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Abstract

In computerized tomography, an image must be recovered from data
given by the Radon transform of the image. This data is usually in the
form of sampled values of the transform. In this work, a method of recov-
ering the image is based on the sampling properties of the prolate spheroidal
wavelets which are superior to other wavelets. It avoids integration and al-
lows the precomputation of certain coefficients. The approximation based
on this method is shown to converge to the true image under mild hypothe-
ses. The algorithm is then tested on the standard Shepp—Logan image and
shown to be surprisingly good.
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1 Introduction

The prolate spheroidal wave functions (PSWFs) have been an important tool
in signal processing for more than forty years. However, they seem to be an
inexhaustible and inspirational source of new ideas and methods, both theoret-
ical and applied. Although known as solutions to a Sturm-Liouville problem
for more than a century, PSWFs were found by Slepian, Pollak, and Landau
to be a solution to a different problem arising in Communication Theory. This
was the so-called concentration problem: among all the bandlimited functions
find the one with the maximum energy level in a given time interval [11]. Over
the years, further extensive studies have produced a number of different ways
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to characterize PSWFs, from which many interesting and useful properties of
these functions have been derived [6, 7, 12, 13].

Most recently, Walter and Shen [18] have proposed new wavelets based on
PSWFs. This wavelet family not only possesses the same maximum energy con-
centration property, but can also be used in place of the sinc function S(t) = Si%‘t
to recover bandlimited signals from their sampled values [17]. The corresponding
wavelet scaling function is just the first PSWF with bandwidth 7. While these
are not orthogonal to their integer translates, they do constitute a Riesz basis
of the space of m-bandlimited signals. They do have many desirable analytic

properties that other wavelet systems lack.

In applied fields, Shepp and Zhang [10] have used PSWFs to obtain a fast
algorithm for recovering a magnetic resonance image (MRI) from its sampled
values in the frequency domain. Their prolate wavelets are not the ones con-
sidered here, but rather are multidimensional spheroidal wave functions. They
were able to show, at least heuristically, that their approach was close to optimal
for imaging of brain activity.

Another application involved development of modified high order finite el-
ement methods [2] in which the traditional Legendre polynomials have been
replaced with PSWFs. They were shown to have considerable potential for use
in numerical weather prediction and other applications involving large data sets.

We, in turn, shall use the PS wavelets in computerized tomography (CT),
and propose a simple and effective algorithm for reconstructing a good quality
image from the projection data collected by a CT scanner. Mathematically, this
translates into a problem of recovery of the image function of an object from
the sampled values of its Radon transform. To solve this fundamental problem,
many wavelet-based methods have been suggested (see [4, 16, 3, 1, 14]). Most of
the procedures use two-dimensional wavelets and wavelet transforms; some allow
for the use of local data when only a portion of the image is needed. However,
none has the combination of good time and frequency response arising with
the PS wavelets. Moreover, approximations based on these wavelets retain the
analytic properties of the original function, something which no other wavelet
systems do.

Our idea is to work with one-dimensional approximations in the Radon trans-
form domain. That allows one to avoid integrations and precalculate many val-
ues, thus making the algorithm computationally effective. This is the usual
requirement for any procedure that attempts to be somewhat practical. One
also must address the fact that PSWFs, in common with most wavelets, do not
have a closed form. This makes the need to avoid integrals even more urgent.
We achieve it by introducing a procedure that only calls for the values of PSWFs
at integers. To find these values we propose an alternative method for comput-
ing them without using the traditional Legendre polynomial approximations to
PSWFs.
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The content of this work is organized as follows. In the next section we
summarize the properties of PSWFs and PS wavelets mentioned above, as well
as include a quick primer on the mathematical background of CT. Then we
describe a reconstruction algorithm based on the properties of PS wavelets. As
a part of the procedure a new method for evaluating these functions at integers is
introduced. We conclude by presenting some convergence results and computer
simulations.

2 Prolate Spheroidal Wavelets and Computerized To-
mography

In this section, we list some related properties of the prolate spheroidal wave
functions and the associated PS wavelets, as well as give a brief introduction to
the subject of computerized tomography.

A. Properties of Prolate Spheroidal Wave Functions

As we attempt to recover an image from the sampled values of its Radon
transform, we are naturally interested in bandlimited functions since the fre-
quencies in such an image must be bounded. In particular we work with the
space B, of m -bandlimited functions, i.e., continuous square-integrable func-
tions whose Fourier transforms vanish outside of the interval [—m, 7]. According
to the Shannon sampling theorem [8], each such function can be represented as

F&) =2 f(k)S(t - k)
k

where S(t) is the sinc function S(t) = S2™. Unfortunately, the sinc function has
a very slow decay which can make the formula above not adequate for recovering
signals with finite time duration.

One of the natural solutions is to consider the set of prolate spheroidal wave
functions {¢y,(t)} which form the orthonormal basis of B, and are highly concen-
trated in a time interval [—7,7]. These {¢,} depend on the parameter 7, which
we shall, for simplicity, usually assume to be 7 = 1, although higher values give
greater concentration on the interval.

Here we list some properties of PSWFs each of which can be used as their

definition.

1. {¢} have maximum energy concentration among all 7 - bandlimited func-

(o]
tions in the interval [—7, 7], i.e., ¢y is the function such that [ |¢o(t)|*dt =

—00

.
L and [ |f(t)’dt is maximized for f = ¢o; ¢ is the function orthogonal
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to ¢p with the same property; ¢ is ...

2. {¢n} are the eigenfunctions of a differential operator

2
@6, o,

2 2
(77 =) g2 dt

+7T2t2¢n :Mn¢n7 n= 071727"'

where u,, are the eigenvalues.

3. {¢n} are the eigenfunctions of an integral operator

/(;Sn(x)S(t—a:)daz: An®n(t), n=0,1,2,...

We should also mention two more facts about PSWFs that we shall use later:

e each of ¢, has exactly n zeroes in the concentration interval [—, 7];

e the Fourier transform of ¢,, is given by

5a) = 0P 300 (T ),

where xr(w) is the characteristic function of the interval [—7, 7].

The graph of ¢o(t) is shown in Figure 1 for 7 = 1. We shall not use the PSWFs
themselves for our approximation, but rather the wavelets based on them.

B. Properties of Prolate Spheroidal Wavelets

The PS-wavelets were introduced in [18] and have as their scaling function
o = oo /ggo(O). It was shown that integer translates of this scaling function
{¢(t—n)} form a Riesz basis of the space B, whatever the value of 7, just as the
PSWFs do. By changing the scale by factors of 2, we obtain a multiresolution
analysis (MRA) {V,,} of subspaces of L?(R), where f(t) € V,, if and only if

f(27™t) € V. An MRA will have the following properties:
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Figure 1: Graph of the prolate spheroidal wave function ¢ in the time domain.

In our case V,,, = Bom,, the Paley-Wiener space of 2™r—bandlimited func-
tions; a function f in L?(R) may be approximated at the scale m by the series
approximation of the form

[e.9]

fn) = D" Gnm@(2™t —n).

n=—oo

Several methods of calculating the coefficents ay,, were studied in [18]. One is
obtained by using a biorthogonal series and an integral formula. The other,
which is the one we shall use here for the most part, avoids integration and uses
only the point value f(27™n)2~™ for a,,,. Both methods were shown to converge
to f uniformly as m — oo on the real line for f in an appropriate Sobolev space.
The former, however, has a more rapid rate of convergence, whereas the latter
avoids Gibbs’ phenomenon. This phenomenon, involving the overshoot at points
of discontinuity, is present in Fourier appproximation as well as in all standard
wavelet approximations. It is particularly troublesome in images since it causes
ripple effects at discontinuities of the image. The absence of Gibbs’ phenomenon
is one reason to use these wavelets in CT.

These PS-wavelets have many other unique properties that make them use-
ful in applications. Their MRA subspaces are closed under differentiation and
translation, thereby making them potentially useful for solving differential equa-
tions. The parameter 7 may be tuned for particular applications. For smaller
values of 7, the ¢’s are closer to being orthogonal to their translates and thus
easier to work with. For larger values, the energy outside of the concentration
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interval [—7, 7] is less, and, in fact, can be made quite small. For example, for
T = 2 the total energy of ¢ outside of the interval is less than 4-10~°. Thus, while
¢ is an entire function which cannot vanish on an interval, for practical purposes
it can be taken to be zero outside of the concentration interval whenever 7 is
sufficiently large.

C. Background on Computerized Tomography

In computerized tomography, the cross-sectional image of an object in the
form of a two-dimensional density function is reconstructed from data collected
when the object is illuminated by X-ray beams from many different angles. As
X-rays pass through the object they are attenuated at different rates by tissues
with different densities; measurements obtained at an angle 6 are recorded in
the form of sampled values of the projection function FPy(t). Let f(z,y) denote
the density function of the object which is often called the image function, or
the object function. Mathematically, the projection function along the line of
exposure t = x cosf + ysinf is given by the line integral

Py(t) = //f(x,y)(S(:CCOSH + ysin 6 — t)dzdy,
R2

where § is the one-dimensional Dirac delta-function and Py(t) is the Radon
transform of f(x,y).
The most common way to recover f from F, relies on the Fourier Slice
Theorem [5]:
Py(w) = f(wcosf,wsinh),

where ]39 and f denote the Fourier transform of Py and f. In other words,
the one-dimensional Fourier transform of the projection function gives the two-
dimensional Fourier transform of the object function along a radial line. If
projections are known at enough angles, the object function can be recovered
by using an approximation to the inverse Fourier transform:

™ +0oo

1 ~ ) .
f(gj,y) = (27T)2 / / Pe(w)ezw(:vcose—&-ysme)|w‘dwd0‘
0 —oo
This is widely known as the backprojection formula
faw)=, f@ (1)
x’ y - 271_ 6 b
0

where t = z cos + ysinf and @ is the output of a filter with transfer function
lwl, i.e.,

Qo(w) = By(w)|wl,
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followed by an averaging operator. To make inversion of @ possible, |w| is usually
multiplied by a smoothing window.

Since f(z,y) has compact support, it cannot be bandlimited at the same
time. However, it can belong to a Sobolev space since this would merely require
that Qp(w) decrease more rapidly than a negative power of w as w — =oc.
Such functions, as we have remarked above, can be uniformly approximated by
bandlimited functions in V,,, = Bom.

3 Reconstruction Algorithm

Our reconstruction procedure is based on the scaling function of PS-wavelet
¢ = ¢o/b0(0). It avoids any Fourier transforms and integrations, and only
calls for the values of ¢y at integers. We begin by briefly describing a new
linear method for computing such values without using the traditional Legendre
polynomial approximation to ¢g [15, 20]. This traditional method first uses the
differential operator eigenvalue problem satisfied by the PSWF to estimate the
eigenvalue. (This is not the eigenvalue of the integral operator.) Then this
eigenvalue estimate is used to estimate the Legendre coefficients of the PSWF,
which in turn are used to obtain a Legendre polynomial approximation. This
method works on the interval [—1, 1], but has to be modified for values outside
of this interval by using a different Bessel function approximation. The new
method, on the other hand, provides an entire function approximation on the
entire real line.

The most efficient method is to use published tables, but then one is stuck
with the Slepian bandwidth values that have been tabulated. Our method in-
volves using a simple MAPLE calculation that any student can do. Details
of this method are being published elsewhere, but we include a description for
completeness. The algorithm and some convergence results will follow.

A. Discrete Values of PSWFs

Recall that one of the characterizations of PS wave functions is as the max-
imum of the energy of a signal in a given time interval, i.e., ¢y maximizes

T 1fPat
ET =7 (1)

_ o
PR

among all 7 -bandlimited functions in space B;. Since the integer translates
{S(t — n)} of the sinc function form an orthonormal basis of B, solutions of (1)
can, by the Shannon sampling theorem [8], be expressed as

f)= Y f)S(t—n).

n=—oo



28 G. WALTER AND T. SOLESKI

When this series expansion is used in (1), we obtain E. in form of the ratio of

> fn) 30 £ [ St - ws - b 2)

n=—oo k=—o00

to

n=-—oo k=—o0 n=-—oo

> s 3 5 [ se-nse-md= > [f0)P.

The former is justified by the dominant convergence theorem while the latter
can be obtained when Parseval’s equality is applied to the orthonormal sequence
{S(t —n)} in L?(R).

Let A; denote the doubly infinite matrix that appears in (2), i.e.,

A(i,f) = /S(t _)S(t— jdt.

Then (1) can be expressed as

(£, A f)
(£, 1)

where f now denotes a sequence of discrete values { f(n)} with the inner product
in sense of 12. To solve this optimization problem, one uses a standard method
of operator theory that involves finding the largest eigenvalue A, of the compact,
self-adjoint operator A,. The eigenvector ¢ corresponding to this A, is exactly
the vector ¢ = {¢(n)} of the values of our PS wave function ¢o at integers
satisfying ||¢|| = 1. Of course, in practice the matrix A, must be truncated to
a finite matrix, which we have found to be quite accurate even with a 15x15
matrix. More details will be found in [19].

B. Algorithm

We approximate the projection function Py(t) by the sampling series at the
scale of interest m

E, =

—+o00

Pym(t) = Y Py(n27™)p(2"t —n) (3)

n=—oo

where ¢ is the scaling function of the PS-wavelet introduced in the previous
section. In order to avoid any integrations involving ¢ we approximate the
filtered projection Qy(t) by the series

—+00

Qom(t) = Y arp(2"t—k) (4)

k=—00
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where the coefficients ay, are given by aj = <Q9(t), ¢~>(2mt — k:)> with ¢ being a
function biorthogonal to ¢. Then we have

ap = <]w|]39(w), 2_mg(2_mw)e_i“’k2_m>

1
2

+o0o
2—2m —~ . —m = - —m
=, / z:Pg(71277”)qﬁ(Q*mw)e*W”2 ]\w[¢(2mw)e““k2 dw
T
g—2m X A .
= O X B [ el (5)
T
n=-00 —2mg

where we used the expansion given in (3) and the fact that Qg(w) = |w|Pp(w)

and supp &5 = [—m,7]. If we denote the last integral which appears in (6) by
g(n, k), ie.,
2Mm
N -
—2mq

we obtain for each k

1
=, nz_:oo Py(n27™)g(n, k)

The weight coefficients g(n, k) can be easily found in a closed form:

72, n+k=0
g(n, k) = 0, n + k is even. (6)

— (nfk)g, n+ k is odd.

Then the approximation (4) becomes

Qom(t) = 2k 22, Lo(n27™)g(n, k)] (2™t — k) (7)
= 2 Fo(n27")bn(t)

where the weight functions b, (t) are given by

—+00

bat) = 3 gln, k)™t — k) (8)

k=—o00

with g(n, k) as in (6). We switched the order of summation in (7) in order to
make the algorithm “implementation friendly,” i.e., to be able to begin recon-
struction as soon as the first set of projection data becomes available. Note that
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the values of b, are independent of the angle # and can be precomputed and
stored before the procedure begins. Also, the sum in (8) is, in fact, a finite one as
¢(t) essentially becomes zero outside the interval of concentration [—1,1]. Since
all points t;, = 2™t — k at which ¢ needs to be evaluated in (8) are integers, the
procedure introduced in a previous subsection can be successfully used.

To recover f(x,y) we recall that f(z,y) = 71r [ Q(zcosf + ysinf)df. There-
0

fore, we obtain the following approximation to the image function:

+oo 7
1 —m .
flz,y) = . E /Pg(n2 )b (z cos § + ysin6)db. 9)
n=-—00

Since in practice the projection function Py(¢) has compact support, the sum in
(9) becomes a finite one. Its discrete version used for practical implementation
is given by

K N
1
f(z,y) =~ o ;; Z Py, (n27™)by(x cos b; + ysinb;), (10)

i=1 n=1

where N is the number of sample points in each projection, K is the number
of views, and 6; are the angles at which projections have been measured, i =
1,..., K. Some sort of interpolation is required as some of the values of x cos 6;+
ysin f; may not coinside with the values of ¢ in (8).

C. Convergence Theorems

We now present some convergence results. We assume they hold under cer-
tain smoothness properties of the projection function.

Theorem 1 Let Py(t) have compact support and Py(t) € H* for some a >

with ||Py(t)||, < C for some constant C. Then Py,,(t) — Py(t) uniformly for
0 € [0,27] and teR as m — oo.

The proof is given in the appendix.

The hypothesis is realistic since real projection data would be expected to be
smooth, i.e., Py(t) should be in H® for a > ;. This follows since discontinuities
in f(z,y) would not generally lead to discontinuities in Py(t) because many
averaging operations are involved. Real data should be bandlimited since no
real process allows arbitrarily large frequencies, but it is frequently corrupted
by wideband noise.

Similar results can be obtained for the image function itself approximated
by the series (9), but require a greater degree of smoothness. Then under the
same hypothesis but with o > g we can show the approximation in (9) converges
uniformly to f(z,y) as m — oo for (z,y) € R2.
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Figure 2: The actual Shepp-Logan head phantom.

4 Computer Implementation

Our reconstruction algorithm was tested on the well-known Shepp—Logan “head
phantom” [9] which is a standard test for the CT algorithms. This image model
consists of ten ellipses with various gray levels inside them (Figure 2). As for the
regularity of this test image, it has been shown in [14] that it is in the Sobolev
space H® for any o < 1.

We generate the filtered projection @y based on (7) at each of N evenly
spaced points jT in the interval [—1,1] where T is a sampling interval, T = 27",
and j = —g yeens ];7 — 1. The weight coefficients b,, as given by (8) are assumed
to have been precomputed. We also would like to point to the direct relationship
between the scale of interest m and the number N of sampling points. Since
the distance T' between samples can also be calculated as T' = 2, we obtain
N =2mt1 ie., m = [logaN] — 1. As soon as the values of Qy,(jT") have been
obtained, they are used in (10) to reconstruct the object function f(z,y).

The Shepp-Logan head image was reconstructed at two diffrent scales, m = 6
and m = 7. The latter was the finest scale possible from the given data with
K = 256 angles and N = 256 samples points in each projection (with 256 x 256
pixels in the image). In the case of the scale m = 6, the number of angles,
sampling points and pixels was halved. We used linear interpolation for the
whole sum in (10). The computer program was written in C++. Figures 3 and
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Figure 3: The reconstructed Shepp-Logan image at scale m=6.

4 contain the reconstructed image at the two different scales. We should like
to point out that the apparent ripples in Figure 3 are probably less a result of
Gibbs’ phenomenon than the effect of interpolation.

5 Conclusions

We have introduced an algorithm based on the PS wavelets which avoids in-
tegration and uses only precomputed coefficients in the filtering step. It uses
a PS wavelet series approximation which reduces excessive oscillations in the
reconstructed image. It also uses a new method of numerically calculating the
needed values of the PS wavelets which further reduces the computational re-
quirements. This, coupled with the fact that the complexity is no greater than
that of traditional methods, should give our algotithm an advantage over them.

The quality of the image in the test cases is as good or better than other
methods and differs from the original mainly in that the edges are slightly
blurred. Such blurring is expected in any method based on continuous func-
tions, but is more desirable than the ripple artifacts associated with Gibbs’
phenomenon that often occur. In the two reconstructed images the one at the
coarser scale (m = 6) is considerably more blurred than the other and shows
the effect of linear interpolartion. This latter effect is largely missing at the
finer scale which leads us to conclude that the type of interpolation is not as
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Figure 4: The reconstructed Shepp-Logan image at scale m=7.

important in this method as in others. More work needs to be done to deter-
mine if this advantage holds for real data sets arising in CT. The authors are
currently attempting to do this and at the same time fine tune the method by
incorporating other interpolation methods.

6 Appendix

Proof of Theorem 1 We first estimate the difference between the projection
function Py(t) and its approximating series

+00
Pym(t)= > Po(n2 ™)$(2"t —n)
n=—oo
in the frequency domain. We have
~ +o0 ~ o
Ppm(w) = Y 27MPy(n2 ™) p(w2 M) wn2

n=—oo

= 5 Byw+ 2t k) g2 mw)

k=—o00
by the Poisson summation formula. Thus, E = ﬁg’m — ﬁg has the form F(w) =

~ ~ ~ ~ +oo
Py(w)[p(27mw—1]4+>" Py(w+2mT17k)p(27™w). Hence, the integral [ |F(w)|dw
k70 e
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satisfies
—+oco

T 1B = [ |Pam(e) - Paw)ldo <

+oo R -
_f | Po(w)||p(27"w) — 1|dw + (11)
400 __ .
J o2 ™w) 3 [Py(w + 27k2™)|dw.
—00 k#0

The second integral in (11), since ¢ has support in [—m, 7] and is dominated by
¢(0) = 1, satisfies

ij P27 "w) (Z | Py(w + QTerM)O dw <

—m2m k#0

—m2™ +oo

[ 1Pw)ldw + | |Py(w)|dw.
—00 m2m

The first integral in (11) is, because of the continuity of 5 near the origin,
dominated by

—2m§ 2m6 ~ SN
J 2ABy)ldo + [ |By()l|f(2"w) — 1/d0 + [ 2/Pp(w)|de.
—00 —2m§ 2m§

Here ¢ is the number such that |QA5(2_mw) — 1| < e for |27™w| < § and we have
used the fact that ||¢||ooc = 1. The middle integral here is dominated by

2me oo __ (w2+1)0‘/2
—_om — 00

- 1/2
5]|P9|a{ i (wZil)adw} .

Thus, in the limit as m — oo, each of the terms dominating the two integrals
in (11) converges to zero except the last one which is a multiple of . This limit
is arbitrarily small and hence the conclusion of the theorem follows.
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