexity, it is intractable to find the da ta  
and the state which causes the actual worst case execution t ime (WCETA).  This 
approach is therefore not a feasible method.  Instead, static analysis, which from 
the source code derives the calculated worst case execution t ime ( W C E T c ) ,  has 
been proposed by many researchers. The calculation must be sa# (i.e., W C E T c  
> WCETA),  yet as tight as possible, to avoid waste of resources. 

To achieve a tight W C E T c ,  more information about  the program behaviour,  
than  what  is contained in the flow graph, is needed. False paths (non-executable 
paths,  i.e., paths that  never can be taken) must be identified and excluded from 
the calculation. Maximum number of iterations in loops and max imum depth o] 
recursion calls must  be given, because to calculate them is, in the general case, 
equivalent to the well-known halting problem. 

Existing methods require this information to be given as manual annotations. 
However, a fundamental  problem with this approach, beside being difficult and 
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time-consuming for the programmer, is that  the annotations may be incorrect. 
The W C E T c  may be untight or, worse, unsafe. 

In this paper we present a static analysis method which automatically derives 
safe and tight annotations from the program semantics. It can be seen as a first 
phase in a tight W C E T c  calculation. These annotations can be used by the 
following phase, an object code analysis, which also considers modern hardware 
architectures. If simple hardware is used, this next phase may be unnecessary, 
and the W C E T c  calculated by our method can be used. 

The remainder of the paper is organised as follows: The next section illus- 
trates how our approach relates to other methods. In section 3, we introduce 
our new method. In section 4 we present our tool and an illustrative example. 
Finally, section 5 gives some results, conclusions and ideas for future work. 

2 R e l a t e d  w o r k  

Timing analysis of software has been an important  area in real-time research 
during the last 8 - 10 years. The issues this research has dealt with are: 

1. Mapping the high-level source code constructions to the corresponding object 
code instructions by static analysis. Compiler optimisations will make this 
more difficult [19]. 

2. Deriving dynamic properties of programs, i.e., how many times each instruc- 
tion will be executed in the worst case. Information of false paths, maximum 
number of iterations in loops and maximum depth o] recursion calls are nor- 
mally given as manual annotations. However, symbolic execution methods 
has been proven to find some false paths automatically [1,4]. 

3. Calculating the W C E T c  using the static and dynamic information above. 
Timing schema [15,16] analysis calculates W C E T c  by recursively adding the 
times for the constructs in the program. Another method is Integer Linear 
Programming (ILP) [9,17] analysis, which is used in most recent research. It 
transforms the program to a flow graph where each edge corresponds to a 
basic block. For each edge, the worst execution time is calculated from the 
instructions in the basic block. The total execution time is represented as a 
linear expression, and the W C E T c  is calculated by finding the maximum of 
the expression with linear programming optimisation. 

4. Modern hardware with cache and pipeline is analysed in extensions to TS 
[11], ILP [10] or using constraint techniques [13]. This analysis must take into 
consideration the current cache and pipeline contents before each instruction 
execution. To get a tight calculation, detailed information on dynamic pro- 
gram behaviour, especially nested loops, is needed. 

As we can see, all published methods rely more or less on manual annotations to 
work and to give a small overestimation. But to give these annotations is extra 
work for a stressed programmer, and it is certainly easy to find very simple 
examples where, e.g., the maximum number of iterations in a loop is very hard 
to calculate (see Fig. 4(a) for an example). And what happens if the manual 
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annotat ion is incorrect? One possible effect is that  a program could be given a 
too small t ime slot in a schedule, ending up in a missed deadline, with possible 
catastrophic consequences. 

Park  discusses this problem in [14], proposing a method tha t  verifies the cor- 
rectness of the annotations. But why not let the analysis method t ry  to find the 
annotat ions automatically, as they are inherent in the semantics of the program? 

3 D e r i v i n g  A n n o t a t i o n s  

In our analysis of a program we will use da ta  flow analysis to find out values 
of variables at different points in the program. Using this information we can 
automatical ly  derive pa th  and loop annotations. 

Contro l  points ,  co, C l , . . "  , Cm, are introduced at points in the program where 
the value of a variable may change (after assignments), or when we can constrain 
the possible values of variables (after conditions). For an example, see Fig. l(a).  

With  each control point, c~, we associate an e n v i r o n m e n t ,  a h. An environment 
holds all combinations of variables values tha t  are possible at the control point 
in a program execution, a h = {a l  ~-+ v l , ' "  , am ~ Vm)  denotes an environment 
where the variables a l , "  • , am have been assigned the values v l , .  • • , Vm, respec- 
tively. We will by the index h separate between different passings of the same 
control point, e.g., in loops and continuations after selection s tatements  (h will 
in the sequel only be included when necessary). 

[co] 0.0 0.0 ---- {a ~-+ 1, b ~-+ 4} 
a = 5 ;  [cl] az = [a  = 5 ]ao al = {a ~-+ 5, b ~-~ 4} 
b=b-2; [C2] 0.2=[b=b-2]al 0.2={a~+5,  b ~ 2 }  
a =a+b; [c3] 0"3 : [a=a+b]0.2 0.3 :{a~+7, b~2} 

(a) (b) (c) 

0.0 = {a ~ 1..3, b ~+ 2..4 V 7} 
al = {a ~t 5, b ~+ 2..4 V 7} 
a2 = {a ~-+ 5, b ~+ 0..2 V 5} 
a3 = {a ~ 5..7 V 10, b ~-+ 0..2 V 5} 

(d) 

Fig. 1. The statements (with inserted control points) in (a) gives the semantic rules in 
(b) and the concrete and abstract evaluation in (c) respectively (d). 

3.1 C o n c r e t e  a n d  a b s t r a c t  s e m a n t i c s  

The concrete  s e m a n t i c s  (meaning) of a program is defined as the environments 
tha t  can be generated by the program description [12]. We will use a semantic 
function, H ,  that  takes an environment, a,  and a r u l e  on how to modify (or 
constrain) the environment and return a modified environment: a~ = [rule~a.  
Depending on the nature of the rule, i.e., if it is a s tatement  or a condition, we will 
further subdivide [.] into $[.]  and g[.] l .  See Fig. 1(5) for the semantic rules tha t  
corresponds to the statements in l(a) .  If  each variable in the initial environment,  
a0, is assigned to a single value, like ao = {a ~+ 1,b ~-~ 4}, the evaluation of the 
equations will correspond to a "normal" execution of the program, see Fig. l(c).  

1 ,~ stands for statement  and C for condition rule. 
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For our analysis, we will define an abstract environment where variables can 
be assigned to several values. For each concrete semantic rule, in the program- 
ming language, a corresponding abstract  rule is defined. For example, our ab- 
s tract  version of the '+' operator  handles sets of values. An abstract  evaluation 
can be seen in Fig. l(d).  Note tha t  the abstract  evaluation corresponds to a 
set of concrete evaluations and that  each concrete evaluation corresponds to a 
possible execution. 

In this paper,  and in our tool (see section 4), we will represent abst ract  values 
with split integer intervals. For example, b ~ 2..4 V 7 means tha t  b:s value is 
either 7 or between 2 and 4. This representation has some drawbacks, e.g., it 
does not express conditions between variables in an environment,  on the other 
hand it is simple to manipulate  and allows efficient implementations.  

The domain of the environments is in the general case a partially ordered 
set (poset), (:D, C_, J_, U, n), The set :D contains possible combinations of value 
tuples for variables. The bottom element, J_, means that one or several of the 
variables within the environment can not have any value at all. crl _C a2 is true 
if[ at least all tuples of variable value combinations that exists in ch also exists 
in a2. (rl U a2 creates a new environment that holds exactly all tuples of variable 
value combinations in both al and a2. 

The cost, in terms of time and memory, to express an exact environment, 
i.e., all possible tuples of variables value combinations, is often to expensive. The 
representation can then be simplified by a safe abstraction, e.g., a ~-~ 1 V3 V.. V 99 
can be safely approximated to be in the interval I..99. The approximation must 
be safe (possible values must not be removed), tight (as few extra values as 
possible), and efficient (in terms of time and memory). We will face a trade-off 
between cost of computation and quality of results. For the above reason we will 
also use an approximative meet operator tA t that applied on al and a2 creates a 
new environment that holds at least all tuples of variable value combinations in 
crl and g2. Abstract interpretation techniques [5] can be used to define a correct 
relation between the abstract and the concrete domains. 

3.2 F i n d i n g  fa lse  p a t h s  

We will use a sequence of i f - s t a t ement s  to illustrate how dependencies between 
different program parts  can be found. 

A condition can be seen as a constraint to be applied on the variables in a 
given environment.  Fig. 2(c) shows how the s tar t  environment, ao = {a ~+ 0..20}, 
will be constrained 2 by the conditions in the two i f - s t a t emen t s  in Fig. 2(b). The 
evaluation in Fig. 2(c) has the disadvantage tha t  it does not take into account the 
dependencies between the i f - s t a t ement s  (a > 10 implies a > 5). Thus, it will 
not detect tha t  S1 --+ $4 is a false path. Our solution is to continue the analysis 
from each of the two environments tha t  are generated after an i f - s t a t emen t ,  
giving the semantic rule in Fig. 2(a). 

2 We are assuming that a will not be changed in any of the statements $1. • • $4. 
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S I i : f  ( C )  S1 e l s e  $210. : { 0 2 , 0 4 }  
where 

0.1 = CIC]~ 
0.2 = SISdl0.~ 
0.3 = C[~Cl0. 
0" 4 = S[S21(y 3 

(a) 

[co] 
i~(~ > io> [~] s~ [~] 
else [c3] $2 [c4] 
[~] 
if(~ > s> [~] & [~] 
else [c8] $4 [e9] 
[c~o] 

(b) 

0.0 = {a ~ 0..20} 
0.1 = 0.2 = {a ~ 11..20} 

0.a = 0.4 = {a ~ 0..10} 
0.5 = {a ~-~ 0..20} 

0.~ = 0.7 = {a ~-> 6..20} 
0.s = 0.9 = {a ~ 0..5} 

0.1o = {a ~ 0..20} 
(c) 

0.0 = {a~-~0..20} 
0.1 = 0.2 = {a~->ll . .20} 

0.3 = 0.4 = {a~-~0..10} 

a~ 2 = {a~-~11..20} 0.~4 = {a~+O..lO} 
0.~2 C2 {ab-~ c4 c4 {a~-+6..lO} =0.7 = 11..20} 0.6 =0.s  = 

0.~°' = 0.~°~ = { a ~ + ± }  ¢~ = 0.~°4 = { ~ 0 . . 5 }  

0.1g '¢v = {a~-+11..20} 0.1~ ''~ = {a~-+±} ai~ ''~ = {a~-+6..10} 0.[8 ''° = {a~-+O..5} 
(d) 

Fig .  2. The semantic rule for an if-statement in (a) gives for the program in (b) the 
evaluation in (d) instead of the one in (c). 

As seen in Fig.  2(d) each i f - s t a tement  will now genera te  two  different  envi-  
ronmen t s .  I t  can now be  seen t h a t  the  p a t h  S1 --+ S4 is a false pa th .  

3 .3  F i n d i n g  t h e  n u m b e r  o f  i t e r a t i o n s  i n  loops 

We will use a w h i l e - s t a t e m e n t  to  i l lus t ra te  how our  analys is  m e t h o d  will work  
for loops.  T h e  core idea  is to  t r ans fo rm t h e m  into  i f - s t a t e m e n t s ,  giving the  
s eman t i c  rule in Fig.  3(a).  The  i f - s t a t e m e n t  yields two env i ronment s  each t ime  
it  is ana lysed  (as before):  
1. T h e  env i ronmen t  in which the  loop shall  be execu ted  again ,  atrue .  
2. T h e  env i ronmen t  in which the  loop t e rmina t e s ,  af~lse. 

,_q[while(C) S~0. = 
Slif(CXS; while(C) S}]ff 

(a) 

while (a < 9) { [a~r~e] 
at = a + 2; 

(b) 

Iter atrue 
0 { ~  0..2 v 5 }  
1 {a ~-+ 2..4 V 7} 
2 {a~-+ 4..6} 
3 {a ~ 6..8} 
4 {a ~+ 8} 
5 {a ~+ ± }  

O'false 
{~ ~ ±} 

{a ~-+ 9} 
{a ~+ ±} 
{. ~ 9 . . lo}  
{a ~ 10} 

(c) 

min = 2 

m a x =  5 

F ig .  3. The semantic rule for loop-evaluation in (a) gives for the program in (b) the 
table in (c). 
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A loop is "rolled out" until it cannot execute again, or until the t ime budget  is 
exceeded (see section 3.5). For example, with the start  environment a = {a 
0..2 V 5}, the code in Fig. 3(a) will generate the table in Fig. 3(b). The analysis 
shows tha t  the loop will i terate at least two times (since 2 iterations is needed 
to set af~lse # _L) and at most 5 times (since after 5 iterations a t r ~  = J-, which 
means tha t  we cannot enter the loop again). The analysis also shows tha t  a 
always will be in the interval 9..10 after the loop. 

3.4 M e r g i n g  environments 

Environments  will, for several reasons, be merged (using the U or U ~ operations) 
at  certain points during the analysis. In our current tool the chosen merge points 
are the ends of loops, functions and programs. The reasons for merging are: 

1. Many evaluations from O']als e- environments will be redundant.  For example, 
hl hj hi afals e C Or.false , means tha t  aiazs ~ is redundant  since the evaluation from 
hj h i  3 ai~ts e will include all possible executions tha t  could result from ~false ' 

2. To reduce the number of continuous evaluations. For example, a loop body 
with n if-statements will generate 2 n environments for each iteration. Merg- 
ing of (possible) non-redundant  environments will reduce the computat ional  
cost. However, overestimation may occur. 

3. The goal for the analysis of a program is to generate annotat ions for the 
corresponding flow graph. Several methods for low level cache- and pipeline- 
analysis demands this [8,10,11,13]. The annotations must then be true for 
all iterations of each loop. 

3.5 Introducing t ime 

The analysis described so far will often not terminate if the program does not 
terminate.  To terminate  our analysis, we will use the fact that  a real-time pro- 
g ram must  complete its task within a given deadline. A program is given a t ime 
budget,  Tbud~et, which should be a realistic upper t ime limit for the program on 
a given hardware. The t ime budget may be calculated during the design phase 
and can be seen as par t  of the specification of the program. The Tb~dget is the 
only manual  "annotat ion" needed by our method 4. 

Each s ta tement  or program block has a minimum and a max imum execu- 
tion time, t,~i,~ and tmax~. For each analysed s ta tement  the corresponding t ime 
interval will be added to a accumulated time. The time for the longest path,  
Tmi . . . .  T,~ax~, will be compared to the t ime budget during the analysis. Three 
cases can be identified: 

In Fig. 3(b) the continuing analysis from afal~ in both the second and fifth iteration 
can be included in the continuing analysis from a false in the fourth iteration. 

4 Note that our time annotation is different from the annotations of other methods. 
Erroneous path or loop annotations may lead to wrong WCETc,  but an erroneous 
Tbudget may in the worst case only lead to too early ending of the analysis. 
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1. Tminc < Tma~c < Tbudget: In this case we can guarantee that  the program 
will not exceed its time budget. 

2. Tminc < Tbudget < Tmaxc: There is now a risk that  the program does not 
terminate within the time budget. Our analysis tool (see section 4) will stop 
and generate a warning message. If we suspect that  the time budget is too 
narrow, we may extend it and continue further. 

3. Tbudg~t < Tmin~ < Tma,¢: In this case we know that  the program will exceed 
its t ime budget. The analysis will normally not reach this point. 

Thus, our method calculates W C E T c  for the program. However, note that  the 
main reason for this calculation is not to get the W C E T c  for the program, but  
to make sure that  the analysis terminates. 

4 I m p l e m e n t a t i o n  a n d  E x a m p l e  

To test the described ideas a prototype tool has been implemented in the pro- 
gramming language Erlang [2]. The tool uses a split integer interval represen- 
tat ion of environments. So far only a subset of C is handled, including inte- 
ger variables and the standard arithmetical operations (+, - ,  *, / ) ,  decla- 
rations, assignments, selection statements ( i f -  and i f - e l s e -  statements) and 
loop-constructs (while- and for-statements) .  Still, this simple language serves 
to illustrate our ideas. To add more types (e.g., floats), more complicated con- 
structions, (e.g., arrays and structs) will be relatively simple. Functions calls, 
dynamic memory and pointers demands a much more complicated analysis. 

There is also an option in our tool to annotate the code manually with 
possible input values. This can be used by the programmer to, for instance, 
study the program behaviour for different inputs. 

4.1 E x a m p l e  

The information retrieved from the analysis of the program in Fig. 4(a) is pre- 
sented in Fig. 4(b) and (c). We are assuming that  both a and b are within the in- 
terval 1..30 at the beginning of the program, that  is: a0 = {a ~ 1..30, b ~ 1..30). 
The values presented in Fig. 4(d) and (e) has been extracted by running the pro- 
gram for all its possible combinations of input values, in this case: 30 * 30 = 900 
executions ~. For a program with large number of arguments, with varying input 
values, this is not a feasible option. Our analysis tool extracted, among other 
things, the following information: 

- A safe estimation of the minimum and maximum number of iterations in the 
outer loop, Fig. 4(a). 

- A safe estimation of the minimum and maximum number of iterations in the 
inner loop for each iteration of the outer loop, Fig. 4(c). 

- The fact that  the a = a + 10; statement never will be executed and there- 
fore is dead code. 

5 Without any abstractions the analysis would derive these values as well. 
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- A safe es t imat ion of the possible values for a and b within the  program,  
(1..41 and - 9 . . 8 7  respectively).  

An  interest ing compar ison can be made  between the actual  m a x i m u m  number  
of i terat ions in the inner loop: 13, (given by a0 = {a ~ 1,b ~ 7}), the number  
derived wi thout  abstract ions:  40, the number  derived with our tool: 66, and a 
coarse manua l  anno ta t ion  given by a p rog rammer  6, which could be 300. The  
reason for the difference, between the actual  m ax imum number  of i terat ions in 
the  inner loop and the values given by the analysis tool, is t ha t  the  analysis 
result  includes all possible executions and reduces the computa t iona l  cost by 
using abstract ions.  W h e n  the p rogram iterates very differently depending on the  
input  values our  analysis results will of course deteriorate.  

while(a < 30) 
[lout] 
{ 

while(b < a) 

{ 
if(b > 5) 

b=b*3; 
else 

b=b+ 2; 
if(b >= I0 &g~ 

b <= 12) 
a= a+ I0; 

else 
a=a+ 1; 

} 
a=a+2; 

b=b- 10; 
} 

min max min max 
lout lout lout 

lo Out 15 0 111 
(b) (d) 

max values giving max 
li~ ~ of iterations 

0 5 {a ~-> 18, b e-~ 1) 
0 9 {a ~ 1,b ~ 1) 
0 8 {a ~+ 1,b ~-~ 13) 
0 7 {a ~+ 1,b ~+ 25} 
0 4 { a ~ 2 , b ~ + 2 3 }  
0 2 {a F-+ 2, b ~-> 22) 
0 1 {a ~-+ 1,b ~-+ 1} 
0 1 {a ~ 1, b ~ 9} 
0 1 {a ~-~ 1, b ~ 2} 
0 1 {a ~-+ 1,b ~-+ 5} 
0 1 { a ~ l , b ~ 3 0 }  
0 4O 

min max 
lout lin lin 

1 0 5 
2 0 10 
3 0 9 # min 
4 0 8 lout lln 
5 0 7 1] 
6 0 6 21 
7 0 5 31 
8 0 4 4 
9 0 3 5 

10 0 2 6 
11 0 2 7 
12 0 1 8 
13 0 1 9] 
14 0 1 10 
15 0 1 11 
E 0 66 E 

(c) (a) (e) 
Fig.  4. For the program in (a) our tool gives the estimated min and max iterations in 
the outer (b) respectively inner (c) loop. The actual values are those in (d) and (e). 

6 A programmer may see that a increases with at least 2 every outer iteration, giving 
30/2 = 15 iterations in the outer loop. He may also note that b increases with at 
least 2 for each iteration in the inner loop. As b also is decreased with 10 for each 
iteration in the outer loop, the maximum number of iterations in the inner loop will 
be: (30 + 10)/2 = 20 times. This gives a total of 15 * 20 = 300 iterations. 
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5 C o n c l u s i o n s ,  r e s u l t s  a n d  f u t u r e  w o r k  

We have presented a static analysis method which automatically derives safe 
and tight annotations from the semantics of the source-code program. Normally, 
these annotations are given manually, but to derive them is often difficult and 
error-prone. The analysis shall be seen as a first phase in a tight worst case 
execution time (WCETc)  calculation. The derived annotations can be used by 
the following phase, an object (micro- or assembler) code analysis, which also 
considers modern hardware architectures. 

A short summary of the information derivable with our method are: 

- Information of false paths and dead code within programs (section 3.2). 
- Safe estimations of maximum and minimum of iterations both for single and 

nested loops (section 3.3). 
- Possible values for all variables in each point 7, program block or entire pro- 

gram s 9 
- A W C E T c  that  can be used on simple hardware architectures (section 3.5). 

As future work we plan to investigate other forms of environment represen- 
tation. General constraint techniques is one of the candidates [18]. 

We also plan to investigate how the degree of merging affects the analysis 
result. We can in one extreme analyse all paths, without merging, but  such an 
analysis will be both very time- and space-consuming. On the other hand, too 
much merging will generate a lot of pessimism in the analysis. 

Backward analysis [6] can be of interest to further enhance our analysis. It 
is performed by analysing a program backwards from the goal environments. 

An obvious future task is to extend the analysed language. An interesting 
extension will be functions, since a function may have different possible input 
values at different invocations. These input values can be derived automatically 
through our method and may lead to a tighter W C E T c  1° 

Future work will also be to investigate how programmers of hard real-time 
systems are writing their programs. Is there a need for complicated construc- 
tions? Should the programmer be forced to write his programs in a certain way, 
to allow analysis? Can we abandon recursion in real-time programs? An investi- 
gation of the programming style used in real-time companies will be performed 
during spring 1997 to give answers to these and similar questions [7]. 
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