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Two embedding theorems
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Abstract. In the present paper we prove two embedding theorems. Both

give necessary and sufficient conditions, herewith improving and unifying some

previous results.

1. Introduction

In [2] we proved two embedding theorems pertaining to sine series. These

theorems were improved and unified in a joint paper A. S. Belov and L. Leindler [1].

The result of [1] is an essential generalization of the theorems of [2], namely, using

the idea of Belov, it gives a necessary and sufficient condition for the embedding

assertion considered in [2], and it holds for any positive p.

The theorems of [2] give only sufficient conditions, and show that under certain

additional assumptions these conditions cannot be improved, furthermore they are

proved only for 0 < p ≤ 1 and 1 ≤ p < ∞, separately.

Very recently D. Yu [4], among others, extended the theorems of [2] to new

classes of functions having derivatives, too.
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88 L. LEINDLER

In this paper we show that the theorems of Yu can be also improved. We

shall establish two theorems, giving both necessary and sufficient conditions, the

first one for the case if the order of the derivative is even, and the second one for

the odd case.

Making the previous assertions a little be more perceivable we recall one

theorem from each of the papers [2], [4] and [1].

As it has been mentioned, in [2] two theorems were proved, and their gener-

alizations in [4]; but now we recall only one of them, namely we do believe it is

sufficient to the comparison of the old and new theorems.

To establish the theorems we need numerous notions and notations, they are

collected in Section 3.

Theorem L. ([2]). Let p ≥ 1 and ω(δ) be a modulus of continuity. If λ := {λn}

is a positive monotone sequence such that λ is quasi β-power-monotone increasing

with some β < 1, then the condition

(1.1) (nλn)
1/pω

( 1

n

)
� 1

implies

(1.2) HS,Ω0
⊂ Sp(λ).

If there exists a positive nondecreasing sequence ρ := {ρn} tending to infinity

such that the sequence {λnρ
−p
n } is simultaneously γ-power-monotone increasing

with some γ < 1 and quasi α-power-monotone increasing with some α > 1−p, and

(1.3) (nλn)
1/pω

( 1

n

)
� ρn,

then (1.2) does not hold; namely there exists a function f0 such that

f0 ∈ HS,Ω0
but f0 /∈ Sp(λ).

Theorem BL. ([1]). Let 0 < p < ∞ and ω(δ) be a modulus of continuity. If

λ := {λn} is an arbitrary sequence of nonnegative numbers, then the embedding

relation (1.2) holds if and only if the condition

Λ1/p
n ω

( 1

n

)
� 1, with Λn :=

n∑
k=1

λk,

is fulfilled.
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Theorem Y. ([4]). Let p ≥ 1, ω(δ) be a modulus of continuity and {ni} satisfy

the condition (3.2). If λ := {λn} is quasi η-power-monotone increasing with some

η < 1, then condition (1.1) implies

(1.4) W rHS,Ωr
⊂ S∗

p(λ, r),

for even r. If, in addition, λ and γ := {γn} with
∞∑

n=1
(nγn)

−1 < ∞ satisfy the

inequality

ω
( 1

n

)
� (nλn γn)

−1/p,

then (1.4) also holds for odd r.

If there exists a positive nondecreasing sequence ρ := {ρn} tending to infinity

such that the sequence {λn ρ
−p
n } is simultaneously γ-power-monotone increasing

with some γ < 1 and α-power-monotone decreasing with some α > 1−min(1, β)p,

and (1.3) holds, then (1.4) does not hold. In fact, there exists a function f∗
0 such

that

f∗
0 ∈ W rHS,Ωr

, but f∗
0 /∈ Sp(λ, r).

The second theorems of [2] and [4] are analogous to Theorem L and Y with

0 < p ≤ 1, respectively.

2. New theorems

Our new theorems read as follows.

Theorem 1. Let p be a positive number, r a nonnegative even integer and ω(δ)

be a modulus of continuity. If λ := {λn} is an arbitrary sequence of nonnegative

numbers, then the embedding relation

(2.1) W rH∗
S,Ωr

⊂ S∗
p(λ, r)

holds if and only if the condition

(2.2) Λ1/p
n ω

( 1

n

)
� 1

is fulfilled.
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90 L. LEINDLER

Theorem 2. Under the assumptions of Theorem 1 with odd r instead of an even

one, and attaching a slight presumption on ω(δ), that is, assuming that the sequence

{ω(1/n)} is quasi β-power-monotone decreasing with some β > 0, then (2.1) holds

if and only if

(2.3)

∞∑
n=1

Λn

n
ω
( 1

n

)p

< ∞.

Remarks. 1. It is worthy to comment the following embedding relations:

W rHS,Ωr
⊂ W rH∗

S,Ωr
and S∗

p(λ, r) ⊂ Sp(λ, r),

and thereafter to compare, e.g., the statements (1.2) and (1.4) if r = 0, furthermore

(1.4) and (2.1).

2. It is clear that (2.3) claims more than (2.2). This follows from the fact

that if r is odd then f (r)(x) has cosine series.

3. Notions and notations

Let f(x) be a 2π-periodic function and let

(3.1) f(x) ∼
∞∑

n=1

bn sinnx

be its Fourier series. Let sn = sn(x) = sn(f, x) denote the n-th partial sum of

(3.1). If f(x) is continuous then it will be denoted by f ∈ C(T ).

We denote by ‖ · ‖ the usual supremum norm.

Let ω(δ) be a modulus of continuity function.

We shall use the notation L � R (L � R) at inequalities if there exists a

positive constant K such that L ≤ KR (KL ≥ R) holds, not necessarily the same

at each occurrence.

We also use the sequence Ωr := {n−r−1ω(1/n)}.

A sequence η := {ηn} of positive numbers is called quasi β-power-monotone

increasing (decreasing) if there exists a constant K := K(β,η) ≥ 1 such that

Knβηn ≥ mβηm (nβηn ≤ Kmβηm)

holds for any n ≥ m, in symbol nβηn ↑ (nβηn ↓).
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Let γ := {γn} be a given positive sequence. A null-sequence c := {cn} (cn →

0) of real numbers satisfying the inequalities

∞∑
n=m

|Δ cn| ≤ K(c)γm (Δ cn := cn − cn+1), m = 1, 2, . . . ,

with a positive constant K(c) is said to be a sequence of γ rest bounded variation,

in symbol: c ∈ γRBV S.

If γ ≡ c, then γRBV S ≡ RBV S. We emphasize that if c ∈ γRBV S it may

have infinitely many zeros and negative terms, but this is not the case if c ∈ RBV S.

Next we enroll the definitions of the classes of functions to be considered:

W rHS,Ωr
:=

{
f : f =

∞∑
n=1

bn sinnx, f (r) ∈ C(T ), {bn} ∈ ΩrRBV S
}
,

W rH∗
S,Ωr

:=
{
f : f =

∞∑
n=1

bn sinnx, {bn} ∈ ΩrRBV S
}
,

Sp(λ, r) :=
{
f :

∥∥∥
∞∑

n=1

λn|s
(r)
n − f (r)|p

∥∥∥ < ∞
}
.

Let {ni} be a positive sequence satisfying

(3.2) n0 = 1, 1 < Q1 ≤
ni+1

ni
≤ Q2, i = 0, 1, . . . ,

where Q1 and Q2 are constants depending only on {ni}.

If ni−1 ≤ n < ni, i = 1, 2, . . . , then denote

T (r)
n (x) :=

∣∣∣
ni−1∑

k=n+1

bk sin
(r) kx

∣∣∣+
∞∑
j=i

∣∣∣
ni+1−1∑
k=ni

bk sin
(r) kx

∣∣∣.

Finally define

S∗
p(λ, r) :=

{
f :

∥∥∥
∞∑

n=1

λn(T
(r)
n )p

∥∥∥ < ∞
}
.

If r = 0, we simply write HS,Ω0
and Sp(λ) instead of W 0HS,Ω0

and Sp(λ, r),

respectively, and so on.
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92 L. LEINDLER

4. Auxiliary results

We require the following lemmas.

Lemma 1. ([3]). If {bn} ∈ ΩrRBV S, then for any 0 ≤ α ≤ r, {nαbn} ∈

Ωr−αRBV S.

Lemma 2. ([4]). If {bn} ∈ ΩrRBV S then for any x > 0

(4.1) T (r)
n (x) � x−1n−1ω

( 1

n

)
, r = 0, 1, . . . , n = 1, 2, . . . ,

furthermore if n < N then we also have

(4.2) T (r)
n (x) �

(
x

N∑
k=n+1

kr+1|bk|+ x−1N−1ω
( 1

N

))
, r = 2�, � = 0, 1, . . . ,

and

(4.3) T (r)
n (x) �

( N∑
k=n+1

kr|bk|+ ω
( 1

N

))
, r = 2�+ 1, � = 0, 1, . . . .

Lemma 3. If {bn} ∈ ΩrRBV S and r is odd, then for any x ≥ 0

(4.4) T (r)
n (x) �

∞∑
k=n+1

1

k
ω
(1
k

)
.

Proof of Lemma 3. Inequality (4.4) clearly follows from (4.3) and the definition

of T
(r)
n (0).

Lemma 4. ([1]). Let p > 0 and

f(x) := fΩ0(x) :=

∞∑
n=1

n−1ω
( 1

n

)
sinnx.

If ∥∥∥
∞∑

n=1

λn|f − sn|
p
∥∥∥ < ∞
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then

Λnω
( 1

n

)p

� 1.

The proof of Lemma 4 can be found in [1] as the proof of necessity of Theo-

rem BL.

5. Proofs of the theorems

Proof of Theorem 1. First we prove the Sufficiency. We show that if (2.2) holds

and the function

(5.1) f(x) :=

∞∑
n=1

bn sinnx

belongs to W rH∗
S,Ωr

, then it also belongs to S∗
p(λ, r).

Since T
(r)
n (x) is even and 2π-periodic function, and T

(r)
n (0) = 0, it is enough

to consider the case 0 < x < π. Let

π

N
≤ x <

π

N − 1
, 2m ≤ N < 2m+1, m ≥ 1,

then

(5.2)

∞∑
n=1

λn|T
(r)
n (x)|p =

(N−1∑
n=1

+
∞∑

n=N

)
λn|T

(r)
n (x)|p =: B1(x) +B2(x).

By (4.1) and (2.2) we get

(5.3)

B2(x) � x−p
∞∑

n=N

λn

(
n−1ω

( 1

n

))p

� Np
∞∑

k=m

2k+1∑
n=2k

λnn
−pω

( 1

n

)p

� Np
∞∑

k=m

2−kpω
( 1

2k

)p 2k+1∑
n=2k

λn � 1.

Moreover, by (4.2),

(5.4) B1(x) �
{
xp

N−1∑
n=1

λn

( N∑
k=n+1

kr+1|bk|
)p

+

N−1∑
n=1

λnω
( 1

N

)p}
.
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94 L. LEINDLER

Here the second sum is clearly O(1), thus it is enough to estimate the first sum.

In the case p > 1, we shall use in due course the assumption {bn} ∈ ΩrRBV S,

the Hölder inequality, Abel rearrangement and (2.2), thus we get

(5.5)

∑
1
:=

N−1∑
n=1

λn

( N∑
k=n+1

kr+1|bk|
)p

�
N−1∑
n=1

λn

( N∑
k=n+1

ω
(1
k

))p

�
N−1∑
n=1

λnN
p−1

N∑
k=n+1

ω
(1
k

)p

� Np−1
N∑

k=1

ω
(1
k

)p k∑
n=1

λk � Np.

If 0 < p ≤ 1 then instead of the Hölder inequality we use the inequality

(
∑

an)
p ≤

∑
apn, and utilize the “blocking method”. Let mn := [log2(n + 1)],

where [y] denotes the integer part of y. Thus

∑
1
�

N∑
n=1

λn

( m∑
�=mn

2�+1∑
k=2�

ω
(1
k

))p

�
N∑

n=1

λn

m∑
�=mn

( 2�+1∑
k=2�

ω
(1
k

))p

�
N∑

n=1

λn

m∑
�=mn

2�pω
( 1

2�

)p

�
m∑
�=1

2�pω
( 1

2�

)p ∑
mn≤�

λn

�
m∑
�=1

2�pω
( 1

2�

)p 2�+1∑
n=1

λn � Np.

This, (5.4) and (5.5) imply that

B1(x) � 1

holds for any positive p.

Collecting these inequalities and (5.2), the assertion f ∈ S∗
p(λ, r) is verified.

In order to prove the Necessity we show that if (2.1) holds, then (2.2) also

upholds.

Let us consider the following function:

(5.6) f(x) := fΩr (x) :=

∞∑
n=1

n−r−1ω
( 1

n

)
sinnx.

This function clearly belongs to W rH∗
S,Ωr

, indeed f ∈ W rHS,Ωr
(⊂ W rH∗

S,Ωr
) also

holds, see in [1], consequently by (2.1) f ∈ S∗
p(λ, r) also holds, whence

(5.7) C :=
∥∥∥

∞∑
n=1

λn|T
(r)
n (x)|p

∥∥∥ � 1
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follows. Since T
(r)
n (x) ≥ |f (r)(x)− s

(r)
n (x)|, thus by (5.7)

∥∥∥
∞∑

n=1

λn|f
(r)(x)− s(r)n (x)|p

∥∥∥ � 1

is also valid. But f (r)(x) ≡ fΩ0
(x) given in Lemma 4, consequently we can apply

Lemma 4, and it shows that (2.2) maintains, as stated.

Herewith the proof is complete.

Proof of Theorem 2. Sufficiency. We prove that if (2.3) holds and the func-

tion given in (5.1) belongs to W rH∗
S,Ωr

, then it also belongs to S∗
p(λ, r). Let

f ∈ W rH∗
S,Ωr

, then {bn} ∈ ΩrRBV S. Thus, by (4.3) and the definition of T
(r)
n (0),

we get that for any x ≥ 0

(5.8) |T (r)
n (x)|p �

( ∞∑
k=n+1

1

k
ω
(1
k

))p

=:
∑

2
.

Since ω(1/n)nβ ↓, we have

∞∑
k=n+1

1

k1+β
ω
(1
k

)
kβ � ω

( 1

n

)
,

thus ∑
2
� ω

( 1

n

)p

�
∞∑

k=n

1

k
ω
(1
k

)p

.

This and (5.8) imply that

∞∑
n=1

λn|T
(r)
n (x)|p �

∞∑
n=1

λn

∞∑
k=n

1

k
ω
(1
k

)p

�
∞∑
k=1

1

k
ω
(1
k

)p k∑
n=1

λn =

∞∑
k=1

Λk

k
ω
(1
k

)p

� 1,

and this proves that f ∈ S∗
p(λ, r) holds.

Necessity. If (2.1) holds, we show that (2.3) also maintains. Let us consider

the function given in (5.6). As we have seen in the proof of Theorem 1, this function

f = fΩr ∈ S∗
p(λ, r) and satisfies (5.7). Since

T (r)
n (0) =

∞∑
k=n+1

k−1ω
(1
k

)
,
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thus

(5.9) C �
∞∑

n=1

λn

( ∞∑
k=n+1

k−1ω
(1
k

))p

�
∞∑

n=1

λnω
( 1

n

)p

=:
∑

3
.

Since ω
(
1
n

)
nβ ↓, thus

∞∑
k=n

1

k1+βp

(
ω
(1
k

)
kβ

)p

≤
(
ω
( 1

n

)
nβ

)p ∞∑
k=n

1

k1+βp
� ω

( 1

n

)p

.

Using this we get

∑
3
�

∞∑
n=1

λn

∞∑
k=n

1

k
ω
(1
k

)p

=

∞∑
k=1

1

k
ω
(1
k

)p k∑
n=1

λn =

∞∑
k=1

Λk

k
ω
(1
k

)p

.

This and (5.9) imply that (2.3) holds.

The proof is complete.
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