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Abstract. The theory of sampling and the reconstruction of data has a wide
range of applications and a rich collection of techniques. For many methods
a core problem is the estimation of the number of samples needed in order to
secure a stable and accurate reconstruction. This can often be controlled by
the Stable Sampling Rate (SSR). In this paper we discuss the SSR and how it
is crucial for two key linear methods in sampling theory: generalized sampling
and the recently developed Parametrized Background Data Weak (PBDW)
method. Both of these approaches rely on estimates of the SSR in order to be
accurate. In many areas of signal and image processing binary samples are
crucial and such samples, which can be modelled by Walsh functions, are the
core of our analysis. As we show, the SSR is linear when considering binary
sampling with Walsh functions and wavelet reconstruction. Moreover, for
certain wavelets it is possible to determine the SSR exactly, allowing sharp
estimates for the performance of the methods.
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1. Introduction

Sampling theory is a core principle in image and signal processing as well
as the mathematics of information, data science and inverse problems. Since
the early results of Shannon [25, 38, 40] many techniques have been developed,
and there are now a myriad of methods available. Moreover, the many applica-
tions, such as Magnetic Resonance Imaging (MRI) [21,30], electron tomography
[27, 28], lensless cameras, fluorescence microscopy [36, 39], X-ray computed to-
mography [14,35], surface scattering [26] as well as parametrised PDEs [7,10,17],
make the field well connected to different areas of the sciences.
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A standard sampling model is as follows. We have an element f ∈ H, where
H is a separable Hilbert space, and the goal is to reconstruct an approximation
to f from a finite number of linear samples of the form li(f), i ∈ N. In par-
ticular, given that the lis are linear functionals, we measure the scalar product
between f and some sampling element si ∈ H, i ∈ N, i.e. li(f) = 〈f, si〉. It is
important to note that the lis cannot be chosen freely, but are dictated by the
modality of the sampling device, say an MRI scanner providing Fourier samples
or a fluorescence microscope giving binary measurements modelled by Walsh co-
efficients. A natural question that arises from this setting is, what is the number
of samples that is needed for a accurate and stable reconstruction? This can be
made explicit by the stable sampling rate (SSR).

To define the SSR we first introduce the sampling space and the reconstruction
space. We define the sampling space S = span{si : i ∈ N} ⊂ H, meaning the
closure of the span. In practice, one can only acquire a finite number of samples,
therefore, we denote by SM = span{si : i = 1, . . . ,M} the sampling space of the
first M elements. Similarly, the reconstruction space denoted by R is spanned by
reconstruction functions (ri)i∈N, i.e. R = span{ri : i ∈ N}. As in the sampling
case, one has to restrict to a finite reconstruction space, which is denoted by
RN = span{ri : i = 1, . . . , N}.

The key ingredient in the definition of the SSR is the subspace angle ω between
the subspaces RN and SM . In particular,

cos(ω(RN ,SM )) := inf
r∈RN ,‖r‖=1

‖PSM
r‖.

The orthogonal projection onto the sampling space is denoted by PSM
. Mainly,

one is interested in the reciprocal value
µ(RN ,SM ) = 1/ cos(ω(RN ,SM )) ∈ [1,∞],

which, as we will see below, plays a key role in all the error estimates of the two
linear algorithms discussed here. Due to the definition of cosine, µ takes values
in [1,∞]. We can now define the stable sampling rate

Θ(N, θ) = min {M ∈ N : µ(RN ,SM ) < θ} .
In particular, the SSR determines how many samples M are needed when given
N reconstruction vectors in order to bound µ by θ.

Although the SSR is developed mainly for linear methods there is a strong
connection to non-linear techniques. For example in infinite-dimensional com-
pressed sensing a key condition is the so-called balancing property [5], which is
very similar to the SSR. When the balancing property is satisfied, the truncated
matrix P[N ]UP[M ] is close to an isometry. Hence, it also ensures the stability of
the reconstruction.

The stable sampling rate has already been analysed for different settings. A
prominent one is the reconstruction from Fourier measurements. In this case the
sampling functions si are the complex exponentials. For the reconstruction of
wavelets it was shown in [3] that the SSR is linear. The other main measurements
are binary. Combined with wavelets they also have a linear SSR [23].
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The purpose of this paper is twofold:
• First, we want to compare two linear reconstruction methods: gener-

alized sampling [4] and the PBDW approach based on data assimila-
tion [10]. We also show how both linear methods completely rely on
the SSR in order to be accurate. Additionally, the non-linear extension
of generalized sampling, which is presented in [34], is included in the
comparison.

• Second, we provide sharp results on the SSR when considering Walsh
functions and Haar wavelets. This can be done by realising the common
structure of the Walsh functions and the Haar wavelets. Although the
SSR is linear when considering Walsh samples and wavelet reconstruc-
tions, sharp results on the SSR for arbitrary Daubechies wavelets are
still open. The difficulty is that the higher order Daubechies wavelets
share very little structural similarities with the Walsh functions.

2. Reconstruction Methods

In terms of reconstruction methods, there are three different properties that
are often desired. The most important are obviously accuracy and stability.
However, consistency, meaning that the reconstruction will yield the same sam-
ples as the true solution, is also often considered an advantage. Below, we will
see how the SSR is crucial for the two former properties.

2.1. Reconstruction and Sampling Space. Throughout the paper H =
L2([0, 1]d). Due to the fact that we are dealing with the d-dimensional case, we
introduce multi-indices to make the notation more readable. Let j = {j1, . . . , jd}
∈ Nd, d ∈ N, be a multi-index. A natural number n is in the context with a
multi-index interpreted as a multi-index with the same entry, i.e. n = {n, . . . , n}.
Then, we define the addition of two multi-indices for j, r ∈ Nd by the point-
wise addition, i.e. j + r = {j1 + r1, . . . , jd + rd} and the sum

∑r
j=k xj :=∑r1

j1=k1
. . .
∑rd

jd=kd
xj1,...,jd , where k, r ∈ Nd. The multiplication of a multi-index

with a real number is understood point-wise as well as the division by a multi-
index.

We now discuss the sampling space SM . As pointed out before, we are in-
terested in binary measurements. Binary measurements come from applications
such as fluorescence microscopy or single pixel cameras. Mathematically they
are modelled by scalarproducts of our function of interest f and sampling func-
tions si, i ∈ N, which take only the values {0, 1} or {−1, 1}. Without loss of
generality, we assume in the further scope of this paper that the functions take
values {−1, 1}. The former can be attained by taking an additional measure-
ment with the constant function. For practical reasons it is desirable to have a
fast transform for these measurements. Therefore, measurement matrices which
consist of random matrices are not desirable. Additionally, it has been shown
that the reconstruction quality is better with more structured sampling spaces.
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Therefore, we use Walsh functions to represent the measurements. Walsh func-
tions obey the advantage that they correspond to a fast transform. Moreover,
they are the kernels of the Hadamard transform and the analogue or dyadic ver-
sion of exponential functions. Hence, they are a natural choice to model binary
measurements. Now, we define the Walsh functions. The Walsh functions in
higher dimensions can be represented by the tensor product of one-dimensional
Walsh functions.

Definition 1 (Walsh function [19]). Let n =
∑

i∈Z ni2
i−1 with ni ∈ {0, 1} be the

dyadic expansion of s ∈ R+. Analogously, let x =
∑

i∈Z xi2
i−1 with xi ∈ {0, 1}.

The generalized Walsh functions in L2([0, 1]) are given by

Wal(n, x) = (−1)
∑

i∈Z(ni+ni+1)x−i−1 .

We extend it to functions in L2([0, 1]d) by the tensor product for n = (nk)k=1,...,d,
x = (xk)k=1,...,d

Wal(n, x) =
d⊗

k=1

Wal(nk, xk).

Notice that the parameter n represents the number of zero crossings of the
function. For this reason, it is often referred to as sequency, which is similar to
frequency in the case of exponential functions. The Walsh functions span the
sampling space, i.e. for M = md,m ∈ N we have

SM = span {Wal(n, ·), n = (nk)k=1,...,d, nk = 1, . . . ,m, k = 1, . . . , d} .
Moreover, Walsh functions can be extended to negative inputs by Wal(−n, x) =
Wal(n,−x) = −Wal(n, x).

With the help of the Walsh functions we can define the continuous Walsh
transform of a function f ∈ L2([0, 1]d) as in [19] almost everywhere by

f
∧

W

(n) = 〈f(·),Wal(n, ·)〉 =
∫
[0,1]d

f(x)Wal(n, x)dx, n ∈ Rd.

The Walsh functions have the following useful properties. First, they obey
the scaling property, i.e. Wal(2jn, x) = Wal(n, 2jx) for all j ∈ N and n, x ∈
R. Second, the multiplicative identity holds, this means Wal(n, x)Wal(n, y) =
Wal(n, x ⊕ y), where ⊕ is the dyadic addition, i.e. the element-wise addition
modulo two. These properties are also easily transferred to the Walsh transform.
For further information on Walsh functions and transforms see [8, 13,37].

Direct inversion from a finite number of samples, both in the Fourier and
Walsh case, may lead to substantial artefacts such as the Gibbs phenomenon
in the Fourier case or block artefacts known from Walsh functions. This can
be seen in the numerical experiments in Figures 3c, 4c and 5b. Therefore, it
is important to consider reconstruction spaces R which represent the data in
a better way so that a finite and low-dimensional subspace leads to a good
reconstruction. In many different applications, such as image and signal pro-
cessing and also representations of solution manifolds for PDEs [32], wavelets
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have become highly popular alternatives. The reconstruction space is spanned
by reconstruction functions ri, i ∈ N. As it is not possible to deal numerically
with an infinite number of samples, it also is not possible to reconstruct in-
finite number of coefficients. Therefore, we examine the reconstruction space
RN = span {ri : i = 1, . . . , N}. When RN is used as an approximation for the
solution manifold of a PDE, we are also given the approximation error εN .

In the following, we use wavelets as the reconstruction space due to their
good time and frequency localisation. First, we study the one-dimensional case.
Then, we get to higher dimensions. We use the common notation and denote
the mother wavelet with ψ and the corresponding scaling function with φ. These
functions are then scaled and translated. This results in the functions

ψR,j(x) := 2R/2ψ(2Rx− j) and φR,j(x) := 2R/2φ(2Rx− j),

where R, j ∈ Z. The wavelet space at a certain level r is given by Wr :=
span {ψr,j : j ∈ Z} and the scaling space is given by Vr := span {φr,j : j ∈ Z}.
Often one is interested in the representation of functions in L2([0, 1]) instead of
L2(R). For this sake boundary corrected wavelets were introduced in [15]. We
are focussing on the version presented in chapter 4 of [15], because they still obey
the same smoothness and vanishing moments properties as the wavelets they are
derived from on the real line. Additionally, they also remain the multi-resolution
analysis property. We now shortly repeat the construction. The scaling space
for boundary corrected wavelets is spanned by the original scaling function φ
and reflections around 1 of the scaling function φ#, i.e.

V b
r = span

{
φr,j : j = 0, . . . , 2r − p− 1, φ#r,j : j = 2r − p, . . . , 2r − 1

}
,

for Daubechies wavelets of order p. The boundary corrected Daubechies wavelets
still obey the multi-resolution analysis. Therefore, it is possible to represent the
union of the wavelet spaces up to a certain level R − 1 by the scaling space at
this level, i.e. ⋃

r<R

W b
r = V b

R.

Hence, it is not necessary for the analysis to have a deeper look in the ordering
of the wavelets and their construction for the boundary corrected version as long
as we have that the number of coefficients equals the number of elements in that
level, i.e. if N = 2R for some R ∈ N. The reconstruction space is then given by

RN := V b
R.

The higher-dimensional scaling spaces are constructed by the tensor product of
the one-dimensional one, such that we get in d dimensions

RN = V b,d
R := V b

R ⊗ . . .⊗ V b
R (d-times)

for N = 2dR. Note that the corresponding wavelet space is not simply the tensor
product of the one-dimensional wavelets. Fortunately, this is not often a problem
in the analysis, since Daubechies wavelets obey the multi-resolution analysis. We
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will deal with the internal ordering for the one- and two-dimensional case for
the Haar wavelets.

2.2. Reconstruction Techniques. In the following, we present two different
interesting reconstruction methods, which are both optimal in their setting. We
highlight some advantages and disadvantages. Particularly, we see that the
performance of both methods depends highly on the subspace angle between
the sampling and the reconstruction space. This gives rise to the discussion in
§3.1 about the question for which sampling and reconstruction spaces the stable
sampling rate is linear.

2.2.1. PBDW-method. In [7,10,17] the PBDW-method from [31] is analysed. In
contrast to the prominent application for image and signal analysis this method
arises from the application with PDEs. One tries to estimate a state f of a
physical system by solving a parametric family of PDEs

F(f, ζ) = 0,

where F is a differential operator. The parameter ζ may not be known exactly.
Therefore, the value of f cannot be attained by simply solving the PDE. Hence,
other information is necessary. In most applications, one has access to linear
measurements li(f), i = 1, . . . ,M of the state f . This alone is not sufficient
to estimate f or more ambitiously even the parameter ζ. Fortunately, one also
has information about the PDE, which can be used to analyse the solution
manifold M. The solution manifold is usually quite complicated and not given
directly. Hence, approximations are used. The method used in this context is
the approximation by a sequence of nested finite subspaces

R0 ⊂ R1 ⊂ . . . ⊂ RN , dim(Rj) = j,

where the approximation error is known to be εj for each subspace Rj . There
are a lot of different methods that allow us to construct the spaces Rj , such as
the reduced basis method [9, 12,16,41] and the use of wavelets [32].

The given setting leads to the goal of trying to merge the data driven and
model based information, which leads to the concept of PBDW-method. Let
the measurement s := PSM

f be given. The idea is to combine the information
given by the measurements and the PDE. This means we are searching for an
approximation f∗ ∈ Ks where

K = {f ∈ H : dist(f,RN ) ≤ εN} and Hs = {f ∈ H : PSM
f = s} .

The intersection is then the space of possible solutions, i.e. K ∩ Hs = Ks. The
aim is to reduce the distance between the approximation f∗ and the true solution
f .

It was shown in [10] that the following approach introduced in [31] is optimal
for this task. First, the minimization problem

g∗ = argming∈RN
||s− PSM

g||2, (1)
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is solved. The solution to the reconstruction problem is then given by the
mapping A∗ : SM → H defined by

A∗(PSM
f) := f∗ = s+ PS⊥

M
g∗.

For the performance analysis, we want to compare the reconstruction algo-
rithm A∗ with all other mappings A : SM → H. In the following, let A represent
any alternative reconstruction algorithm which also only depends on the infor-
mation of f in the sampling space SM .

We first examine the instance optimality. This means we analyse the error
for a given measurement s, i.e.

||f −A(s)|| ≤ CA(s) dist(f,RN ), f ∈ Ks.

The algorithm A which leads to the smallest constant CA(s) is called instance
optimal. It is clear that the error scales with the distance of the element f
from the reconstruction space RN . Due to the fact that we normally do not
know s a priori, this estimate is not very helpful. Hence, one is interested in
the performance for any kind of input s ∈ SM . Therefore, the performance of a
recovery algorithm A on any subset W ⊂ H is given by

EA(W ) := sup
f∈W

||f −A(PSM
f)||.

Taking the infimum over the whole class gives the class optimal performance
on a given set W defined by

E(W ) := inf
A
EA(W ).

It is shown in [10] that the presented algorithm is both instance and class
optimal and gives the estimate

||f −A∗(PSM
f)|| ≤ µ(RN ,SM ) dist(f,RN ).

Hence, with this approach we do not get reasonable estimates, if RN∩S⊥
M 6= {0}.

Moreover, a detailed knowledge about the stable sampling rate is necessary to
get a method which can be used in practice. A reconstruction method is of little
help if we do not have good error bounds or if the condition number is too high.
We will see in the next chapter that the condition number of this reconstruction
method is also bounded if the stable sampling rate has been taken into account,
see Equation (5). Next, it was shown in [31] that this estimate can even be
improved to

||f −A∗(PSM
f)|| ≤ µ(RN ,SM ) dist(f,RN ⊕ (SM ∩R⊥

N )). (2)

Note that (2) demonstrates how the PBDW-method is dependent on the SSR.
Moreover, it was shown in [10] that the constant µ(RN ,SM ) cannot be improved.
Thus, the estimate is sharp, which further demonstrates the importance of the
SSR.
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2.2.2. Generalized Sampling. After the examination of the concept of the PBDW-
method, we want to study the different reconstruction technique generalized
sampling. Here, the approach is a stable improvement of concepts as finite sec-
tion methods [11, 20, 22, 29]. The main difference is that generalized sampling
allows for different dimensions on SM and RN , whereas in the finite section
method they are always the same. However, the finite section method becomes
a special case of generalized sampling when the dimensions of the sampling space
and reconstruction space are equal. The method is defined now. Afterwards, we
discuss how the equation can be attained by solving the equivalent least square
problem.

Definition 2 ( [1]). For f ∈ H and N,M ∈ N we define the reconstruction
method of generalized sampling GN,M : H → RN by

〈PSM
GN,M (f), ri〉 = 〈PSM

f, ri〉, i = 1, . . . , N. (3)

We also refer to GN,M (f) as the generalized sampling reconstruction of f .

We stress at this point that generalized sampling is also a linear reconstruction
scheme. In particular, Equation (3) is equivalent to solving the following linear
equation for α[N ] ∈ RN .

U [N,M ]α[N ] = l(f)[M ],

where

U [N,M ] =

 u11 . . . u1N
... . . . ...

uM1 . . . uMN

 (4)

and uij = 〈rj , si〉, l(f)[M ] = (l1(f), . . . , lM (f)) ∈ RM . The matrix can be seen
in Figure 1 for different sampling and reconstruction spaces. The reconstruction
is given by GN,M (f) =

∑N
i=1 αiri. An interesting fact about this is that the

matrix U [N,N ] is very ill-conditioned for most cases. As pointed out in [3], in the
case of Fourier samples and wavelet reconstructions, the condition number grows
exponentially in N . This means that this approach is only feasible due to the
above mentioned allowance of a different number of samples and reconstructed
coefficients. It can be shown that there exists a certain number of samples such
that (3) obeys a solution.

Theorem 1 ( [2]). Let N ∈ N. Then, there exists M0 ∈ N such that for every
f ∈ H Equation (3) has a unique solution GN,M (f) for all M ≥M0. Moreover,
the smallest M0 is the least number such that cos(ω(RN ,SM0)) > 0.

Just as for the PBDW-method, the performance bounds of generalized sam-
pling were studied. Here we observe again that the reconstruction quality highly
depends on the subspace angle and on the relation between the data and the
reconstruction space.
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Theorem 2 ( [2]). Retaining the definitions and notations from this chapter,
for all f ∈ H we have

||GN,M (f)|| ≤ µ(RN ,SM )||f ||,
and

||f − PRN
f || ≤ ||f −GN,M (f)|| ≤ µ(RN ,SM )||f − PRN

f ||.
In particular, these bounds are sharp.

Additionally, it was shown in [4] that the condition number κ(RN ,SM ) of the
reconstruction method can also be controlled by the SSR, i.e.

κ(RN ,SM ) = µ(RN ,SM ). (5)
Hence, not only the accuracy but also the stability is controlled by the SSR.

We conclude that along with mappings that map into the reconstruction space
RN , generalized sampling is also optimal in terms of achieving a low condition
number and high accuracy.

2.2.3. Non-linear extension of generalized sampling. In [34] a consistent ap-
proach to generalized sampling was introduced. This means that, in contrast
to generalized sampling, the output of the reconstruction method has the same
measurements in the sampling space as the input. Let f ∈ R, then it can be
represented as f =

∑∞
i=1 βiri. The measurements can be written as l(f)[M ] =

P[M ]Uβ, where P[M ] is the orthogonal projection onto space spanned by the first
M elements of the canonical bases of `2(N), and U is defined as in (4). The
introduced method solves the non-linear minimization problem

inf
α∈`1

||α||`1 with P[M ]Uα = P[M ]Uβ. (6)

The solution is given by

EGM (f) =

∞∑
i=1

αiri.

The measurements of EGM (f) and f are naturally equal, because of
PSM

EGM (f) = P[M ]Uα = P[M ]Uβ = PSM
f.

Hence, this approach is consistent and maps into the reconstruction space. In
contrast to generalized sampling, it is not necessary to decide the number of
reconstructed coefficients a priori.

In the setting of arbitrary sampling and reconstruction spaces, it was shown
that for every number of reconstructed coefficients N there exists some M0 such
that the method reconstructs the data correct up to its first N coefficients.
Hence, this approach is convergent as the error is given by O(||P⊥

RN
f ||), which

goes to zero for M → ∞. The speed of convergence is then dependent upon
the sampling and reconstruction space. This speed was analysed in [34] for the
case of Fourier measurements and wavelet reconstruction. Let the reconstruction
space R be given by wavelets and the sampling space S be the space representing
Fourier measurements. Then, for β ∈ `1(N) and N ∈ N the following holds:
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(1) If for some D > 0 and γ ≥ 1, the Fourier transform of the scaling
function φ decays with

|φ̂(ξ)| ≤ D

(1 + |ξ|)γ
, ξ ∈ R

then there exists some constant C independent of N (but dependent on
γ and ε) such that for M = CN1+1/(2γ−1), any solution α to (6) satisfies

||α− β||`1 ≤ 6||P⊥
[N ]β||`1 .

(2) If for k = 0, 1, 2, for some D > 0 and γ ≥ 1.5, the Fourier transform
of the scaling function φ, the wavelet ψ and their first two derivatives
decays with

|φ̂(k)(ξ)| ≤ D

(1 + |ξ|)γ
, |ψ̂(k)(ξ)| ≤ D

(1 + |ξ|)γ
, ξ ∈ R,

then there exists some constant C independent of N (but dependent on
φ, ψ and ε) such that for M = CN , any solution α to (6) satisfies

||α− β||`1 ≤ 6||P⊥
[N ]β||`1 .

For Dauchechies wavelets among other wavelets, the assumptions of this re-
sult are satisfied by their construction. The first assumption is fulfilled by all
Daubechies wavelets and the second one is fulfilled for Daubechies wavelets
of 7 or more vanishing moments. Numerical experiments suggest that even
Daubechies wavelets with less vanishing moments might have a linear relation-
ship [34].

2.2.4. Comparison. In this chapter we want to point out the similarity of gener-
alized sampling and the PBDW-method in terms of optimality and the depen-
dence on the SSR. Additionally, we want to discuss the differences concerning
the output space and the consistency. We also include the non-linear extension
of generalized sampling into this comparison and examine the overall robustness.

In Equation (2) and Theorem 2 we see that the error bounds of generalized
sampling and the PBDW-method depend both on µ(RN ,SM ). Moreover, since
both systems solve the same least square problem

U [N,M ]α[N ] = l(f)[M ]

as part of the reconstruction, they have the same condition number κ(RN ,SM ).
In more detail, we have that the PBDW-method first solves the generalized
sampling problem with a solution v∗, see Equation (1). Then, the solution is
tweaked to be consistent, i.e.

f∗ = g∗ + PSM
f − PSM

g∗.

Moreover, both methods have been proven to be optimal in their setting. This
means that linear methods cannot outperform them. Additionally, the bounds
are sharp. This underlines the importance of the analysis of the stable sampling
rate. Therefore, we dedicate §3 to the investigation of the relation between the
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dimension of the sampling and the reconstruction space to bound the subspace
angle.

Besides the similarities both methods take different parts into consideration
for the construction of the algorithms. Generalized sampling ensures that the
output is contained in the reconstruction space. This is very desirable when the
signal is sparse in the reconstruction bases, because we do not get the artefacts
from the measurements in the output signal. Nevertheless, the approach is not
consistent. This means that the projection onto the sampling space of the input
and output may not be equal.

This is overcome with the non-linear approach presented in [34]. For this
gain in consistency one, unfortunately, has to compromise with the robustness.
Stability is considered in the `1 setting, and the used definition is equal to the
existence of the condition number of the method. This means that the problem is
well-conditioned in terms of solving an `1 minimization problem rather than the
reconstruction of f from M samples. Particularly, this means that the problem
is not robust against noise.

Finally, the PBDW method is linear and consistent. This is possible due to
the fact that the solution is not forced to stay in the reconstruction space RN .
Remark that (2) shows that the error gets smaller with larger M even though we
keep the reconstruction space RN the same. Hence, with increasing SM we are
leaving the reconstruction space RN and get further away as M increases. This
can be desirable, if the artefacts from the sampling space are not too severe, as
it allows us a mix of properties from the sampling and the reconstruction space.
Nevertheless, if the function is very sparse in the reconstruction space and has
a lot of artefacts in the sampling space, this approach leads to less impressive
reconstructions. The impact is further illustrated in §4 Numerical experiments.

3. Stable Sampling Rate

3.1. Linearity of the Stable Sampling Rate. In §2.2 we saw that the sub-
space angle between the sampling and the reconstruction space controls the
reconstruction accuracy. Therefore, one is interested in the relation between the
number of samples and the number of reconstructed coefficients, such that the
subspace angle is bounded. In detail, we are interested in the stable sampling
rate:

Θ(N, θ) = min {M ∈ N : µ(RN ,SM ) < θ} .

The stable sampling rate has been analysed for important cases which appear
frequently in practice, i.e. for the Fourier-Wavelet [3], Fourier-Polynomial bases
[24] and Walsh-Wavelet cases [23]. For the reconstruction with wavelets we get
for both Fourier and Walsh sampling that the stable sampling rate is linear.
This is the best relation one can wish for and means that the methods discussed
above are, up to a constant, as good as if one could access the wavelet coefficients
directly. In particular, for the Walsh case we have the following theorem.
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Theorem 3 ( [23]). Let S and R be the sampling and reconstruction space
spanned by the d-dimensional Walsh functions and separable boundary wavelets
respectively. Moreover, let N = 2dR with R ∈ N. Then for all θ ∈ (1,∞) there
exists Sθ such that for all M ≥ 2dRSθ we have µ(RN ,SM ) ≤ θ. In particular
one gets Θ ≤ SθN . Hence, the relation Θ(N ; θ) = O(N) holds for all θ ∈ (1,∞).

A natural question which arises from this theorem is whether it is possible to
give sharp bounds on the constant Sθ. In Figure 1 we can see the stable sampling
rate for different Wavelets and the bound θ = 2. The slope Sθ is unknown in
most cases and very difficult to find. This comes from the fact that for the
majority of wavelets the reconstruction matrix is not perfectly block diagonal,
as in 1d and 1f. Hence, one has to take the off diagonals into consideration. The
numerics suggest that the slope is higher the further away the reconstruction
matrix gets from block diagonal. Only for the case of Haar wavelets and Walsh
functions we get that the reconstruction matrix is perfectly block diagonal. This
can be seen in 1b. Note, that from the numerical example one may deduce that
Sθ = 1. This is indeed the case, and the analysis detailed below establishes that
Sθ = 1 for all θ ∈ (1,∞).

3.2. Sharpness for the Haar wavelet - Walsh case. The sharp bound on
Sθ can be summarised in the following theorem.

Theorem 4. Let the sampling space S be spanned by the Walsh functions and
the reconstruction space R by the Haar wavelets in L2([0, 1]d). If N = 2dR for
some R ∈ N, then for every θ ∈ (1,∞) we have that the stable sampling rate is
the identity, i.e. Θ(N, θ) = N .

For the proof we first study the behaviour of Haar wavelets in one dimension
under the Walsh transform. This way we also get a theoretical argument for the
block structure that can be seen in the numerical implementation.

Lemma 1. Let ψ = X[0,1/2] −X(1/2,1] be the Haar wavelet. Then, we have that

|〈ψR,j ,Wal(n, ·)〉| =

{
2−R/2 2R ≤ n < 2R+1, 0 ≤ j ≤ 2R − 1

0 otherwise.

Proof. For the scalarproduct we have

〈ψR,j ,Wal(n, ·)〉 =
∫ 1

0
2R/2

(
X[0,1/2](2

Rx− j)−X(1/2,1](2
Rx− j)

)
Wal(n, x)dx

= 2R/2

(∫
∆R+1

2j

Wal(n, x)dx−
∫
∆R+1

2j+1

Wal(n, x)dx

)
,

where ∆p
k = [2−pk, 2−p(k + 1)). We know from [6] that the function Wal(n, x)

for 2p ≤ n < 2p+1 takes the value +1 on the interval ∆p+1
2k or ∆p+1

2k+1 and −1 on
the other one for k = 0, . . . , 2p − 1. Now, we consider three different cases.
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(f) db8 - Walsh

Figure 1. Stable sampling rate for θ = 2 and reconstruction matrix
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Case 1: n < 2R. There exist r < R such that 2r ≤ n < 2r+1. Then, the
function Wal(n, x) is constant on the interval ∆r

k for any k = 0, . . . , 2r−1. Note
that for j = 0, . . . , 2R − 1 we have that the rounding error is bounded as follows

b2r−Rjc ≥ 2r−Rj − (1− 2r−R).

Then, we have the interval inclusion

∆R+1
2j = [2−R−1(2j), 2−R−1(2j + 1))

= [2−r2−R−1+r2j, 2−r2−R−1+r(2j + 1))

⊂ [2−rb2r−Rjc, 2−r(b2r−Rjc+ 1)) = ∆r
b2r−Rjc.

Moreover,
∆R+1

2j+1 ⊂ ∆r
b2r−Rjc.

Hence, Wal(n, x) takes the same value on ∆R+1
2j and ∆R+1

2j+1. Therefore, the two
integrals are equal and the scalarproduct vanishes.

Case 2: 2R ≤ n < 2R+1. We have for j = 0, . . . , 2R − 1 that Wal(n, x) is equal
to +1 on ∆R+1

2j or ∆R+1
2j+1 and −1 on the other. Therefore, we have either

〈ψR,j ,Wal(n, x)〉 = 2R/2

(∫
∆R+1

2j

Wal(n, x)dx−
∫
∆R+1

2j+1

Wal(n, x)dx

)

= 2R/2

(∫
∆R+1

2j

1dx−
∫
∆R+1

2j+1

−1dx

)
= 2R/2(2−R) = 2−R/2.

Or in the other case analogously

〈ψR,j ,Wal(n, x)〉 = 2R/2

(∫
∆R+1

2j

−1dx−
∫
∆R+1

2j+1

1dx

)
= 2R/2(−2−R) = −2−R/2.

Now, we are left with the last case.

Case 3: n ≥ 2R+1. There exists an integer r ≥ R+ 1 such that 2r ≤ n < 2r+1.
This is similar to the first case. Moreover, we have for j = 0, . . . , 2R − 1 that

∆R+1
2j =

2r−Rj+2r−R−1−1⋃
l=2r−Rj

∆r+1
2l ∪∆r+1

2l+1.

With the fact that Wal(n, x) takes the value +1 on one of the invervals ∆r
2l and

∆r
2l+1 and −1 on the other, we have that the function Wal(n, x) takes the values

+1 and −1 on half of the interval of ∆R+1
2j . Therefore, the integral vanishes.

The same holds true for ∆R+1
2j+1 such that we get the desired result.

�
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Before we prove Theorem 4, we analyse the reconstruction matrix for the
Haar wavelet - Walsh case in two dimensions. The number of functions which
span the wavelet space in d dimensions grows exponentially with d. There-
fore, we restrict ourselves to two dimensions to underline the main idea. In
Figure 2 we can see that the reconstruction matrix in two dimensions has
an additional structure in each level. Similar to the one-dimensional case we
have perfect block structure for the Haar case and nearly block structure for
the higher order wavelets. For the analysis of this phenomena in the Haar
wavelet - Walsh case we examine the definition and order of the two dimen-
sional Haar wavelet. Note that this is necessary for the analysis of the re-
construction matrix, instead of the SSR. In two dimensions the wavelets are
constructed by the tensor product. Due to the multi-resolution analysis we
have that V 2

r = (Vr−1 ⊕Wr−1)
2 = V 2

r−1 ⊕ Vr−1 ⊗Wr−1 ⊕Wr−1 ⊗ Vr−1 ⊕W 2
r−1.

Hence, the wavelets can be in three different spaces, Vr−1 ⊗Wr−1, Wr−1 ⊗ Vr−1

and W 2
r−1. In the first space wavelets are constructed by the tensor product

of the one-dimensional scaling function and the one-dimensional wavelet. For
the second one the one-dimensional wavelet and the one-dimensional scaling
function are combined by the tensor product. And finally, for the third space
we take the tensor products of two one-dimensional wavelets. This results for
R ∈ N, 0 ≤ j1, j2 ≤ 2R − 1 in

ψR,j1,j2,l(x1, x2) =


φR,j1(x1)ψR,j2(x2) l = 1

ψR,j1(x1)φR,j2(x2) l = 2

ψR,j1(x1)ψR,j2(x2) l = 3.

(7)

The scaling function is simply the tensor product of two one-dimensional scaling
functions:

φ(x1, x2) = φ(x1)φ(x2).

For the order of the reconstruction matrix, we first take the first level scaling
function φ. Then, we increase by levels, in each level R we let first j1 go from
0, . . . , 2R − 1 and then j2 = 0, . . . , 2R − 1. Finally, we let l = 1, . . . , 3 such
that we get for the order of the wavelets: φ, ψR,0,0,1, . . . , ψR,2R−1,0,1,ψR,0,1,1, . . .
ψR,2R−1,1,1, . . . ψR,2R−1,2R−1,1, ψR,0,0,2, . . . , ψR,2R−1,2R−1,3.

Due to the fact that the higher dimensional wavelets are constructed also by
means of the scaling functions, it is necessary to analyse the decay rate for the
scaling function as well. Moreover, this is also a main ingredient for the proof of
Theorem 4 as we represent the union of the wavelet spaces by the scaling space.

Lemma 2. Let φ = X[0,1] be the Haar scaling function. Then, we have that the
Walsh transform obeys the following block and decay structure

|〈φR,j ,Wal(n, ·)〉| =

{
2−R/2 n < 2R, 0 ≤ j ≤ 2R − 1

0 otherwise.
(8)
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Proof. The scalarproduct can be expressed as an integral over the interval ∆R
j .

〈φR,j ,Wal(n, ·)〉 =
∫ 1

0
2R/2X[0,1](2

Rx− j)Wal(n, x)dx

= 2R/2

∫
∆R

j

Wal(n, x)dx.

We look at the two different cases
Case 1: n < 2R Remember from Lemma 1 that Wal(n, x) is constant to +1
or −1 on the interval ∆R

j for j = 0, . . . , 2R − 1. Hence, we get that

|〈φR,j ,Wal(n, ·)〉| = |2R/2

∫
∆R

j

Wal(n, x)dx| = 2−R/2.

Case 2: n ≥ 2R This follows as in Case 3 of Lemma 1. With the difference
that we are looking at the integral over the interval ∆R

j instead of the two
integrals ∆R+1

2j and ∆R+1
2j+1. Nevertheless, they vanish for the same reason. �

With this in hand we can now state the structure of the reconstruction matrix
in two dimensions.

Corollary 1. Let ψR,j1,j2,l be the Haar wavelet defined as in (7). Then, the
Walsh transform has the following property for 0 ≤ j1, j2 ≤ 2R − 1

|〈ψR,j1,j2,1,Wal(n1, n2, ·, ·)〉| =

{
2−R n1 ≤ 2R, 2R ≤ n2 < 2R+1

0 otherwise,

|〈ψR,j1,j2,2,Wal(n1, n2, ·, ·)〉| =

{
2−R 2R ≤ n1 < 2R+1, n2 ≤ 2R

0 otherwise
and for the third version

|〈ψR,j1,j2,3,Wal(n1, n2, ·, ·)〉| =

{
2−R 2R ≤ n1 < 2R+1, 2R ≤ n < 2R+1

0 otherwise.

Proof. The proof follows directly from the tensor product structure and Theorem
1 and Lemma 2. �

After this detailed analysis of the behaviour of the wavelet and the scaling
function under the Walsh transform, we are able to proof Theorem 4.

Proof of Theorem 4. We want to analyse the subspace angle µ(RN ,SM ) for N =
M . In detail, we are interested in bounding µ(RM ,SM ) by θ for all θ ∈ (1,∞).
Hence, we try to show that µ(RM ,SM ) = 1 or equally 1/µ(RM ,SM ) = 1 for
M = 2dR. Due to the fact that the circle {r ∈ RM , ||r|| = 1} is compact, and
the orthogonal projection is continuous there exists r0 ∈ RM , ||r0|| = 1 such
that we have

1

µ(RM ,SM )
= inf

r∈RM ,||r||=1
||PSM

r|| = ||PSM
r0|| = 1− ||P⊥

SM
r0||.
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(a) Haar-Walsh (b) db2 - Walsh (c) db8 - Walsh

Figure 2. Reconstruction matrix in two dimensions

The minimal element r0 can be represented by

r0 =

2R−1∑
j=0

d⊗
i=1

αjφR,j with
2R−1∑
j=0

|αj |2 = 1,

where the multi-index notation is used. Then, we have that

P⊥
SM
r0 =

∞∑
n=2R+1

〈
2R−1∑
j=0

d⊗
i=1

αjφR,j ,Wal(n, ·)〉Wal(n, ·)

=

∞∑
n=2R+1

2R−1∑
j=0

d∑
i=1

αji〈φR,ji ,Wal(ni, ·)〉Wal(ni, ·).

With (8) we get that this sum vanishes. Hence,

µ(RM ,SM ) = 1

as desired. �

3.3. Approximation Rate. In this chapter we discuss the approximation rate
for Walsh functions and wavelets. With approximation theory we get a good
insight in the representation properties of bases. For a given orthonormal basis
{ri}i∈N for L2([0, 1d]) we have that for all f ∈ L2([0, 1]d) it holds

f =
∑
i∈N

〈f, ri〉ri.

Unfortunately, in most applications we cannot store or access 〈f, ri〉 for all i ∈
N but only for i = 1, . . . , N for some N ∈ N. Hence, instead of the true
function f we can only have an approximation fN =

∑N
i=1〈f, ri〉ri. In the field

of approximation theory one studies for different representation systems how
good this estimate is. Particularly, one is interested in the error

ε(N, f) = ||f − fN ||22 =
∫

|f − fN |2dx =
∑
i>N

|〈f, ri〉|2.



120 L. THESING AND A. HANSEN

In general, representation systems are desirable with the property that this error
decays very fast in N . The reason why is that we get a good representation from
only a small amount of information. This results in more efficient compression
or less measurement time.

In [6] it is shown that for all continuous functions in L2([0, 1]d) the approxi-
mation error decays with O(N−2). The block artefacts are reflected in the poor
approximation rate, and it underlines the need of reconstruction methods, which
change the basis to achieve better approximation rates.

Daubechies wavelets obey this property. This is analysed in detail in [33].
Consider the representation with Daubechies wavelets of order p, and let the
data f , which we try to represent, be in the Sobolev space W γ([0, 1]d) for some
γ < p. Then, we get an improved approximation rate of

ε(N, f) = O(N−2γ).

Hence, for all Daubechies wavelets of order p ≥ 3 and all functions f ∈W γ([0, 1]d)
for some γ ≥ 2 we get an improved decay rate with Daubechies wavelets in con-
trast to the representation with Walsh functions.

From Theorem 3 we know that the stable sampling rate is linear for Walsh
functions and wavelets and in the following chapter we will even see that the
constant is reasonably low, i.e. S2 = 2 for Daubechies 8 wavelets. This means
that with only a constant increase of measurements we get from a decay rate of
O(N−2) to an approximation rate of O(N−2γ).

4. Numerical Experiments

In this section we want to underline the findings from §2.2.4, especially, the
differences between generalized sampling and the PBDW technique with exam-
ples using both Fourier and Walsh samples. We emphasise that some of the
examples are chosen particularly to highlight the differences between the two
methods. Hence, the examples may not reflect typical practical scenarios. In
Figure 3 we look at an extreme case and consider the task of recovering the Haar
wavelet from Fourier coefficients. Generalized sampling will obviously recover
the function perfectly, given that we choose the Haar basis for the reconstruc-
tion space. In this very special case, the recovered solution is consistent with the
samples. Nevertheless, this is not true in general and only possible because one
gets perfect recovery. In particular, generalized sampling will usually provide
non-consistent solutions. The PBDW-method on the other hand is always con-
sistent. The effect of this is that, even when the reconstruction space is fixed,
the solution changes with the number of samples. Moreover, in this example
it gets closer, as the number of samples increase, to the solution provided by
simply truncating the Fourier series.

The next example in Figure 4 considers Walsh samples. The original function
displayed in Figure 4a is continuous with two jump discontinuities. Moreover,
the continuous part is very well represented with Daubechies 8 wavelets, as
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(a) Original Signal (b) Generalized Sam-
pling with 64 samples

(c) Truncated Fourier
Transform from 64 sam-
ples

(d) PBDW-method from
64 samples

(e) Truncated Fourier
Transform from 256
samples

(f) PBDW-method from
256 samples

Figure 3. Reconstruction from Fourier measurements with Haar
wavelets and dimRN = 32
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(a) Original Signal (b) Generalized Sam-
pling with 128 samples

(c) Truncated Walsh
Transform from 128
samples

(d) PBDW-method from
128 samples

(e) Truncated Walsh
Transform from 256
samples

(f) PBDW-method from
256 samples

Figure 4. Reconstruction from binary measurements with
Daubechies wavelets 8 and dimRN = 64
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(a) Original Signal (b) Truncated Fourier
transform with 1282

samples

(c) Generalized sam-
pling from 1282 samples

(d) PBDW-method from
1282 samples

(e) Truncated Fourier
Transform from 2562

samples

(f) PBDW-method from
2562 samples

Figure 5. Reconstruction from Fourier measurements with
Daubechies wavelets 4 and dimRN = 642



124 L. THESING AND A. HANSEN

demonstrated by the generalized sampling reconstruction in Figure 4b. Nev-
ertheless, there are some artefacts at the jumps. Walsh functions represent
the jumps better, but lead to heavy artefacts along the continuous part of the
function 3c. Hence, both spaces have advantages and disadvantages and can
represent the signal well in different areas. The PBDW-method allows us to
take advantages from both spaces, as it does not force the solution to stay in
the reconstruction space. This leads to a different reconstruction quality as in
4d and 4f. In this case we also get better results with more samples even though
we reconstruct the same number of coefficients.

In the last example we used the code from [18] and consider reconstruction
of images from Fourier samples. In Figure 5 we see that the PBDW-method
provides good results in the 2D setting and with Fourier measurements. The
function is very smooth outside the discontinuous part. Therefore, it can be
effectively represented with wavelets in this area. Nevertheless, there are some
obvious artefacts around the discontinuity in Figure 5c. The artefacts that arise
from the truncated Fourier transform are also easy to spot in Figure 5b and less
clear in Figure 5e due to the increased number of samples. With the PBDW-
method it is possible to merge the advantages of both systems and decrease the
error, as seen in Figures 5d and 5f. We can also see that an increased number of
samples leads to better performance of the PBDW-method even if the number
of reconstructed coefficients stays the same.
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