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Notes

on the characterization of derivations

Eszter Gselmann∗

Communicated by T. Krisztin

Abstract. Although the characterization of ring derivations has an exten-

sive literature, up to now, all of the characterizations have had the following

form: additivity and another property imply that the function in question is

a derivation. The aim of this note is to point out that derivations can be

described via a single equation.

1. Introduction and preliminaries

The purpose of this paper is to provide new characterization theorems on

derivations. At first, we will list some preliminary results that will be used in the

sequel. All of these statements and definitions can be found in Kuczma [14] and

also in Zariski–Samuel [17].

LetQ be a commutative ring and let P be a subring ofQ. A function f :P → Q

is called a derivation if it is additive, i.e.,

f(x+ y) = f(x) + f(y) (x, y ∈ P )

and also satisfies the equation

f(xy) = xf(y) + yf(x) (x, y ∈ P ).
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138 E. GSELMANN

A fundamental example for derivations is the following. Let F be a field,

and let in the above definition P = Q = F[x] be the ring of polynomials with

coefficients from F. For a polynomial p ∈ F[x], p(x) =
∑n

k=0 akx
k, define the

function f :F[x] → F[x] as

f(p) = p′,

where p′(x) =
∑n

k=1 kakx
k−1 is the derivative of the polynomial p. Then the

function f clearly fulfills

f(p+ q) = f(p) + f(q)

and

f(pq) = pf(q) + qf(p)

for all p, q ∈ F[x]. Hence f is a derivation.

In R (the set of the real numbers) the identically zero function is obviously a

(trivial) derivation. It is difficult to find however another example, because every

real derivation has the following properties.

(1) If f :R → R is a derivation, then f(x) = 0 for all x ∈ algclQ (the algebraic

closure of the set of the rational numbers).

(2) If f :R → R is a derivation, and f is measurable, or bounded above or below

on a set which has positive Lebesgue measure, then f is identically zero.

In spite of the above properties, there exist non-trivial derivations in R, see
Theorem 14.2.2. in [14].

The characterization of derivations has an extensive literature, the reader

should consult for instance Horinouchi–Kannappan [10], Jurkat [13], Kurepa [15],

[16] and also the two monographs Kuczma [14] and Zariski–Samuel [17].

Nevertheless, to the best of the author’s knowledge, all of the characterizations

have the following form: additivity and another property imply that the function

in question is a derivation. We intend to show that derivations can be characterized

by one single functional equation.

More precisely, we would like to examine whether the equations occurring in

the definition of derivations are independent in the following sense. Let λ, μ ∈

Q \ {0} be arbitrary, f :P → Q be a function and consider the equation

λ[f(x+ y)− f(x)− f(y)] + μ[f(xy)− xf(y)− yf(x)] = 0 (x, y ∈ P ).

Clearly, if the function f is a derivation, then this equation holds. In the next

section we will investigate the opposite direction, and it will be proved that under

some assumptions on the rings P and Q, derivations can be characterized through
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the above equation. This result will be proved as a consequence of the main theorem

that will be devoted to the equation

f(x+ y)− f(x)− f(y) = g(xy)− xg(y)− yg(x) (x, y ∈ P ),

where f, g:P → Q are unknown functions.

We remark that similar investigations were made by Dhombres [3], Ger [7],

[8] and also by Ger–Reich [9] concerning ring homomorphisms. For instance, in

Ger [7] the following theorem was proved.

Theorem 1.1. Let X and Y be two rings, and assume that for all x ∈ X there

exists ex ∈ X such that xex = x, suppose further that Y has no elements of order

2 and does not admit zero divisors. If f is a solution of the equation

f(x+ y) + f(xy) = f(x) + f(y) + f(x)f(y) (x, y ∈ X)

such that f(0) = 0, then either 3f is even and 3f(2x) = 0 for all x ∈ X, or f

yields a homomorphism between X and Y .

In the proof of the main result the celebrated cocycle equation will play a

key role. About this equation one can read, e.g., in Aczél [1], Davison–Ebanks [2],

Ebanks [5], Erdős [6], Hosszú [11] and also in Jessen–Karpf–Thorup [12]. In the

next section we will however utilize only Theorem 3 of Ebanks [4], which reads as

follows.

Theorem 1.2. Let A be an integral domain and X a uniquely A-divisible unitary

module over A. Then, F,G:A2 → X satisfy the equations

F (a+ b, c) + F (a, b) = F (a, b+ c) + F (b, c) (a, b, c ∈ A),(β)

G(a, b) = G(b, a) (a, b ∈ A),(γ)

cG(a, b) +G(ab, c) = aG(b, c) +G(a, bc) (a, b, c ∈ A),(δ)

F (ac, bc)− cF (a, b) = G(a+ b, c)−G(a, c)−G(b, c) (a, b, c ∈ A),(ε)
p∑

i=1

F (1, i1) = 0, p = charA,(ζ)

if and only if there is a map f :A → X representing F and G through the equations

(A) F (a, b) = f(a+ b)− f(a)− f(b),
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respectively,

(B) G(a, b) = f(ab)− af(b)− bf(a).

Moreover, if A is ordered, the same result holds with A replaced by

A+ = {a ∈ A | a > 0}.

From this theorem with the choice F ≡ 0 (and interchanging the roles of f

and g) the following statement can be obtained immediately.

Theorem 1.3. Let A be a commutative ring, X be a module over A and f :A → X

be a function such that

f(ab) = af(b) + bf(a) (a, b ∈ A) .

Then the function F :A×A → X defined by (A) fulfills

(α) F (a, b) = F (b, a),

equation (β) is satisfied and also

(η) F (ac, bc) = cF (a, b)

holds for any a, b, c ∈ A.

Furthermore, in case A is an integral domain and X is a unitary module

over A which is uniquely A-divisible, then the function F defined by the function f

through equation (A) is the only function which satisfies equations (α), (β) and (η).

2. The main result

Our main result is contained in the following
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Theorem 2.1. Let F be a field, X a vector space over F and f, g:F → X functions

such that

(E) f(x+ y)− f(x)− f(y) = g(xy)− xg(y)− yg(x)

holds for all x, y ∈ F. Then, and only then, there exist additive functions α, β:F →

X and a function ϕ:F → X with the property

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈ F),

such that

f(x) = β(x) +
1

2
α(x2)− xα(x) (x, y ∈ F)

and

g(x) = ϕ(x) + α(x) (x, y ∈ F)

are satisfied.

Proof. Define the functions Cf ,Df , Cg and Dg on F× F by

Cf (x, y) = f(x+ y)− f(x)− f(y),

Df (x, y) = f(xy)− xf(y)− yf(x),

Cg(x, y) = g(x+ y)− g(x)− g(y),

Dg(x, y) = g(xy)− xg(y)− yg(x),

respectively. In view of Theorem 1.2., we immediately get that the pairs (Cf ,Df )

and (Cg,Dg) fulfill the system of equations (α)–(ε). Furthermore, equation (E)

yields that

(E∗) Cf (x, y) = Dg(x, y)

for all x, y ∈ F. Due to equation (ε),

(2.1) Cg(xz, yz)− zCg(x, y) = Dg(x+ y, z)−Dg(x, z)−Dg(y, z)

holds for all x, y, z ∈ F. Interchanging the role of x and z in the previous equation,

we obtain that

(2.2) Cg(xz, xy)− xCg(z, y) = Dg(y + z, x)−Dg(z, x)−Dg(y, x)
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for any x, y, z ∈ F. Let us subtract equation (2.2) from (2.1) to obtain

Cg(xz,yz)− zCg(x, y)− Cg(xz, xy) + xCg(z, y)

= Dg(x+ y, z)−Dg(x, z)−Dg(y, z)−Dg(z + y, x) +Dg(z, x) +Dg(y, x).

Because of (E∗), the function Dg can be replaced by Cf . This implies however that

Cg(xz, yz)− zCg(x, y)− Cg(xz, xy) + xCg(z, y)

= Cf (x+ y, z) + Cf (x, y)− Cf (x, y + z)− Cf (y, z) = 0,

for all x, y, z ∈ F, where we used that the function Cf fulfills (α) and (β). This

equation with z = 1 yields that

Cg(x, xy) = xCg(1, y),

or if we replace y by y/x (x �= 0),

Cg(x, y) = xCg
(
1,

y

x

)
(x, y ∈ F, x �= 0).

We will show that from this identity the homogeneity of Cg follows. Indeed, let

t, x, y ∈ F, t, x �= 0, be arbitrary, then

Cg(tx, ty) = txCg
(
1,

ty

tx

)
= txCg

(
1,

y

x

)
= tCg(x, y).

If x = 0, we get from the above identity that Cg(0, 0) = 0, thus for arbitrary t ∈ F,

Cg(t0, t0) = 0 = tCg(0, 0).

Furthermore, in case t = 0, then for any x, y ∈ F

Cg(tx, tx) = Cg(0, 0) = 0 = tCg(x, y).

This means that the function Cg is homogeneous and fulfills equations (α) and (β).

In view of Theorem 1.3, there exists a function ϕ:F → X such that

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈ F)

and

Cg(x, y) = ϕ(xy)− xϕ(y)− yϕ(x) (x, y ∈ F)
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hold. Due to the definition of the function Cg, this yields that

g(x) = ϕ(x) + α(x) (x ∈ F),

where the function ϕ fulfils the above identity and α:F → X is additive. Writing

this representation of the function g into equation (E), we have that

(2.3) f(x+ y)− f(x)− f(y) = α(xy)− xα(y)− yα(x) (x, y ∈ F).

Since the function α is additive, the two-place function

Dα(x, y) = α(xy)− xα(y)− yα(x) (x, y ∈ F)

is a symmetric, biadditive function. Therefore, Dα can be written as the Cauchy

difference of its trace, that is

Dα(x, y)

=
1

2
α((x+ y)2)− (x+ y)α(x+ y)−

(1
2
α(x2)− xα(x)

)
−
(1
2
α(y2)− yα(y)

)
(x, y ∈ F). In view of equation (2.3), this yields that the function

x �→ f(x)−
(1
2
α(x2)− xα(x)

)
(x ∈ F)

is additive. Thus there exists an additive function β:F → X such that

f(x) = β(x) +
1

2
α(x2)− xα(x) (x ∈ F) .

According to Theorem 1.2, with the aid of this theorem the following corollary

can be immediately obtained.

Corollary 2.2. Let F be an ordered field, X a vector space over F, F+ = {x ∈ F|x >

0} and f, g:F+ → X functions such that

f(x+ y)− f(x)− f(y) = g(xy)− xg(y)− yg(x)

holds for all x, y ∈ F+. Then the functions f and g can be extended to functions

f̃ , g̃:F → X such that

f̃(x) = β(x) +
1

2
α(x2)− xα(x) (x, y ∈ F)

and

g̃(x) = ϕ(x) + α(x) (x, y ∈ F),

where α, β:F → X are additive function and ϕ:F → X fulfils

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈ F).

From Theorem 2.1. with g(x) = −μ
λf(x) the following corollary can be derived

easily.
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Corollary 2.3. Let F be a field and X a vector space over F, λ, μ ∈ F\{0} arbitrarily

fixed. Then the function f :F → X is a derivation if and only if

λ[f(x+ y)− f(x)− f(y)] + μ[f(xy)− xf(y)− yf(x)] = 0

holds for all x, y ∈ F.
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