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Abstract

We establish a necessary density criterion for the identifiability of time-
frequency structured classes of Hilbert-Schmidt operators. The density
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bases in the space of square integrable functions. We complement our find-
ings with examples of identifiable operator classes.
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1 Introduction

The goal in operator identification is to recover an incompletely known operator
from its action on a single input signal [20, 27]. In mathematical terms: for a
normed linear space of operators Z mapping a set X into a normed linear space
Y , we seek g ∈ X such that the induced evaluation map

Φg : Z → Y, H �→ Hg,
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is bounded and boundedly invertible on its range. In short, we require that for
some g ∈ X there exist positive constants A and B with

A‖H‖Z ≤ ‖Hg‖Y ≤ B‖H‖Z , H ∈ Z.

This and similar inequalities will be represented by

‖Hg‖Y � ‖H‖Z , H ∈ Z,

from now on.
Identification of operators is important in numerous applications. For ex-

ample, in mobile radio communications it is desirable to identify an unknown
channel operator prior to information transmission. In radar applications, infor-
mation on a target is gained through analyzing its response to a known sounding
signal.

In this paper we focus on Hilbert-Schmidt operators on the space of square
integrable functions on R, L2(R). Hilbert-Schmidt operators on L2(R) are for-
mally given by

Hf(x) =

∫∫
ηH(t, ν) e2πiν(x−t) f(x− t) dν dt =

∫∫
ηH(t, ν)π1(t, ν)f(x) dν dt

with ηH ∈ L2(R2). The unitary time-frequency shift πd(λ) by λ = (t, ν) ∈ R2d

is defined by

πd(λ)f(x) = TtMνf(x) = e2πiν(x−t) f(x− t), f ∈ L2(Rd). (1)

The space of Hilbert-Schmidt operators HS inherits the Hilbert space structure
from L2(R2) by setting 〈H,K〉HS = 〈ηH , ηK〉L2(R) and ‖H‖HS = ‖ηH‖L2(R)

[10, 12].
For λ = (s, ω; z, y) ∈ R4 and H0 Hilbert-Schmidt with spreading function η0

we define the operator Hλ by

ηHλ
= π2(λ)η0 = T(s,ω)M(z,y)η0. (2)

The central goal of this paper is to establish a density criterion on a not neces-
sarily full-rank lattice Λ for the identifiability of the closed linear span of

(H0,Λ) = {Hλ}λ∈Λ, (3)

that is, a necessary density condition on Λ for the existence of g with

‖Hg‖L2(R) � ‖H‖HS , H ∈ span (H0,Λ). (4)

The paper is structured as follows. Section 2 recalls general facts on modu-
lation spaces, on Gabor Riesz bases and frames, and on Hilbert-Schmidt opera-
tors. In Section 3 we discuss the identification problem outlined above in detail
and state our main result, Theorem 3.6. Theorem 3.6 is proven in Section 4.
Section 5 provides some examples of identifiable classes of Hilbert-Schmidt op-
erators. Also, the design of identifiers for the here considered operator families
is discussed in Section 5.
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2 Background

This section reviews some basic properties of Gabor Riesz sequences and frames
in the Hilbert space of square integrable functions L2(Rd) and in the space of
Hilbert-Schmidt operators on L2(Rd).

A countable family of vectors {gλ}λ∈Λ in a Hilbert space H is called a Riesz
sequence if

‖{cλ}‖�2(Λ) � ‖
∑
λ∈Λ

cλgλ‖H, {cλ} ∈ �2(Λ),

where �2(Λ) denotes the space of square summable sequences indexed by Λ.1

If only ‖{cλ}‖�2(Λ) ≥ A‖∑λ∈Λ cλgλ‖H, {cλ} ∈ �2(Λ), for some positive A,
then we refer to {gλ}λ∈Λ as Bessel sequence. A Riesz basis is a Riesz sequence
that spans H.

A countable family {gλ}λ∈Λ is a frame for H if

‖f‖L2(Rd) �
∥∥{〈f, gλ〉}λ∈Λ∥∥�2(Λ), f ∈ H. (5)

The set Λ = MZ2d ⊂ R2d with M being a (not necessarily full rank) real
2d×2d matrix is called lattice. A Gabor system (g,Λ) in L2(Rd) is the set of all
time-frequency shifts (1) of the window function g by elements λ = (x, ω) ∈ Λ,
that is,

(g,Λ) = {gλ = πd(λ)g : λ ∈ Λ}.
The set (g,Λ) is called Gabor Riesz sequence if it is a Riesz sequence in L2(Rd)
and a Gabor frame if it is a frame for L2(Rd).

Below, we shall utilize modulation space theory as developed by Feichtinger
and Gröchenig [7, 8, 9, 14]. Let S(R) denote the space of Schwarz functions
on R and S ′(R) its dual of so-called tempered distributions. Let vs, s ∈ R, be
the polynomial weight function vs(z) = (1 + |z|)s. The weighted mixed-norm
sequence space �1s(Λ) contains all sequences {cλ}λ∈Λ with the property that

‖{cλ}‖�1s(Λ) =
∑
λ∈Λ

|cλ vs(λ)| < ∞. (6)

The weighted modulation space M1
s (R) consists of all those tempered distribu-

tions f ∈ S ′(R) with

‖f‖M1
s (R)

=

∫
|〈f, π1(z)γ〉 vs(z)| dz < ∞,

with γ(x) = e−x2
, x ∈ R.

The weighted modulation space M∞
s (R) consists of all f ∈ S ′(R) with norm

‖f‖M∞
s (R) = sup

z∈R2

|〈f, π1(z)γ〉vs(z)| < ∞. (7)

1Recall �2(Λ) = L2(Λ, ν) where ν is the counting measure on Λ.
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Note that the dual space of M1
s is M∞−s. If s = 0, we write simply M1(R) and

M∞(R). For a detailed treatment of the theory of modulation spaces we refer
to Chapters 11 and 12 of [14].

Hilbert-Schmidt operators on L2(R) are in one-to-one correspondence to their
kernel [6, page 267], and, similarly, they can be represented by their time-varying
impulse response hH , their Kohn-Nirenberg symbol σH , and their spreading
function ηH . In fact, formally,

Hf(x) =

∫
κH(x, y)f(y) dy =

∫
hH(t, x) f(x− t) dt

=

∫∫
ηH(t, ν) e2πiν(x−t) f(x− t) dν dt =

∫
σH(x, ξ)e2πixξ f̂(ξ) dξ.

(8)

The functions κH , hH , σH , ηH are related by∫
ηH(t, ν) e2πiν(x−t) dν = hH(t, x) = κH(x, x− t) =

∫
σH(x, ξ)e2πiξt dξ,

and

‖H‖HS = ‖κH‖L2(R2) = ‖hH‖L2(R2) = ‖ηH‖L2(R2) = ‖σH‖L2(R2).

due to the unitarity of the L2-Fourier transform F which is densely defined by

Ff(ξ) = f̂(ξ) =

∫
f(x)e−2πixξ dx.

For reference, we include the definition of Beurling density of Rd. Let Bd(R)
denote the ball in Rd centered at 0 with radius R and let |M| denote the car-
dinality of the set M. The lower and upper Beurling densities of Λ ⊆ Rd are
given by

D−(Λ) = lim inf
R→∞

inf
z∈Rd

|Λ ∩ {Bd(R) + z}|
volBd(R)

,

D+(Λ) = lim sup
R→∞

sup
z∈Rd

|Λ ∩ {Bd(R) + z}|
volBd(R)

.

In case ofD−(Λ) = D+(Λ), we say that Λ has Beurling densityD(Λ) = D−(Λ) =
D+(Λ). Note that the Beurling density of a lattice Λ equals the inverse of the
Lebesgue measure of any measurable fundamental domain of Λ. See [21] for a
more general concept of Beurling density.

3 Basic Observations and Main Result

If (H0,Λ) in (3) is a Riesz sequence in the space of Hilbert-Schmidt operators,
then

span (H0,Λ) =
{∑

λ∈Λ
cλHλ : {cλ} ∈ �2(Λ)

}
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and ∥∥∑
λ∈Λ

cλHλ

∥∥
HS

� ‖{cλ}‖�2(Λ), {cλ} ∈ �2(Λ). (9)

In this case, identifiability of span (H0,Λ) by g is equivalent to establishing

∥∥∑
λ∈Λ

cλHλg
∥∥
2
� ‖{cλ}‖�2(Λ), {cλ} ∈ �2(Λ), (10)

that is, to showing that {Hλg}λ∈Λ is a Riesz sequence in L2(R). Note that (9)
corresponds to a Riesz sequence condition in the “large space” L2(R2), while (10)
is a Riesz sequence condition on a similarly structured family of vectors in the
“smaller space” L2(R). We shall generally assume that the weaker condition,
(H0,Λ) is a Riesz sequence, holds and focus on the question whether the set
{Hλg}λ∈Λ is a Riesz sequence for some g.

Remark 3.1 (i) We established that (9) and (10) implies (4). Moreover, if g is
square integrable, then

‖
∑
λ∈Λ

cλHλg‖L2 ≤ ‖
∑
λ∈Λ

cλHλ‖HS ‖g‖L2 , {cλ} ∈ �2(Λ),

and (9) can be replaced with the condition that (H0,Λ) is a Bessel sequence to
obtain (4). This argument is not always applicable as we shall generally allow g
to be a tempered distribution and use the fact that some spaces of operators map
spaces of distributions into L2(R). For example, operators in so-called operator
Paley-Wiener space

OPW 2(S) = {H ∈ HS(L2(R)) : supp ηH ⊆ S}

map boundedly the modulation space M∞(R) defined in (7) to L2(R) in case
that S is compact [23].

(ii) The identifiability of span (H0,Λ) neither implies (9) nor (10). Indeed,
in some cases span (H0,Λ) is identifiable, span (H0,Λ) = span (H0, 2Λ), and
(H0, 2Λ) and {Hλg}λ∈2Λ are Riesz sequences while (H0,Λ) and {Hλg}λ∈Λ are
not.

The framework developed here is motivated in part by the following well
known results from time-frequency analysis. The first result gives a necessary
condition on a Gabor system to form a Riesz sequence (see [17] and references
therein).

Theorem 3.2 Let Γ =
( a1 a2
b1 b2

)
Z2 be a full rank lattice in R2. If there exists

g ∈ L2(R) such that (g,Γ) = {π1(γ)g}γ∈Γ is a Riesz sequence in L2(R), then the

Beurling density D(Γ) =
∣∣ det ( a1 a2

b1 b2

)∣∣−1
of Γ satisfies D(Γ) ≤ 1.
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Theorem 3.2 is a special case of the herein established framework of operator
identification. Indeed, set

ΛΓ =

(
1 0 0 0
0 1 1 0

)T

Γ =

(
a1 b1 b1 0
a2 b2 b2 0

)T

Z2

and observe that Lemma 4.1 implies that for any Hilbert-Schmidt operator H0

we have

span (H0,ΛΓ) = span {π1(γ) ◦H0}γ∈Γ.
So g identifies span (H0,ΛΓ) if and only if {π1(γ)(H0g)}γ∈Γ is a Riesz sequence.
It follows that D(Γ) ≤ 1 is necessary for the identifiability of span (H0,ΛΓ).

2

The condition D(Γ) ≤ 1 implies that ΛΓ is not too dense in the two-dimensional
“tilted” plane {(x, y, z, t) : y = z, t = 0} ⊆ R4.

The second result motivating this paper plays a critical role in the analysis
of slowly time-varying operators [18, 4] and in the recently developed sampling
theory for operators [20, 27, 24].

Theorem 3.3 Let M =
( a1 a2
b1 b2

)
Z2 ⊆ R2 be a full-rank lattice and H0 : L

2(R) −→
L2(R), H0f = ρ · (f ∗ r), be a product-convolution Hilbert-Schmidt operator with
ρ, r̂ smooth and compactly supported. If there exists a tempered distribution g
such that {π1(γ)H0π1(γ)

∗g}γ∈M is a Riesz sequence in L2(R), then D(M) ≤ 1.

Similarly to above, Lemma 4.1 implies that setting

ΛM =

(
0 0 1 0
0 0 0 1

)T

M =

(
0 0 a1 b1
0 0 a2 b1

)T

Z2

indicates that Theorem 3.3 may be considered a special case of our framework.

Theorems 3.2 and 3.3 motivate the central question in this paper which we
paraphrase as follows.

Question 3.4 Can we define a density D̃ on lattices Λ = MZ2 ⊆ R4 so that for
a positive constant C we have D̃(Λ) > C implies span (H0,Λ) is not identifiable
whenever (H0,Λ) is a Riesz sequence?

We choose the following “Beurling-type” density for sets of points Λ lying
within general two-dimensional subspaces of R4.

2Our reasoning uses Hg ∈ L2(R) and not g ∈ L2(R). Indeed, the flexibility of choosing
not square integrable g is quite beneficial. In fact, for some (H0,Λ) we must choose g ∈
M∞(R) \ L2(R) to achieve that {Hλg}λ∈Λ is a Riesz sequence in L2(R).
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Definition 3.5 The “two-dimensional” upper and lower Beurling densities (or
for short 2-Beurling density) of Λ ⊆ R4 are given by

D̄−(Λ) = sup
U∈U

lim inf
R→∞

inf
z∈U

|Λ ∩ {B4(R) + z}|
πR2

,

D̄+(Λ) = sup
U∈U

lim sup
R→∞

sup
z∈U

|Λ ∩ {B4(R) + z}|
πR2

,

(11)

where U denotes the set of two-dimensional affine subspaces of R4 and B4(R) is
the centered open ball with radius R in R4.

If D̄+(Λ) = D̄−(Λ), then Λ has uniform 2-Beurling density D̄(Λ) = D̄−(Λ).

Observe that with

Λ =

(
a1 b1 c1 d1
a2 b2 c2 d2

)T

Z2

we have
D̄(Λ) =

[
(a1b2 − a2b1)

2 + (a1c2 − a2c1)
2

+ (a1d2 − a2d1)
2 + (b1c2 − b2c1)

2

+ (b1d2 − b2d1)
2 + (c1d2 − c2d1)

2
]−1/2

.

(12)

Hence, for ΛM =
(
0 0 a1 b1
0 0 a2 b2

)T
Z2 in Theorem 3.3 we have D̄(ΛM) = |a1b2 −

a2b1|−1 =
∣∣ det ( a1 a2

b1 b2

)∣∣−1
, and for ΛΓ =

(
a1 b1 b1 0
a2 b2 b2 0

)T
Z2 in Theorem 3.2 we have

D̄(ΛΓ) = 2−1/2
∣∣ det ( a1 a2

b1 b2

)∣∣−1
.

The main result in this paper provides a necessary condition on Λ for the
existence of g so that {Hλg}λ∈Λ is a Riesz sequence. M1

s and M∞ denote
modulation spaces whose definitions we recalled in Section 2.

Theorem 3.6 Let Λ = MZ2 ⊆ R4 and H0 be an operator with ηH0 ∈ M1
s (R),

s > 2. If (H0,Λ) is Riesz and span (H0,Λ) is identifiable by g ∈ M∞(R) then
D̄(Λ) ≤ 21/2.

If the first or the last row of M is zero, then the bound on D̄(Λ) can be improved.
Identifiability then implies D̄(Λ) ≤ 1. This is the case in Theorem 3.3 and
Theorem 3.2 respectively (in Theorem 3.2 even D̄(Λ) ≤ 2−1/2). It is not clear
whether the constant 21/2 in Theorem 3.6 can be improved in the general case.

Identifiability of span (H0,Λ) depends on both H0 and the lattice Λ, so it is
not surprising that there exists no c > 0 with D̄+(Λ) < c implies span (H0,Λ)
is identifiable. In fact, it is easy to construct for any ε > 0 a Riesz sequence
(H0,Λ) with D̄(Λ) ≤ ε but span (H0,Λ) is not identifiable (see Example 5.4 and
[13]).

We would like to emphasize that the operator outputs considered herein are
in the “small” space L2(R) while the kernels and spreading functions of the
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operators are in the “larger” space of L2(R2) functions. This dimension mis-
match implies that a single evaluation map H �→ Hg cannot identify the space
of Hilbert-Schmidt operators as a whole, just as a degree of freedom counting
argument shows that the space of complex n× n matrices requires the use of n
identifiers for identification.

4 Proof of Theorem 3.6

The following lemmas are used in the proof of Theorem 3.6.

Lemma 4.1 Let η0 denote the spreading function of H0 ∈ HS(R). Then the
operator TaMbT−cH0TcMd has spreading function

ηTaMbT−cH0TcMd
= Ta,b+dMb,cη0, a, b, c, d ∈ R.

Hence,

ηH =
∑

λ=(s,ω,ξ,y)∈Λ
cληHλ

=
∑

λ=(s,ω,ξ,y)∈Λ
cλπ2(λ)η0

converges in L2-norm if and only if

H =
∑

λ=(s,ω,ξ,y)∈Λ
cλTsMξT−yH0TyMω−ξ

converges in HS(R).

Proof. A change of variables t = t − a, ν = ν − b − d and the relation
TxMω = e−2πixωMωTx implies

∫∫
Ta,b+dMb,cη0(t, ν)f(x− t)e2πiν(x−t) dν dt =

=

∫∫
e2πi(b(t−a)+c(ν−b−d))η0(t− a, ν − b− d)f(x− t)e2πiν(x−t) dν dt

=

∫∫
e2πi(bt+cν)η0(t, ν)f(x− t− a)e2πi(ν+b+d)(x−t−a) dν dt

=

∫∫
e2πi(bt+cν)η0(t, ν)Tt+aMν+b+df(x) dν dt

= TaMbT−c

∫∫
η0(t, ν)TtMνTcMdf(x) dν dt

= TaMbT−cH0TcMdf(x).
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Hence, in particular,

(Hf)(x) =

∫∫
ηH(t, ν)f(x− t)e2πiν(x−t) dν dt

=
∑

λ=(s,ω,ξ,y)∈Λ
cλ

∫∫
Ts,ωMξ,yη0(t, ν)f(x− t)e2πiν(x−t) dν dt

=
∑

λ=(s,ω,ξ,y)∈Λ
cλTsMξT−yH0TyMω−ξf(x).

�

Lemma 4.2 Let p, q ∈ C∞
c (Rd) and let P be the product-convolution operator

with spreading function ηP = p ⊗ q. Then there exist functions ψ1, ψ2 ∈ S(Rd)
such that

|Pf(x)| ≤ ‖f‖M∞(Rd)|ψ1(x)|, |FPf(ω)| ≤ ‖f‖M∞(Rd)|ψ2(ω)|, f ∈ M∞(Rd).

Lemma 4.2 is a straightforward generalization of Lemma 3.4 in [20] and its
proof is omitted. Lemma 4.2 with d = 1 is used to prove the following result.

Lemma 4.3 For H with spreading function η0 ∈ M1
s (R), s > 2, there exist

ϕ1(t), ϕ2(t) = O(t−s) with

|Hf(x)| ≤ ‖f‖M∞(R)ϕ1(x), |FHf(ω)| ≤ ‖f‖M∞(R)ϕ2(ω), f ∈ M∞(R).

The decay estimates show that Hg ∈ L2(R) [11, (2.52)].

Proof. By choosing parameters a, b, c, d with ac < 1, bd < 1 and functions
p, q ∈ C∞

c (R) with [−a
2 ,

a
2 ] ⊂ supp p ⊂ [− 1

2c ,
1
2c ], [− b

2 ,
b
2 ] ⊂ supp q ⊂ [− 1

2d ,
1
2d ] we

obtain a Gabor frame (ηP , aZ× bZ× cZ×dZ) for L2(R2), where ηP = p⊗ q (see
[25, pages 22-23] or [26]). Because ηP ∈ S(R2) ⊂ M1

s (R
2), the Gabor system

(ηP , aZ× bZ× cZ× dZ) is a universal Banach frame according to the definition
of Gröchenig for all modulation spaces M1

s (R
2) [14, Section 13.6]. The main

result from [16] states that the canonical dual window satisfies η̃P ∈ M1
s (R

2).
Recall that �1s(Z

4) denotes the weighted mixed-norm sequence space containing
all sequences {cz}z∈Z4 such that the norm

‖{cz}‖�1s(Z4) =
∑
z∈Z4

|cz vs(z)| < ∞.

Then the result from [14, Corollary 12.2.6] shows that the series expansion

f =
∑

k,l,m,n∈Z
〈f, Tak,blMcm,dnη̃P 〉Tak,blMcm,dnηP , f ∈ M1

s (R
2) (13)



10 N. GRIP, G.E. PFANDER AND P. RASHKOV

is convergent in the M1
s -norm and

‖f‖M1
s (R)

� ‖{〈f, Tak,blMcm,dnη̃P 〉}‖�1s(Z4), f ∈ M1
s (R

2), (14)

Furthermore, as the coefficients have decay stronger than �1(Z4), the convergence
of the series holds in L1(R2) and in L2(R2).

Since the operator H has spreading function ηH ∈ M1
s (R

2), (13) and (14)
imply

ηH =
∑

k,l,m,n∈Z
ck,l,m,nTak,blMcm,dnηP

for some {ck,l,m,n} ∈ �1s(Z
4). It is legitimate to use as identifier distributions

g ∈ M∞(R), because of the inclusion

S(R) ⊂ M1
s (R) ⊂ M1(R) ⊂ M∞(R) ⊂ M∞

−s(R) ⊂ S ′(R).

This inclusion is a consequence of [14, Proposition 11.3.4] and [14, Corollary
12.1.10]. The fact that the constant weight 1 is vs-moderate ([14, Lemma 11.1.1])
provides the inclusion M1

s (R) ⊂ M1(R).

Next, we estimate the decay of Hg in the time and frequency domain. We
shall use the fact that translation and modulation are isometries on M1(R) and,
hence, also on M∞(R) and estimate

|Hg(x)| = |
∑

k,l,m,n∈Z
ck,l,m,nTakM−cmT−dnPTdnMbl−cm g(x)|

≤
∑

k,l,m,n∈Z
|ck,l,m,n| · Tak−dn|PTdnMbl−cm g(x)|

≤ ‖g‖M∞(R)

∑
k,l,m,n∈Z

|ck,l,m,n| · Tak−dnφ1(x),

(15)

where φ1 ∈ S(R) is some positive function, such that |PTdnMbl−cmg(x)| ≤
‖g‖M∞(R)φ1(x) after Lemma 4.2. For the sake of clarity we denote the expression
on the right-hand side of (15) by

Φ1(x) =
∑

k,l,m,n∈Z
|ck,l,m,n|Tak−dnφ1(x) =

∑
k,n∈Z

c̃k,nTak−dnφ1(x),

where c̃k,n =
∑

l,m∈Z |ck,l,m,n|.
We claim that Φ1(x) = O(x−s) due to {|ck,l,m,n|}k,l,m,n∈Z ∈ �1s(Z

4) ⊂ �1(Z4).
Let us make a change of variables |x|s = y2, y ≥ 0, which is equivalent to
x = y2/s, x ≥ 0, and x = −y2/s, x < 0. Then

sup
x≥0

|xs| · |
∑
k,n∈Z

c̃k,nTak−dnφ1(x)| = sup
y≥0

|y2
∑
k,n∈Z

c̃k,nTak−dnφ1(y
2
s )|. (16)
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Since y2/s is monotone on [0,∞) and due to our choice φ1 ∈ S(R) (that is,
φ1 decays faster than the reciprocal of any polynomial on R), φ̃(y) = φ1(y

2/s)
also decays faster than the reciprocal of any polynomial. Then we can estimate
supy≥0 |y2

∑
k,n c̃k,nTak−dnφ̃(y)| by setting Ψ1(y) = yφ̃(y),Ψ2(y) = y2φ̃(y) and

using the equality y2 = (y − ak − dn)2 − (ak − dn)2 + 2y(ak − dn). Hence, by
the triangle inequality it follows for (16) that

∣∣∣y2 ∑
k,n∈Z

c̃k,nTak−dnφ̃(y)
∣∣∣ ≤ ∣∣∣ ∑

k,n∈Z
c̃k,nTak−dnΨ2

∣∣∣
+

∣∣∣ ∑
k,n∈Z

c̃k,n(ak − dn)2Tak−dnφ̃
∣∣∣

+ 2
∣∣∣ ∑
k,n∈Z

c̃k,n(ak − dn)Tak−dnΨ1

∣∣∣.
(17)

Taking the supremum in (17) leads to

sup
y≥0

∣∣∣y2 ∑
k,n∈Z

c̃k,nTak−dnφ̃(y)
∣∣∣ ≤ sup

y≥0

∣∣∣∑
k,n

c̃k,nTak−dnΨ2

∣∣∣
+ sup

y≥0

∣∣∣ ∑
k,n∈Z

c̃k,n(ak − dn)2Tak−dnφ̃
∣∣∣

+ 2 sup
y≥0

∣∣∣ ∑
k,n∈Z

c̃k,n(ak − dn)Tak−dnΨ1

∣∣∣.
(18)

We compute the following upper estimate of the summands on the right-hand
side in (18)

sup
y≥0

∣∣∣y2 ∑
k,n∈Z

c̃k,nTak−dnφ̃(y)
∣∣∣ ≤ ∑

k,n∈Z
|c̃k,n| sup

y≥0
|Ψ2(y)|

+
∑
k,n∈Z

|c̃k,n(ak − dn)2| sup
y≥0

|φ̃(y)|

+ 2
∑
k,n∈Z

|c̃k,n(ak − dn)| sup
y≥0

|Ψ1(y)|.

(19)

We analyze separately the three summands from (19). Since φ̃,Ψ1,Ψ2 belong
to the Schwarz class, they are bounded and decay faster than the reciprocal
of any polynomial. Also the fact that {ck,l,m,n}k,l,m,n∈Z ∈ �1s(Z

4) implies the
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existance of constants C1, C2 > 0 such that∑
k,n∈Z

|c̃k,n| · |ak − dn|2 ≤ C1

∑
k,n∈Z

|c̃k,n|(1 + a|k|+ d|n|)2

< ‖{ck,l,m,n}k,l,m,n∈Z‖�1s(Z4) < ∞,∑
k,n∈Z

|c̃k,n| · |ak − dn| ≤ C2

∑
k,n∈Z

|c̃k,n|(1 + a|k|+ d|n|)

< ‖{ck,l,m,n}k,l,m,n∈Z‖�1s(Z4) < ∞.

Furthermore, ∑
k,n∈Z

|c̃k,n| ≤ ‖{ck,l,m,n}k,l,m,n∈Z‖�1s(Z4) < ∞.

Thus the expression on the right-hand side of (19) is bounded, implying the
desired decay rate of Hg for x > 0. In a similar fashion we prove the decay for
x < 0. Thus supx∈R |xsΦ1(x)| < C and |Hg(x)| ≤ ‖g‖M∞(R)ϕ1(x) has decay
O(x−s), s > 2.

A similar estimate can be done for the decay of the Fourier transform of Hg

|FHg(ω)| = |
∑

k,l,m,n∈Z
ck,l,m,nM−akT−cmMdnFPTdnMbl−cmg(ω)|

≤
∑

k,l,m,n∈Z
|ck,l,m,n| · T−cm|FPTdnMbl−cmg(ω)|

≤ ‖g‖M∞(R)

∑
k,l,m,n∈Z

|ck,l,m,n| · T−cmφ2(ω),

(20)

where φ2 ∈ S(R) is some positive function, such that |FPTdnMbl−cmg(ω)| ≤
‖g‖M∞(R)φ2(ω) after Lemma 4.2. We denote the expression on the right-hand
side of (20), by

Φ2(x) =
∑

k,l,m,n

|ck,l,m,n|T−cmφ2(x),

and prove in a similar fashion that Φ2(x) = O(x−s), s > 2. �
Proof of Theorem 3.6. For m,n ∈ Z and λ = M(m,n)T , we observe that

Hλ = T(a1−d1)m+(a2−d2)nMc1m+c2n

H0Td1m+d2nM(b1−c1)m+(b2−c2)n.

Set gm,n = H0Td1m+d2nM(b1−c1)m+(b2−c2)ng. Since ηH0 ∈ M1
s (R), s > 2, Lemma 4.3

implies the existence of φ1(x) = O(x−s), φ2(ω) = O(ω−s), s > 2 such that

|gm,n(x)| < φ1(x)‖g‖M∞(R),

|Fgm,n(ω)| < φ2(ω)‖g‖M∞(R).
(21)
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To prove the claim of the theorem, we show that the family

{Hλg}λ∈Λ = {T(a1−d1)m+(a2−d2)nMc1m+c2ngm,n}m,n∈Z2 ⊆ L2(R)

is a set of Gabor molecules [3, Definition 10]) localized with respect to the lattice

Λ̃ =

(
a1 − d1 a2 − d2

c1 c2

)
Z2.

For that purpose it suffices to show the existence of Ψ ∈ W (C, �2), such that
|〈gm,n, TxMωγ〉| < Ψ(x, ω) for all (m,n) ∈ Z2, (x, ω) ∈ R2. Here γ(t) = e−t2

and W (C, �2) denotes the Wiener amalgam space consisting of all continuous
functions f on R2 such that the norm

‖f‖W (C,�2) =

⎛
⎝ ∑

m∈Z2

ess sup
z∈[0,1)2

|f(z +m)|2
⎞
⎠1/2

< ∞.

Note (21) implies

|〈gm,n, TxMωγ〉| ≤ 〈|gm,n|, Tx|γ|〉 = |gm,n| ∗ γ(x)
≤ ‖g‖M∞(R) · φ1 ∗ γ(x) ,

|〈Fgm,n,M−xTωγ〉| ≤ 〈|gm,n|, Tω|γ|〉 = |gm,n| ∗ γ(ω)
≤ ‖g‖M∞(R) · φ2 ∗ γ(ω),

see [15, 22]. Hence, by setting

h(t) = ‖g‖M∞(R)max{φ1 ∗ γ(t), φ1 ∗ γ(−t), φ2 ∗ γ(t), φ2 ∗ γ(−t)},
we obtain

|〈gm,n, TxMωγ〉| ≤ h(max{|x|, |ω|}) = h(‖(x, ω)‖∞)

with |h(t)| = O(t−s), s > 2. Hence, there exists a constant c such that

|〈gm,n, TxMωγ〉| ≤ c · h(‖(x, ω)‖)
that can be bounded in turn pointwise by a function Ψ(x, ω) ∈ W (C, �2). Thus,
{Hλg}λ∈Λ is a set of Gabor molecules.

Assume that span (H0,Λ) is identifiable by g ∈ M∞(R). By employing [3,
Theorem 8] and [2, Theorem 3] (the latter result is a Gabor molecule extension
of Theorem 3.2) we obtain that the Beurling density of Λ̃, given by

D(Λ̃) =

∣∣∣∣det
(
a1 − d1 a2 − d2

c1 c2

)∣∣∣∣−1

must be less than 1 in order for {Hλg}λ∈Λ to be Riesz in L2(R). A computation
shows that this condition follows from D̄(Λ) > 21/2, yielding the bound in
Theorem 3.6. �
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Remark 4.4 To obtain similarly a necessary density condition for {Hλg}λ∈Λ to
be a frame, we would have to show that |(a1−d1)c2− (a2−d2)c1| = D(Λ̃)−1 < 1
follows from D̄(Λ) > c for some positive constant c. But this is not reasonable
to expect, as increasing b1 and/or b2 greatly in

D̄(Λ) =
[
(a1b2 − a2b1)

2 + (a1c2 − a2c1)
2

+ (a1d2 − a2d1)
2 + (b1c2 − b2c1)

2

+ (b1d2 − b2d1)
2 + (c1d2 − c2d1)

2
]−1/2

.

would decrease D̄(Λ).

5 Examples of identifiable operator classes, design of
identifiers

To establish identifiability of span (H0,Λ) we seek an identifier g such that any
choice of coefficients {cλ} ∈ �2(Λ) in H =

∑
λ∈Λ cλHλ can be computed from

Hg. Equivalently, we require that {cλ} can be computed from the values of the
Gabor coefficients vμ = 〈Hg, π1(μ)γ〉, μ ∈ M, where (γ,M) is an L2-Gabor
frame for appropriately chosen window γ ∈ L2(R) and lattice M ⊂ R2. Then,
our task is to solve the system of linear equations

vμ = 〈Hg, π1(μ)γ〉 =
∑
λ∈Λ

cλ 〈Hλg, π1(μ)γ〉 =
∑
λ∈Λ

Aμ;λ cλ, μ ∈ M

for {cλ}. The doubly infinite matrix A has entries Aμ;λ = 〈Hλg, π1(μ)γ〉.
If g is such that the map A : �2(Λ) → �2(M) has a bounded left inverse then

span (H0,Λ) is identifiable.

The design of identifiers g can be carried out on the coefficient level. In fact,
when (γ̃,M̃) is an appropriately chosen Gabor frame for L2(R), or, for example,
an �∞-frame for M∞(R) [1], then we seek a coefficient sequence {dμ̃} so that
the bi-infinite matrix with entries

Aμ;λ =
∑
μ̃∈˜M

dμ̃〈Hλπ1(μ̃)γ̃, π1(μ)γ〉

is invertible.

To illustrate the method outlined above, we give an alternative proof of one
implication in Theorem 3.1 in [20]. Also see [24] for a comprehensive treatment
of sampling and identification in operator Paley-Wiener spaces.

Theorem 5.1 The operator Paley-Wiener space OPW 2([0, a]×[0, 1a ]) is identi-
fiable.
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Proof. By definition the given operator space consists of operators H ∈
HS(R) such that

ηH ∈ span {M k
a
,�aχ[0,a]×[0, 1

a
], k, � ∈ Z},

that is, we consider

Λ =

(
0 0 0 1

a
0 0 a 0

)T

Z2.

Since {e2πi( kxa +a�y) : (x, y) ∈ [0, a]×[0, 1a ], k, � ∈ Z} forms an orthonormal basis
for the space L2([0, a]×[0, 1a ]) [19], the spreading function of any operator H ∈
OPW ([0, a]×[0, 1a ]) has a unique expansion

ηH =
∑
k,�∈Z

ck,�M k
a
,a�η0

with η0(x, ω) = χ[0,a](x)χ[0, 1
a
](ω).

Set ck,�,m,n = ck,lδ0,0(m,n). We choose γ = a−1/2χ[0,a] and observe that the

Gabor system (γ, aZ× 1
aZ) is an orthonormal basis for L2(R). Using the formal

relationship 〈Hg, f〉L2(R) = 〈ηH , Vgf〉L2(R) [13, Lemma 3.2] with g = δaZ =∑
n∈Z δna ∈ M∞(R)3 we compute

Ap,q;k,� = 〈Hk,�δaZ,M p
a
Taqγ〉

= 〈T−aq,− p
a
M k

a
− p

a
,a�η0, VδaZγ〉.

The Zak transform Za satisfies the relations

VδaZa
−1/2χ[0,a] = Zaa

−1/2χ[0,a]

and
a−

1
2Zaχ[0,a](x, ω) = e2πia[

x
a ]ω,

for which we refer to [14, Chapter 8]. Then

Ap,q;k,� =

∫∫
χ[0,a](x+aq)e2πi

(k−p)(x+aq)
a χ[0, 1

a
](ω+ p

a)e
2πi(ω+ p

a)a�e−2πia[xa ]ω dx dω

We make the substitutions y = x + aq, z = ω + p
a and note that since the

integrand is nonzero for aq ≤ x < aq + a,
[
x
a

]
= q, it follows that

Ap,q;k,� =

∫ a

0

∫ 1
a

0
e2πi

(k−p)y
a e2πia�z−2πiaq(z− p

a
) dy dz

= e2πi(pq)
∫ a

0
e2πi

(k−p)y
a dy ×

∫ 1
a

0
e2πia(�−q)z dz

= δp,q(k, �),

3Note that the inner product is still well-defined since ηH has compact support.



16 N. GRIP, G.E. PFANDER AND P. RASHKOV

where we used that {e2πint/a : n ∈ Z} and {e2πimat : m ∈ Z} are orthonormal
bases for L2[0, a] and L2[0, 1a ], respectively.

The matrix A = (Ap,q;k,�)p,q;k,�∈Z is the identity, and thus invertible, which
is what we had to prove. �

Recall that Vgf(z) = 〈f, π1(z)g〉, z ∈ R2 is short-time Fourier transform of
f ∈ L2(R) with respect to the window g ∈ L2(R) [14, Chapter 3]. An additional
positive identifiability result is the following.

Proposition 5.2 Let h, {gλ}λ∈Λ ∈ L2(R) be such that {gλ} is a Riesz se-
quence for its closed linear span in L2, ‖h‖L2(R) = 1. Then the operator family
span {Hλ, ηHλ

= Vhgλ}, is identifiable.

Proof. The Riesz sequence property of {gλ} implies that {ηHλ
} is a Riesz

sequence as well since it is the image of a Riesz sequence under the unitary map
Vh : gλ �→ ηHλ

[5]. Consider the associated action of the operator Hλ on g:
Hλg = gλ〈g, h〉. Therefore, the entries of the matrix A have the form

Aμ;λ =
∑
μ̃∈M̃

dμ̃〈Hλπ1(μ̃)γ̃, γμ〉 =
∑
μ̃∈M̃

dμ̃〈gλ, γμ〉〈π1(μ̃)γ̃, h〉. (22)

Whenever {γμ} is chosen biorthogonal to {gλ}, (22) becomes

Aμ;λ = δ(μ− λ)
∑
μ̃∈M̃

dμ̃〈π1(μ̃)γ̃, h〉,

which shows that the matrix A is diagonal with non-zero entries for appropriate
{dμ̃}. Hence, A is invertible. �

The following examples address more involved rank-2 lattices, for simplicity
of calculation, we will consider Gaussian kernels only.

Example 5.3 Let H0 be given by κ0(x, ω) = e−π(x2+ω2), that is, η0(t, ν) =
1√
2
e−πi

√
2tνe−π(t2+ν2)/2.

1. Let Λ =
(
α 0 0 0
0 β α 0

)T
Z2. If α, β are such that |α(β + α

√
2)| ≥ √

2, |αβ| >√
2, |α| > 1, then the operator family span (H0,Λ) is identifiable.

2. Let Λ =
(
α 0 0 0
0 0 α β

)T
Z2. If α, β are such that |α| > 1 and β

√
2

α ∈ Q, then
the operator family span (H0,Λ) is identifiable.

The pairs (α, β) satisfying the conditions in Example 5.3, Statement 1, are
illustrated in Figure 1. Statement 2 of Example 5.3 indicates that identifiability
may depend on conditions that are not expressible in terms of density or simple

inequalities. When β
√
2

α /∈ Q, the Gabor system (η0,Λ) is not a Riesz sequence,
so the problem is not considered in this paper.

The following example shows that D̄(Λ) being small does not necessarily
guarantee identifiability of span (H0,Λ).
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Figure 1: The set (α, β) fulfilling the conditions in Example 5.3, Statement 1,
is represented by the shaded region. The region encompasses the intersection of
the convex hull of the parabolas |α(β +

√
2α)| ≥ √

2, |αβ| > 2 with the subset
of the plane |α| > 1.

Example 5.4 Let H0 be given by η0 ∈ M1
s (R

2), s > 2, and let Λ =
(

0 0 0 β
α β 0 0

)T
Z2.

If |αβ| < 1, then the operator family span (H0,Λ) is not identifiable.

The condition |αβ| < 1 cannot be expressed in terms of 2-Beurling density
of the index set Λ, D̄(Λ) = |β|−1(α2 + β2)−1/2. In fact, for any ε > 0, we
can find α, β with |αβ| < 1 such that D̄(Λ) < ε. For instance, when α =
1010, β = (1010 + 1)−1, |αβ| < 1, so the family span (H0,Λ) is not identifiable,
but D̄(Λ) ≈ 10−20 is very small.

Further examples of identification using the approach described in this paper
are given in [13, Sections 4.4 - 4.6].
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