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Abstract. With a measure ϕ on a σ-algebra Σ of sets taking values in a Ba-

nach space two positive functions on Σ, called semivariations of ϕ, are asso-

ciated. We characterize those functions as order continuous submeasures that

are multiply subadditive in the sense of G. G. Lorentz (1952). In connection

with some results of G. Curbera (1994) and the author (2003), we also discuss

the special cases where ϕ is separable and nonatomic or has relatively compact

range.

1. Introduction

Let Σ be a σ-algebra of sets, let X be a Banach space, and let ϕ: Σ → X

be a (σ-additive vector) measure. Associated with ϕ are two positive functions ϕ̃

and ϕ̄ on Σ, both called semivariations of ϕ in the literature (see the beginning of

Section 3). It is well known that they are order continuous submeasures. Moreover,

as noted in [8], they are multiply subadditive in the sense of Lorentz [9].

Theorem 1 of this paper1) shows that these properties characterize ϕ̃ and

ϕ̄ as set functions, which is a σ-additive counterpart of [8], Theorem 4. We also

characterize ϕ̃ and ϕ̄ in the case where ϕ has relatively compact range (Theorem 2).
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412 Z. LIPECKI

Other main results of the paper deal with ϕ̃ alone. They are inspired by a

theorem of Curbera [1] (see also Theorem 5 in the final Section 7) on the space of

ϕ-integrable scalar functions for ϕ separable and nonatomic. A corollary to that

result is that for such ϕ there exists a c0-valued measure ψ on Σ with ψ̃ = ϕ̃. We

give a new proof of this corollary and establish its counterpart for measures with

relatively compact range (Theorem 3). We next show that c0 does not have the

analogous universality property for atomic measures (Theorem 4(b)). Finally, a

development of the argument used to establish Theorem 3 allows us to give a proof

for Curbera’s theorem and its counterpart for measures with relatively compact

range.

Our notation and terminology are mostly standard and follow [2] and [3]. For

some explantions see Sections 2 and 3, the passage introducing Lemma 4 in Sec-

tion 6, and the beginning of Section 7. Sections 2 and 3 also contain examples and

auxiliary results. The main body of the paper consists of Sections 4–6. Sections 5–

7 are independent of Section 4, as far as the proofs are concerned. Moreover,

Sections 6 and 7 are independent in this sense, too.

2. Preliminaries on submeasures

Throughout the paper S stands for a nonempty set and Σ for a σ-algebra of

subsets of S. Let η: Σ → [0, ∞) be a submeasure, i.e., η is increasing, subadditive

and η(∅) = 0. We call η nonatomic or atomless if for every E ∈ Σ with η(E) > 0

there exist disjoint E1, E2 ∈ Σ such that E1 ∪ E2 = E and η(Ei) > 0 for i = 1, 2.

We denote by dens η the density character of Σ equipped with the topology

generated by the Fréchet–Nikodym semimetric

dη(E, F ) = η(E�F ) for E, F ∈ Σ.

We say that η is separable if dens η is countable.

We call η order continuous provided that η(En) → 0 whenever (En) is a

decreasing sequence in Σ with empty intersection.

Following [9], p. 455, we call η multiply subadditive (m.s. for short) if, given

E, E1, . . . , En in Σ and k ∈ N with

k1E =

n∑
i=1

1Ei
,

we have kη(E) ≤ ∑n
i=1 η(Ei) (see also [8], Section 2).
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Semivariations of a vector measure 413

We say that η: Σ → [0, ∞) is a (positive) quasi-measure if η is additive.

Clearly, η is then a m.s. submeasure.

According to a result of Lorentz ([9], Theorem 4), a submeasure η on Σ is

m.s. if and only if there exists a set Γ of quasi-measures on Σ such that2)

sup Γ = η.

Following [8], Section 3, we call the smallest among the cardinalities of sets Γ as

above the degree of η and denote it by deg η.

Example 1 of [8] shows that the degree of a m.s. submeasure can be an ar-

bitrary cardinal number ≥ 1. We shall now see that this is still so if we restrict

attention to order continuous submeasures on σ-algebras of sets. The example just

mentioned allows us to consider infinite cardinal numbers only.

Example 1. Let m be a cardinal number ≥ ℵ0, and set S = {0, 1}m. Take for

Σ the standard product σ-algebra of subsets of S and for λ the standard product

measure on Σ. Fix 1 < p < ∞, and set η = λ1/p. By Minkowski’s inequality η is a

m.s. submeasure on Σ (cf. [9], Theorem 5; see also Example 2 and Proposition 1(b)

in Section 3). The density character of (Σ, dη) equals m, and so deg η ≤ m (see [8],

Remark 1). To establish the other inequality, consider a set Γ of quasi-measures

on Σ with sup Γ = η. Each μ ∈ Γ is then a λ-continuous positive measure. Denote

by fμ the Radon–Nikodym derivative of μ with respect to λ. Suppose, to get a

contradiction, that card Γ < m. We consider two cases.

Case 1: m = ℵ0. Choose μ0 ∈ Γ so that the set

E0 = {s ∈ S : fμ0
(s) ≥ fμ(s) for all μ ∈ Γ}

has positive λ-measure. Then μ0(E) = η(E) for all E ∈ Σ with E ⊂ E0. Take

E1 ∈ Σ such that E1 ⊂ E0 and λ(E1) = 1
2λ(E0). It follows that

η(E0) = η(E1) + η(E0 \ E1) = 21− 1
p λ(E0)

1
p ,

which is impossible.

Case 2: m > ℵ0. In this case there exists E0 ∈ Σ such that 0 < λ(E0) < 1

and 1E0
and fμ are stochastically λ-independent for each μ ∈ Γ. We then have

μ(E0) =

∫
1E0

fμ dλ = λ(E0)μ(S) ≤ λ(E0)

2) In what follows the symbols sup and max applied to a set of positive functions on Σ

mean the pointwise supremum and maximum of that set, respectively.
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(see [4], Theorem 45.A). Hence sup{μ(E0) : μ ∈ Γ} ≤ λ(E0) < η(E0), a contradic-

tion.

3. Preliminaries on vector measures

Throughout this section X stands for a (real or complex) Banach space, with

the norm denoted by ‖·‖. Let ϕ: Σ → X be a (vector) measure, i.e., ϕ is σ-additive.

As is usual, we associate with ϕ three functions on Σ with values in [0, ∞] defined

by the formulas:

|ϕ|(E) = sup
{ n∑

i=1

‖ϕ(Ei)‖ : Ei ∈ Σ are pairwise disjoint and

n⋃
i=1

Ei = E
}

,

ϕ̃(E) = sup
{∥∥∥

n∑
i=1

tiϕ(Ei)
∥∥∥ : Ei ∈ Σ are pairwise disjoint and

n⋃
i=1

Ei = E,

and ti are scalars with |ti| ≤ 1
}

,

ϕ̄(E) = sup
{

‖ϕ(F )‖ : F ∈ Σ and F ⊂ E
}

,

for E ∈ Σ. The first one is a positive measure and is called the variation of ϕ.

Both ϕ̃ and ϕ̄ are called semivariations of ϕ. The former is also denoted by ‖ϕ‖
or |ϕ|∞ in the literature. In the terminology of [10], p. 349, ϕ̄ is the quasivariation

of ϕ.

The following proposition collects some properties of ϕ̃ and ϕ̄ needed in the

sequel.

Proposition 1. Let ϕ: Σ → X be a measure. Then

(a) ϕ̃ = sup{|x∗ϕ| : x∗ ∈ X∗ and ‖x∗‖ ≤ 1};

(b) ϕ̃ and ϕ̄ are order continuous m.s. submeasures on Σ.

Part (a) is a special case of [2], Proposition I.1.11. That ϕ̃ and ϕ̄ are submea-

sures is straightforward. In view of (a) and [9], Theorem 4, ϕ̃ is m.s., while ϕ̄ is

m.s., by [8], Lemma 2. The order continuity of ϕ̃ follows from [6], Lemma II.1.3.

Clearly, ϕ̄ ≤ ϕ̃, so that ϕ̄ is also order continuous.

We note that a version of (a) also appears in [6], Lemma II.1.1, but the

definition of the p-semivariation given there on p. 17 is incorrect; see an example

due to S. Okada presented in [11], p. 205. (In [6], p stands for a seminorm on a

linear space.) However, it is not this definition, but Lemma II.1.1 that is mostly

applied in [6].
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Semivariations of a vector measure 415

We shall use the following standard notation. By ca(Σ, X) we denote the

Banach space of all measures ϕ: Σ → X, the norm being defined by ‖ϕ‖ = ϕ̃(S).

If X is a scalar field, we abbreviate ca(Σ, X) to ca(Σ). Thus ca+(Σ) stands for the

set of all positive finite measures on Σ. We set

cca(Σ, X) = {ϕ ∈ ca(Σ, X) : ϕ(Σ) is relatively compact}3).

It is a closed subspace of ca(Σ, X).

We say that ϕ ∈ ca(Σ, X) is nonatomic or atomless [resp., separable] provided

that so is the submeasure ϕ̃ (see Section 2).

We shall now give explicit formulas for ϕ̃ and ϕ̄ in a well-known special case

(cf. [2], Example I.1.16). Those formulas are related to Example 1 above.

Example 2. Let λ ∈ ca+(Σ) and let 1 ≤ p < ∞. Define ϕ: Σ → Lp(λ) by ϕ(E) =

1E . Clearly, ϕ is σ-additive. We have ϕ̃ = ϕ̄ = λ1/p. Only the inequality ϕ̃ ≤ λ1/p

needs checking. To this end, fix E ∈ Σ, and consider pairwise disjoint E1, . . . , En ∈
Σ with

⋃n
i=1 Ei = E and scalars t1, . . . , tn with |ti| ≤ 1. We then have

∥∥∥
n∑

i=1

tiϕ(Ei)
∥∥∥p

p
=

n∑
i=1

|ti|pλ(Ei) ≤ λ(E).

Consequently, ϕ̃(E) ≤ λ(E)1/p. Note that if λ is nonatomic and 1 < p < ∞, then

|ϕ| is independent of p. In fact, |ϕ| = ∞ · λ (cf. [2], Example I.1.16).

The following simple lemma will be used in the proofs of Theorems 1–3 and 5,

Proposition 3 and Lemma 4.

Lemma 1. Let α: Γ → ca(Σ), where Γ is a nonempty set, be a mapping whose

range is bounded and uniformly σ-additive. Define ψα: Σ → l∞(Γ) by

ψα(E)(μ) = α(μ)(E) for all E ∈ Σ and μ ∈ Γ.

We then have ψα ∈ ca(Σ, l∞(Γ)),

ψ̃α = sup{|α(μ)| : μ ∈ Γ} and ψ̄α = sup{α(μ)− : μ ∈ Γ}.

If, moreover, α has relatively compact range, then so does ψα.

3) Here and in what follows the term compact always refers to the strong topology of the

Banach space under consideration.
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Proof. The formulas of the first part are seen, since we can interchange the order

in which the corresponding suprema are taken and, for ν ∈ ca(Σ), we have ν̃ = |ν|.
To establish the second part, it is enough to observe that, given α with rela-

tively compact range and ε > 0, there exists α0: Γ → ca(Σ) with finite-dimensional

range such that

‖ψα(E) − ψα0
(E)‖ < ε for all E ∈ Σ.

Fix ε > 0 and choose ν1, . . . , νn ∈ Γ so that for each μ ∈ Γ there is an i(μ) with

1 ≤ i(μ) ≤ n and

‖α(μ) − α(νi(μ))‖ < ε.

Set α0(μ) = α(νi(μ)) for μ ∈ Γ. It is clear that α0 is as desired.

The next lemma is a basic tool in the proofs of Theorem 3 in Section 6 and

Theorem 5 in Section 7.

Lemma 2. Let λ ∈ ca+(Σ) be separable and nonatomic and let λ1, λ2, . . . ∈ ca+(Σ)

be uniformly λ-continuous. Then there exist μ1, μ2, . . . ∈ ca(Σ) such that

(α) |μn| = λn for all n ∈ N;

(β) μn(E) → 0 for all E ∈ Σ.

Proof. Since λn are separable and nonatomic, we can find μnm ∈ ca(Σ), where n,

m ∈ N, with |μnm| = λn for all n, m and μnm(E) → 0 as m → ∞ for all E ∈ Σ.

Indeed, we can either mimic the standard Rademacher construction or make use

of the Boolean isomorphism of λn to the Lebesgue measure on [0, λn(S)] (see [4],

Theorem 41.C).

Let {Ei : i ∈ N} be a dense set in (Σ, dλ). Choose mn so that |μnmn(Ei)| <

1/n for n ∈ N and i = 1, . . . , n. Setting μn = μnmn
, we see that (α) holds and

μn(Ei) → 0 as n → ∞, where i ∈ N is arbitrary. This implies (β), by the uniform

λ-continuity assumption.

4. General vector measures

The following theorem is, except for condition (ii), a σ-additive version of [8],

Theorem 4, and has a similar proof.
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Theorem 1. For η: Σ → [0, ∞) the following five conditions are equivalent:

(i) η is an order continuous m.s. submeasure;

(ii) there exists a uniformly σ-additive Γ ⊂ ca+(Σ) such that sup Γ = η;

(iii) there exist a Banach space X and ϕ ∈ ca(Σ, X) such that ϕ̃ = η;

(iv) there exist a Banach space X and ϕ ∈ ca(Σ, X) such that ϕ̄ = η;

(v) there exist a Banach space X and ϕ ∈ ca(Σ, X) such that ϕ̃ = ϕ̄ = η.

Proof. The equivalence of (i) and (ii) is a simple consequence of a result of Lorentz

([9], Theorem 4); see also [8], Theorem 1. Clearly, (v) implies (iii) and (iv). By

Proposition 1(b), each of the conditions (iii) and (iv) implies (i). Finally, let (ii)

hold, and apply Lemma 1 with α equal to the identity mapping. Setting ϕ = ψα,

we get (v).

Remark 1. (cf. [8], Remark 5). In Theorem 1 we cannot restrict the size of X,

keeping Σ arbitrary. Indeed, for every ϕ ∈ ca(Σ, X) and every 1-norming subset

M of X∗ we have

deg ϕ̃ ≤ cardM and deg ϕ̄ ≤ 2 card M,

by [8], Propositions 2(c) and 3(a), respectively. On the other hand, deg η, where η

is an order continuous m.s. submeasure on a σ-algebra of sets, can be an arbitrary

cardinal number ≥ 1 (see Example 1).

From Theorem 1 we immediately get the following corollary.

Corollary 1. Let X be a Banach space and let ϕ ∈ ca(Σ, X).

(a) There exist a Banach space Y and χ ∈ ca(Σ, Y ) such that χ̃ = χ̄ = ϕ̃.

(b) There exist a Banach space Z and χ ∈ ca(Σ, Z) such that χ̃ = χ̄ = ϕ̄.

Theorem 1 suggests various questions of the following type. Specialize one

of the conditions (i)–(v) and ask for the corresponding specializations of some of

the remaining conditions. For instance, specialize the class of Banach spaces (e.g.,

consider only Hilbert spaces) or the class of vector measures (e.g., consider only

those with relatively compact range) in conditions (iii)–(v). Some answers are

contained in the next two sections.
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5. Vector measures with relatively compact range

The following result is known; see [12], p. 104, for the implication (i)⇒(ii).

We sketch a proof for the reader’s convenience.

Proposition 2. Let X be a Banach space and let ϕ ∈ ca(Σ, X). Then the following

two conditions are equivalent:

(i) ϕ ∈ cca(Σ, X);

(ii) {x∗ϕ : x∗ ∈ X∗ and ‖x∗‖ ≤ 1} is relatively compact in ca(Σ).

Proof. Denote by B(Σ) the Banach space of bounded Σ-measurable scalar func-

tions on S equipped with the supremum norm. There exists a (unique) continuous

linear operator Tϕ: B(Σ) → X such that

Tϕ(1E) = ϕ(E) for all E ∈ Σ,

and we have ‖Tϕ‖ = ‖ϕ‖ (see [2], pp. 5–6). Given x∗ ∈ X∗, we can then identify

x∗Tϕ with x∗ϕ ∈ ca(Σ). On the other hand, condition (i) holds if and only if Tϕ is

compact; cf. [2], proof of Theorem VI.2.18. Since Tϕ is compact if and only if so

is (Tϕ)
∗
, by Schauder’s theorem (Theorem VI.5.2 of [3], where the term completely

continuous is used), the assertion follows.

Theorem 2. For η: Σ → [0, ∞) the following four conditions are equivalent:

(i) there exists a relatively compact Γ ⊂ ca+(Σ) such that sup Γ = η;

(ii) there exist a Banach space X and ϕ ∈ cca(Σ, X) such that ϕ̃ = η;

(iii) there exist a Banach space X and ϕ ∈ cca(Σ, X) such that ϕ̄ = η;

(iv) there exist a Banach space X and ϕ ∈ cca(Σ, X) such that ϕ̃ = ϕ̄ = η.

Proof. Lemma 1, applied to the identity mapping over Γ, shows that (i) implies

(iv). Clearly, (iv) implies both (ii) and (iii).

In view of Propositions 1(a) and 2, we deduce (i) from (ii) by taking

Γ = {|x∗ϕ| : x∗ ∈ X∗ and ‖x∗‖ ≤ 1}.

A similar argument shows that (iii) implies (i) for X over R. We only have

to apply the formula

ϕ̄ = sup{(x∗ϕ)+, (x∗ϕ)− : x∗ ∈ X∗ and ‖x∗‖ ≤ 1}
(cf. [8], proof of Lemma 2). If the scalar field of X is C, we consider X to be a

Banach space over R (with the same norm) and note that this does not affect ϕ̄.

The following corollary of Theorem 2 is analogous to Corollary 1.
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Corollary 2. Let X be a Banach space and let ϕ ∈ cca(Σ, X).

(a) There exist a Banach space Y and χ ∈ cca(Σ, Y ) such that χ̃ = χ̄ = ϕ̃.

(b) There exist a Banach space Z and ψ ∈ cca(Σ, Z) such that ψ̃ = ψ̄ = ϕ̄.

Remark 2. In general, it is not possible to decide whether ϕ ∈ ca(Σ, X) has rela-

tively compact range knowing only its semivariations ϕ̃ and ϕ̄. Indeed, if Σ admits

a nonatomic probability measure λ, then there exists ϕ ∈ ca(Σ, L1(λ)) such that

ϕ̃ = ϕ̄ = λ and ϕ(Σ) is not relatively compact (see [2], Example III.1.2, and

Example 2 in Section 3).

6. Vector measures and c0

We start with the following known result; see [10], Proposition 1(ii), for a

generalization. We give a simple proof for the reader’s convenience.

Lemma 3. Let ψ ∈ cca(Σ, c0), and denote by μn the n-th co-ordinate of ψ. We

then have ‖μn‖ → 0.

Proof. Clearly, μn(E) → 0 for E ∈ Σ. Moreover, by Proposition 2, (i)⇒(ii),

{μn : n ∈ N} is relatively compact. It follows that ‖μn‖ → 0.

We shall now characterize one of the semivariations of a c0-valued measure in

general and in the case where the range is relatively compact.

Proposition 3. For η: Σ → [0, ∞) the following two conditions are equivalent:

(i) there exist μ1, μ2, . . . ∈ ca(Σ) such that μn(E) → 0 for E ∈ Σ [resp., ‖μn‖ →
0] and sup{|μn| : n ∈ N} = η;

(ii) there exists ψ ∈ ca(Σ, c0) [resp., ψ ∈ cca(Σ, c0)] such that ψ̃ = η.

Proof. Suppose (ii) holds, and denote by μn the n-th co-ordinate of ψ. Set α(n) =

μn for n ∈ N. Applying Lemma 1 and noting that ψα = ψ, we get the first part

of (i). The second part now follows, by Lemma 3.

Suppose (i) holds. By Nikodym’s convergence theorem ([3], Corollary III.7.4),

μ1, μ2, . . . are uniformly σ-additive. Applying Lemma 1 as before, we get (ii) with

ψ = ψα.

The first part of the forthcoming Theorem 3 is a consequence of a result of

Curbera ([1], Theorem 1). We shall give a proof of that result based on Lemma 2
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in Section 7. We also note that a version of Theorem 3, without any assumption

on ϕ ∈ ca(Σ, X) whatsoever, but with the weaker assertion that |ψ| = |ϕ|, is a

special case of [7], Corollary 2. More comments on Theorem 3 are given after the

proof of Theorem 4 below.

Theorem 3. If X is a Banach space and ϕ ∈ ca(Σ, X) [resp., ϕ ∈ cca(Σ, X)] is

separable and nonatomic, then there exists ψ ∈ ca(Σ, c0) [resp., ψ ∈ cca(Σ, c0)]

such that ψ̃ = ϕ̃.

Proof. The separability of ϕ implies that ϕ(Σ) is separable, and so X itself may

be assumed separable. Under this assumption, X∗ contains a 1-norming subset

{x∗
n : n ∈ N}. Set λn = |x∗

nϕ| for n ∈ N. By [8], Proposition 2(c), we get

sup{λn : n ∈ N} = ϕ̃.

In view of Proposition 1(b), λ1, λ2, . . . are uniformly σ-additive. Moreover,

{λn : n ∈ N} is relatively compact if so is ϕ(Σ), by Proposition 2, (i)⇒(ii).

Set λ =
∑∞

n=1 2−nλn. We have λ ∈ ca+(Σ), λ ≤ ϕ̃, and λ(E) = 0 implies

ϕ̃(E) = 0 whenever E ∈ Σ. It follows that λ is separable and nonatomic. By [2],

Theorem I.2.4, λ1, λ2, . . . are uniformly λ-continuous. Let μ1, μ2, . . . be given by

Lemma 2. We then have

sup{|μn| : n ∈ N} = ϕ̃.

An application of Proposition 3, (i)⇒(ii), completes the proof.

For the purpose of the next lemma and theorem, we recall that, given ϕ ∈
ca(Σ, X) and λ ∈ ca+(Σ), we say that ϕ is λ-continuous and write ϕ � λ if, for

every E ∈ Σ, we have ϕ(E) = 0 whenever λ(E) = 0. This is equivalent to the

usual ε–δ condition concerning ϕ̃ and λ (see, e.g., [6], Corollary II.1.2).

Lemma 4. Let ψ ∈ cca(Σ, c0) and let λ ∈ ca+(Σ) have infinite range. If ψ � λ,

then there exist E1, E2 ∈ Σ such that

ψ̃(E1) + ψ̃(E2) = ψ̃(E1 ∪ E2) + ψ̃(E1 ∩ E2)

and λ(E1 \ E2), λ(E2 \ E1) > 0.
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Proof. Let μn be as in Lemma 3. Set

Σn = {E ∈ Σ : ψ̃(E) = |μn|(E)}.

It follows from Lemmas 1 and 3 that
⋃∞

n=1 Σn = Σ. Moreover, Σn is closed in

(Σ, dλ) for each n ∈ N, since ψ � λ and |μn| � λ. With the usual identification of

sets of λ-measure zero, we apply the Baire category theorem to conclude that Σn0

has nonempty interior for some n0.

Fix an interior point E0 of Σn0 . Let F1, F2, . . . be pairwise disjoint sets in Σ

with λ(Fi) > 0 for each i. Then either

λ(E0 ∩ Fi) > 0 or λ((S \ E0) ∩ Fi) > 0

holds for infinitely many i. In the first case, choose i1 < i2 so that

E0 \ Fi1 , E0 \ Fi2 and E0 \ (Fi1 ∪ Fi2)

are in Σn0
, and set Ek = E0 \ Fik

, k = 1, 2. In the second case, choose i1 < i2 so

that

E0 ∪ Fi1 , E0 ∪ Fi2 and E0 ∪ (Fi1 ∪ Fi2)

are in Σn0 , and set Ek = E0 ∪Fik
, k = 1, 2. Clearly, in either case E1 and E2 have

all the desired properties.

Theorem 4. Let 1 < p < ∞.

(a) If λ ∈ ca+(Σ) is nonatomic and nonzero, then there exists ϕ ∈ ca(Σ, Lp(λ))

such that ϕ � λ and ϕ̃ �= ψ̃ whenever ψ ∈ cca(Σ, c0).

(b) There exists ϕ ∈ ca(2N, lp) such that ϕ̃ �= ψ̃ whenever ψ ∈ ca(2N, c0).

Proof. We first observe that, in the situation of Lemma 4, we have

(∗) ψ̃(E1)
p + ψ̃(E2)

p < ψ̃(E1 ∪ E2)
p + ψ̃(E1 ∩ E2)

p

provided that ψ̃(E1 ∪ E2) > ψ̃(E1) > ψ̃(E1 ∩ E2). Indeed, set

h = ψ̃(E1 ∪ E2) − ψ̃(E1) = ψ̃(E2) − ψ̃(E1 ∩ E2).

Clearly, ψ̃(E1) + h = ψ̃(E1 ∪ E2) and ψ̃(E1 ∩ E2) + h = ψ̃(E2), and h > 0. Since

the function

[0, ∞) � x �→ (x + h)p − xp ∈ R
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is strictly increasing, (∗) follows.

(a): Set ϕ(E) = 1E for all E ∈ Σ; see Example 2, where it is shown that

ϕ̃p = λ. Hence ϕ̃p is additive. Moreover, ϕ̃(E ∪ F ) > ϕ̃(E) whenever E, F ∈ Σ

and λ(F \ E) > 0. An application of Lemma 4 and (∗) shows that ϕ is as desired.

(b): Denote by (en) the standard basis of lp, and set

ϕ(E) =

∞∑
n=1

1

n
1E(n)en for all E ∈ 2N.

Clearly, ϕ ∈ ca+(2N, lp) and we have

ϕ̃(E) = ‖ϕ(E)‖ for all E ∈ 2N.

Consequently, ϕ̃p ∈ ca+(2N) and ϕ̃ is strictly increasing. Since the range of a vec-

tor measure on 2N is compact, according to a well-known result (see, e.g., [5],

Theorem 10), we can apply Lemma 4, with λ = ϕ̃p, and (∗) to complete the proof.

Theorem 4(a), with λ separable, shows that a simultaneous strengthening of

both parts of Theorem 3 is not possible. It follows from Theorem 4(b) that the

nonatomicity assumption of Theorem 3 cannot be dispensed with.

The author does not know whether Theorem 4 subsists for p = 1.

Combining Theorem 4(a) and Theorem 3, we get the following corollary.

Corollary 3. If λ ∈ ca+(Σ) is separable, nonatomic and nonzero, then there exists

ϕ ∈ ca(Σ, c0) such that ϕ � λ and ϕ̃ �= ψ̃ whenever ψ ∈ cca(Σ, c0).

7. Appendix

The purpose of this section is to give a new proof of a result of Curbera ([1],

Theorem 1) and to establish a parallel result for vector measures with relatively

compact range. Our proof seems more transparent than the original one. It is

similar to that of Theorem 3, with a key role played by Lemma 2, but it is more

involved.

As in the previous sections, Σ stands for a σ-algebra of subsets of a nonempty

set S. We denote by s(Σ) the linear space of Σ-measurable simple functions on S.

We start by recalling one of the two well-known equivalent definitions of the

integral of a Σ-measurable scalar function f on S with respect to ϕ ∈ ca(Σ, X),

where X is a Banach space (see also [6], Section II.2). We say that f is ϕ-integrable
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provided it is x∗ϕ-integrable for each x∗ ∈ X∗ and there exists a mapping Σ � E �→∫
E

f dϕ ∈ X such that

x∗
∫

E

f dϕ =

∫
E

f d(x∗ϕ) for all E ∈ Σ and x∗ ∈ X∗.

This mapping is then an X-valued measure on Σ, by the Orlicz–Pettis theorem

([2], Corollary I.4.4). We denote it by fϕ. In view of Proposition 1(a), we have

(fϕ)∼(E) = sup
{∫

E

|f | d|x∗ϕ| : x∗ ∈ X∗ and ‖x∗‖ ≤ 1
}

for E ∈ Σ. We denote by L(ϕ) the linear space of ϕ-integrable functions on S

equipped with the seminorm ‖ · ‖ϕ, defined by

‖f‖ϕ = (fϕ)∼(S) for f ∈ L(ϕ).

In particular, we have ‖1E‖ϕ = ϕ̃(E) for E ∈ Σ.

Lemma 5. Let X be a Banach space and let ϕ ∈ ca(Σ, X) be separable. Then there

exist x∗
1, x

∗
2, . . . in the unit ball of X∗ such that

‖h‖ϕ = sup{‖h‖x∗
nϕ : n ∈ N} for all h ∈ s(Σ).

Proof. As is easily seen, s(Σ) is separable with respect to the seminorm ‖ · ‖ϕ. Fix

a dense subset {hm : m ∈ N} of s(Σ). Choose x∗
n ∈ X∗ with ‖x∗

n‖ ≤ 1 so that

‖hm‖ϕ = sup{‖hm‖x∗
nϕ : n ∈ N} for m ∈ N.

Set

p(h) = sup{‖h‖x∗
nϕ : n ∈ N} for h ∈ s(Σ).

Clearly, p is a seminorm on s(Σ) and p(h) ≤ ‖h‖ϕ for all h ∈ s(Σ). Hence p is

continuous on s(Σ). Since p(hm) = ‖hm‖ϕ for m ∈ N, the assertion follows.

Lemma 6. Let ϕ ∈ ca(Σ, X) and ψ ∈ ca(Σ, Y ), where X and Y are Banach spaces.

If ‖h‖ϕ = ‖h‖ψ for all h ∈ s(Σ), then

L(ϕ) = L(ψ) and ‖f‖ϕ = ‖f‖ψ for all f ∈ L(ϕ).
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Proof. Let f ∈ L(ϕ), and choose hn ∈ s(Σ) with hn → f pointwise and |hn| ≤ |f |
for all n ∈ N. By [6], Theorem II.4.2, ‖hn − f‖ϕ → 0 holds. Since (hn) is a Cauchy

sequence with respect to ‖ ·‖ψ, there exists f ′ ∈ L(ψ) with ‖hn −f ′‖ψ → 0 (see [6],

Theorems IV.4.1 and IV.7.1). Clearly, ‖f‖ϕ = ‖f ′‖ψ. We claim that f = f ′ a.e.

with respect to ψ̃. Indeed, let y∗
0 ∈ Y ∗ be a Rybakov functional for ψ, i.e., for

E ∈ Σ we have ψ̃(E) = 0 if (and only if) |y∗
0ψ|(E) = 0 (see [2], Theorem IX.2.2).

Since ‖hn − f ′‖y∗
0ψ → 0, we may assume that hn → f ′ a.e. with respect to ψ̃.

This establishes our claim and shows that f ∈ L(ψ) and ‖f‖ϕ = ‖f‖ψ. Thus,

L(ϕ) ⊂ L(ψ). The other inclusion follows by symmetry.

Theorem 5. If X is a Banach space and ϕ ∈ ca(Σ, X) [resp., ϕ ∈ cca(Σ, X)] is

separable and nonatomic, then there exists ψ ∈ ca(Σ, c0) [resp., ψ ∈ cca(Σ, c0)]

such that

L(ψ) = L(ϕ) and ‖f‖ψ = ‖f‖ϕ for all f ∈ L(ψ).

Proof. Let x∗
1, x

∗
2, . . . be chosen according to Lemma 5. Set λn = |x∗

nϕ| for

n ∈ N. In view of Proposition 1(b), λ1, λ2, . . . are uniformly σ-additive. More-

over, {λn : n ∈ N} is relatively compact if so is ϕ(Σ), by Proposition 2, (i)⇒(ii).

Set λ =
∑∞

n=1 2−nλn. We have λ ∈ ca+(Σ), λ ≤ ϕ̃ and λ(E) = 0 implies

ϕ̃(E) = 0 whenever E ∈ Σ. It follows that λ is separable and nonatomic. By [2],

Theorem I.2.4, λ1, λ2, . . . are uniformly λ-continuous. Let μ1, μ2, . . . be given by

Lemma 2, and set ψ = (μn). By the Nikodym convergence theorem (see [3], Corol-

lary III.7.4), we have ψ ∈ ca(Σ, c0). In view of Lemma 1, ψ(Σ) is relatively compact

if so is ϕ(Σ). Moreover, the formula

(fψ)(E) =
( ∫

E

f dμn

)

holds for all E ∈ Σ and f ∈ L(ψ). In view of Lemma 1, this implies

‖f‖ψ = sup{‖f‖x∗
nϕ : n ∈ N} for f ∈ L(ψ).

Hence ‖h‖ψ = ‖h‖ϕ for h ∈ s(Σ). An application of Lemma 6 completes the proof.

It is not clear to the author whether, in the situation of Theorem 3, the

assertion of Theorem 5 always holds, in which case Lemma 5 would be superfluous.

A simple example shows, however, that, in general, for ϕ, ψ ∈ ca(Σ, X) with ϕ̃ = ψ̃

we do not have ‖h‖ϕ = ‖h‖ψ for arbitrary h ∈ s(Σ).
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Example 3. Let Σ be the σ-algebra of all subsets of the set {1, 2}. Consider ϕ,

ψ ∈ ca(Σ, l
(2)
∞ ) defined by

ϕ = (δ1, 2δ2) and ψ = (δ1 + δ2, 2δ2),

where δi stand for the Dirac measure on Σ concentrated at i. By Lemma 1, we

have

ϕ̃ = max(δ1, 2δ2) = max(δ1 + δ2, 2δ2) = ψ̃.

On the other hand, setting h(1) = 2 and h(2) = 1, we have∫
h dδ1 =

∫
h d(2δ2) = 2 and

∫
h d(δ1 + δ2) = 3.

Hence ‖h‖ϕ < ‖h‖ψ.
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