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The Potential of Remote
Sensing for Neutral
Atmospheric Density
Estimation in a Data
Assimilation System
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Abstract

New data assimilation techniques have improved time-dependent estimates of the neutral
atmospheric density, making it possible to better estimate the drag perturbation on low-
Earth-orbiting satellites. This study looks at the potential for using satellite remote sensing
from space as an effective density observation source in a data assimilation system. Changes
in the neutral density can occur on a minute-to-minute basis, particularly during geomag-
netic storms. Although coverage from only a few (two) satellites may be limited, remote
sensing provides observations with a high temporal and spatial resolution. To quantify the
effectiveness of the observing platform, a simulated “truth” neutral atmosphere is created
using a physical model. This “truth” neutral atmosphere is sampled according to the me-
chanics of the remote sensing platform, and the results are statistically evaluated. With
the resolution afforded by remote sensing, results show that two remote sensing satellites
provide a stable solution of degree 4 (5 X 5) every ten minutes. Although coverage from
two remote sensing satellites is limited, the coverage is sufficient to provide a pattern cor-
relation coefficient consistently higher than 0.92.

Introduction
Background

After the oblateness of the Earth, atmospheric drag is the next most significant
natural perturbation force affecting satellite trajectories for low-Earth-orbiting
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(LEO) (<100 km) satellites [1]. Furthermore, this region, the neutral atmosphere,
also called the thermosphere (95 to 500 km altitude), is constantly changing, and as
a result, the estimation of the drag perturbation has a large uncertainty. The neutral
atmospheric density affects a satellite’s trajectory through the generalized drag
force equation described as

1
Airag = _?CDApvrellvfell/m M

where aq is the perturbation acceleration vector due to drag, Cp is the dimension-
less value for the drag coefficient and dependent on the shape of the satellite, A is
the satellite’s cross-sectional area, and m is the mass of the satellite. The vector, vy,
represents the satellite’s velocity vector relative to the ambient neutral atmosphere,
and p is the total mass density of the ambient neutral atmosphere. Equation (1) is a
general representation a much more complicated process of translating the neutral
atmospheric density into force on the spacecraft. Equation (1) can be further com-
plicated by a number of sources including: unmodeled neutral winds, the atomic
and molecular constituents and ionization of the atmosphere, heat dissipation,
spacecraft shape, spacecraft tumbling, and others [2, 3, 4, 5, 6]. Although difficul-
ties can arise in estimating any of the terms in the drag force equation (1), the den-
sity term, p, consistently has among the largest uncertainties. Any improvement in
estimating of p would significantly improve the drag estimate and consequently
improve one’s estimate of the other orbital parameters, as tests show [7, 8].

To improve density estimates, several decades of research have focused on mod-
eling the neutral atmospheric density. Empirical, or static models, of the upper at-
mosphere, like the Jacchia 70 [9], Jacchia 77 [10], the Mass Spectrometer and
Incoherent Scatter Extension (MSIS-E-90) [11, 12, 13] and the Naval Research
Laboratory MSIS (NRLMSIS-00) [14] models, are convenient ways to represent
the neutral atmospheric density. These models provide the most-likely conditions
of the neutral atmosphere, statistically calculated from a database of satellite,
rocket, and ground observations over many years. Because the empirical model is
a statistical representation of the climate over a long period of time (years, months),
they may not appropriately represent unusual, short-term features (hours, minutes)
in the upper atmosphere. These hourly or minute-to-minute features in the
thermosphere become even more pronounced during geomagnetic storms. Past
studies indicate errors in empirical models of 8 to 24% [15, 16]. Whereas other,
more-recent studies indicate that errors for MSIS-90 may reach 30 to 50%, even
during low solar activity [17], and NRLMSIS-00 can reach 30% at 200 km altitude
and 70% at 600 km altitude [18], as some examples.

To account for this unmodeled variability in the empirical model, data assimila-
tion techniques have been applied in recent years to correct these models using cur-
rent observations [19, 20]. Data assimilation systems implement a solution method,
which is oftentimes an inverse method like the least squares solution or a variation
thereof [21]. In summary, the least squares method calculates a solution for the state
based on the minimization of the sum of squares of the observation errors [22, 23,
24]. An example of one such system, which employs the least squares method, is
the High Accuracy Satellite Drag Model (HASDM) [8, 19, 20, 25, 26], which
provides an improved specification of the neutral density with errors typically
below 7 to 8% [27].
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In data assimilation systems, one primary source of neutral density observations
comes from the space surveillance of LEO satellites. The surveillance of LEO satel-
lites has been in use for several decades and is a well-documented and validated ob-
servation source for the neutral density, whose summary history can be found in
Vallado [1]. HASDM, for example, assembles data from a large (60+ satellites)
constellation of LEO satellites using satellite surveillance with plans to further in-
crease the number of satellites [28]. Density is obtained by observing perturbations
in these LEO satellites’ orbital parameters. If the ballistic coefficient is estimated
along with the other orbital parameters, changes in the estimated ballistic coeffi-
cient can indicate changes in the neutral density [19].

Observing a constellation of LEO satellites allows one to build a global, time-
dependent map of the neutral density. However, the difficulty in using satellite sur-
veillance arises from having to observe the satellite constellation over long periods,
usually over many hours, to extract the changes in the ballistic coefficient estimate
from the observation noise. In a validation study for the Dynamic Calibration
Atmosphere (DCA) Phase I of HASDM [21], results indicate that only slight im-
provements could be obtained past a spherical harmonic resolution of degree 1
(2 X 2), with insignificant improvement beyond degree 2 (3 X 3) due to the long
observation period requirement. To obtain this density resolution, according to
Casali and Barker [21], the O-degree correction to the exospheric temperature is
solved every three hours. The higher-degree exospheric temperature coefficients
are solved every 18 hours. Additionally, a 0-degree inflection temperature is solved
for every 18 hours. A three-hour segmentation was sufficient in conjunction with an
a priori uncertainty of 3% (RMSE), as is the best level of drag modeling thought
to be statistically obtainable by DCA.

Research Objectives

To overcome the effects of a long observation period in space surveillance, this
research examines the potential of other observation sources, which have a higher
temporal resolution. Even though global coverage is reduced for two remote sens-
ing satellites as compared to the 60+ satellites in space surveillance, the higher
temporal resolution of remote sensing can help detect the minute-to-minute vari-
ability in the neutral atmospheric density.

This research seeks to answer the following two questions: (1) How well can
the higher temporal resolution of two remote sensing satellites resolve the hourly
and minute-to-minute variability? (2) Can the higher temporal resolution of only
two remote sensing satellites provide a stable solution at a higher resolution as
compared with the space surveillance? This research seeks to answer these ques-
tions according to the following procedure: a simulated thermosphere is created
using a physical model, the Coupled Ionosphere-Thermosphere Model (CTIM)
[29, 30, 31, 32], which is defined as the “truth” thermosphere. This truth thermo-
sphere simulates 24 hours of quiet, followed by 12 hours of geomagnetic storm
conditions, followed by another 12 hours of quiet to respectively examine the quiet,
storm, and storm-recovery capability of the system. The storm conditions will reach
an a, index of 300 during the 12-hour storm. This truth thermosphere will be
sampled using a satellite simulation algorithm [33] according to the orbital and
instrument mechanics of two remote sensing observing systems, both of which
are on two polar-orbiting satellites. Normalized random errors are added to the
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observations of both satellites to simulate measurement noise; details are described
is subsequent sections. These simulated observations are used to calculate the ther-
mospheric density via a least squares solution. This solution is compared with the
original truth thermospheric density. A root mean squared error (RMSE) and a pat-
tern correlation coefficient are calculated to quantify the solution accuracy.

The solution resolution is limited by the amount of information contained in the
observations. As one increases the resolution beyond this limit, numerical errors are
introduced, and the system is said to be ill-conditioned [34, 35]. As a result, there
is a maximum stable resolution that can be obtained for a given data set. When the
solution becomes ill-conditioned, the functional description of the neural atmos-
phere may contain errors, particularly for the higher order terms. The maximum
stable resolution is determined in this study by incrementally increasing the reso-
lution until a limit on the maximum RMSE and minimum pattern correlation coef-
ficients is found. The RMSE and pattern correlation coefficient results indicate that
the higher temporal resolution of the two remote sensing satellites allows a stable
solution, using the least squares method, up to degree 4 (5 X 5) every ten minutes.
This resolution is an improvement compared with 60+ space surveillance satellites
used in the DCA solution, which has a resolution of degree 2 (3 X 3) resolution
every 18 hours and degree 0 (1 X 1) every three hours.

It should be brought to the reader’s attention that several caveats exist concern-
ing the ideal operation of the remote sensing system. Although the errors sources
in space surveillance have been examined over several decades and are well-
documented, remote sensing of the neutral density is a comparatively new field. Re-
mote sensing error sources for the density/temperature are not yet well-understood
and are only in the initial stages of study and documentation [36]. The observation
errors in this study are assumed to be random, normalized, and uncorrelated in
time. Any unmodeled biases in the actual remote sensing system will increase the
errors indicated in this study. If the system errors in remote sensing can be de-
scribed and modeled by current and on-going studies, the RMSE and pattern cor-
relation coefficient values in this research can indicate the potential accuracy that
remote sensing can provide for neutral density estimation. If other observation pa-
rameters, like neutral winds, are included in future data assimilation systems, then
it is possible that the remote sensing accuracies can be further improved. Further-
more, the maximum stable resolution in the remote sensing solution should not be
significantly affected since it is dependent on the remote sensing data rate and cov-
erage, which are well-known. It is also expected that other observing systems with
high temporal resolution, like in situ satellites, will provide similar results com-
pared with remote sensing, and the results in this research can be used to support
the potential of in situ measurements as well.

Variability in the Thermosphere

Regardless of the observing platform, time-dependent neutral atmospheric den-
sity estimation faces a number of challenges. External processes drive most of the
variability in the upper atmospheric dynamics. During quiet times, the Sun slowly
heats the upper atmosphere by solar radiation in the extreme ultraviolet (EUV) fre-
quencies. EUV heating occurs on the sunlit side of Earth with the maximum heat-
ing occurring at the region nearest to the sub-solar point [37, 38].

Most of the hourly or minute-to-minute variability in the thermosphere arises
from magnetospheric sources imposed at high latitudes. During geomagnetic storm
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times, the nonlinear heating process becomes more complicated and even more
spatially and temporally variable. Geomagnetic storms occur when material,
ejected from the Sun by a coronal mass ejection or corotating stream, hits the
Earth’s magnetosphere. If the solar wind plasma has a southward magnetic field, it
creates an efficient coupling with the magnetosphere. Initially, plasma convection
increases and auroral particle precipitation expands to lower latitudes [38]. Besides
the increased heating rate from particle precipitation and from Joule dissipation, the
expanded convective electric field also redistributes the plasma [39, 40]. Substan-
tial thermospheric changes under these conditions can occur within minutes.

As stated earlier, empirical models have greater difficulty representing this
temporally and spatially varied structure due to their statistical representation of
the global neutral atmosphere structure. To describe the variability, the empirical
models must be corrected using observations with sufficiently high temporal and
spatial resolutions.

Simulating Variability in the Neutral Atmosphere

Unlike empirical models, physical models are adept at reproducing short-term,
small-scale variability, which is more representative of natural variations in the neu-
tral density and is often missing in empirical models. To simulate this variability in
the truth neutral atmosphere, the physical model, CTIM, is used. CTIM is a com-
bination of two independently developed physical models. The first part of CTIM
contains a global, nonlinear, time-dependent neutral atmospheric model developed
at University College London [29, 30]. The second part contains a mid- and high-
latitude ionospheric convection model that originated at Sheffield University [31].
The high latitude electric field [41] and auroral particle precipitation [42] are the
two main high latitude inputs for the ionospheric-thermospheric coupled model,
and these inputs determine the amount of Joule heating. The other main inputs are
the solar ultraviolet and extreme ultraviolet radiation, which provide the bulk of the
thermospheric heating and ionization.

CTIM was chosen to simulate the truth thermosphere since the code solves the non-
linear equations of momentum, energy, and continuity to provide a time-dependent
structure of the wind vector, temperature, and density in the neutral atmosphere. As
a result, the simulation from a physical model provides a more varied, smaller-
scale structure in comparison to the statistically averaged structure provided by
empirical models [43]. It is not expected that the physical model will reproduce
the exact conditions that occurred on the days simulated in this research. In fact,
it is expected that CTIM will have about the same error level in representing the
actual conditions for these days as the empirical model. However, CTIM can
simulate greater variability than the empirical model, and the amount of variability
is properly simulated in the truth thermosphere. This difference in structure be-
tween the empirical and physical model types resembles the expected differences
in variability between the empirical model and actual variations in the neutral at-
mosphere. Observing this simulated variability and trying to correct the smoother
empirical model test the data assimilation system’s ability to discern the variability
for the given the observation system.

Observing the Density Using Remote Sensing

As already stated, remote sensing instruments provide high temporal and spatial
resolution as compared with space surveillance. Like space surveillance, remote
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sensing observations may also be used in the batch least squares solution to esti-
mate the neutral density. One example of remote sensing measures the vertical
profile of ultraviolet airglow from different species. The vertical profiles can be
used to estimate species density which can also be used to infer temperature from
the scale height of the altitude distribution. This research focuses on two particular
spectrographic instruments: the Special Sensor Ultraviolet Limb Imager (SSULI)
[44], and the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) [45, 46,
47]. These particular instruments are chosen for this study since these or similar in-
struments are under consideration for deployment in the National Polar-Orbiting
Operational Environmental Satellite System (NPOESS). The SSULI and SSUSI
instruments were developed for the Defense Meteorological Satellite Program
(DMSP) Block 5D4 satellites. The DMSP Block 5D4 satellites maintain a near
polar, Sun synchronous orbit at an altitude of approximately 830 km.

SSUSI, developed by the Applied Physics Laboratory, APL, at Johns Hopkins
University and by Computational Physics, Inc., [45, 46, 47], is designed to mea-
sure numerous parameters of the upper atmosphere including the neutral species
densities and auroral effects by detecting far ultraviolet natural airglow radiation
from atoms, molecules, and ions in the upper atmosphere. The imager uses a scan-
ning mirror to infer number density profiles of the major species O, O,, and N, on
the limb and height integrated properties at the Earth’s disc. The Scanning Imaging
Spectrograph [45] device of the SSUSI instrument, builds a spectrographic image
by scanning across the satellite’s ground track, from limb-to-limb as shown in
Fig. 1.

During this scan, the scan mirror sweeps the field-of-view by rotating between
+72.8 degrees. The instrument receives a cross-track scan every 22 seconds. A
scan cycle consists of a limb viewing and an Earth viewing part. The limb viewing
occurs above the horizon from the maximum scan angle of £63.2 degrees from
nadir to the horizon *63.2 degrees from nadir. The Earth viewing occurs between
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FIG. 1. The Scanning Imaging Spectrograph Conducting a Horizon-to-Horizon Limb Scan.
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the limb scans or between *+63.2 degrees from nadir creating a field of view about
445 km. In a near-circular orbit at an altitude of about 830 km, the satellite moves
148 km for each 22-second scan. With a satellite at 830 km altitude, the maximum
height above the horizon is about 520 km if the maximum scan angle is
+72.8 degrees. It is assumed in this research that species’ density profiles are ob-
tained only on the limb portions of the scan.

SSULLI is an optical remote sensor developed by the Naval Research Lab [44].
Unlike the SSUSI instrument, the SSULI instrument only looks towards the Earth’s
limb to infer the species’ density profiles. SSULI obtains the vertical profiles by
viewing between tangent altitudes of approximately 50 to 750 km. As the SSULI
instrument scans along this altitude range, the extreme and far ultraviolet airglow
from atoms, molecules, and ions are recorded as a function of altitude.

The limb scanner faces in the opposite direction of the satellite flight path vec-
tor, as shown in Fig. 2. The field-of-view is 0.1 degrees in the vertical and 2.4 de-
grees in the horizontal direction. The entire scan covers 30 degrees in the vertical
by 2.4 degrees in the horizontal direction. The scan ranges from 10 to 40 degrees
below the satellite’s flight direction of and lasts five seconds with a scan every
ten seconds.

One should keep in mind that these instrument definitions are a generalization of
the more complicated process of converting the raw measurement of the ultra-
violet intensity to realistic values for the total neutral density. However, the focus
of this research is to emphasize the importance of instrument resolution as opposed
to raw data conversion techniques. The orbital and instrument scanning mechanics,
on the other hand, have not been generalized and simulate the observing platforms
according to their design.

DMSP satellites typically follow a Sun-synchronous orbit. The simulation in this
research uses two Sun-synchronous satellites, each carrying one SSULI and one
SSUSI instrument, which pass the ascending nodes at 0930 and 1330 local time
(LT). In the present study, it is assumed that the instrument provides an exospheric
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FIG. 2. The Special Sensor Ultraviolet Limb Imager Conducting a Limb Scan.
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temperature, which can be translated into density as a function of altitude through
an empirical model. A daytime fixed error of 15% is applied as measurement noise
via a random number generator. This representation of the error is approximately
two to three times higher than what is estimated by the instrument designers to
insure that the error standard deviation covers the possible range as a “worst-case”
scenario to test the data assimilation system. Otherwise, this error does not include
anomalous effects and is a summation of the average error from all of the instru-
ment’s components, effects external to the instrument, and various stages of the
data processing. In this research, the remote sensing observation rate is one obser-
vation every 0.1 seconds for both instruments, and each satellite carries one SSULI
and one SSUSI instrument. To resemble the capabilities of the current remote sens-
ing systems, measurements are simulated on the dayside only.

It is expected that remote sensing from only two remote sensing satellites will
have limited global coverage, i.e. all local times cannot be observed at a given in-
stant. As a result, rapidly changing conditions during geomagnetic storms may not
be observed, particularly as only dayside observations are available. The lack of
global coverage from only two remote sensing satellites is the reason that the spher-
ical harmonic resolution is limited to degree 4 (5 X 5).

Solution Method

The atmospheric density corrections using remote sensing data can be gener-
alized as a minimum variance estimation problem [24], which can be formulated
as follows:

Given:
Ve = HX: + &

where &, is the error on the observation, which is assumed to have a zero mean and
specified covariance, R.

Find: the linear, unbiased estimate, X, ata specified time, &, that has the minimum
variance. The state, X, contains the coefficients a;j, ¢;;, and s;; where i is the
degree and j is the order of the spherical harmonic as described in equation (2); y
denotes the measurement of the exospheric temperature, T(if, A), at a given latitude
and longitude from the remote sensor; H denotes the measurement-state relation-
ship; and Ry denotes the covariance matrix of observation errors.

The elements in X represent the coefficients of a series of spherical harmonics
representing the neutral atmospheric temperature or total density. The value for
the neutral temperature, 7, for example, at a specific latitude, i, and longitude, A,
expanded in spherical harmonics [48], may be written as

T(p, N) = ao + iai[Pi(Sin Y]+ i _j [P. ;(sin ¢)[{cij cos(jA) + s sin(jA)}
2

where ao, a;, ¢i;, and s;,; are the spherical harmonic coefficients, contained in the
state vector, X, to be estimated. In this paper, “degree m” means that all degree and
order coefficients up to m, as described in equation (2). P; and P;; are Legendre
polynomials such that
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Pi(sin ¢p) = 5w ———=[(sin ¢’ — 1]’

d
2’ ! d(sin ¢)’
and
d’P;
d(sin i)’

The spherical harmonic equations and the estimates of the associated coefficients
allow for a functional representation of the exospheric temperature at any point
on the globe. Although the structure of the neutral atmosphere is varied, it is also
naturally continuous, and therefore, implementing the continuous function using
the spherical harmonics is an appropriate representation. Once the global tempera-
ture is estimated, this estimate can be converted to density through an empirical
model. In the context of this paper, exospheric temperature and density are assumed
to be interchangeable.

To solve the minimum variance problem, a least squares solution is applied [22,
23, 24]. The least squares technique is used in this research, as opposed to Kalman
filters or variational methods, to follow currently operating data assimilation sys-
tems for the neutral density. As stated earlier, the least squares method calculates a
solution for the state based on the minimization of the sum of squares of the ob-
servation errors. The least squares solution is generalized for the problem presented
here as

Xk = (HkTRJ:IHk + pk—l)—l(H];l‘Rk—l[yk - y;] + Pk_l[Xk - X;]) + X; (3)

where y; represents the observation data, and yx contains the expected observations
based on the defined nominal state. The state vectors include the following: X, the
a priori, or best estimate of the state before the least squares calculation is per-
formed; X, the nominal state; and X, the new least squares estimate for the state
for a given batch of observations at a given epoch, k. The a priori state, X;, can
contain either the initial conditions, which are usually obtained from the defined
empirical model, or the current state estimate based on a previous batch of data. Asso-
ciated with the a priori state is the a priori error variance-covariance matrix, Py,
whose diagonals are an indicator of the amount of error variance in the state. The off-
diagonal terms in P indicate the amount of covariance between any two elements
in X,. P, is initialized based on the expected amount of error in the nominal state.
The error variance-covariance matrix can be updated with each new batch of data as

Py = (H{R'H, + P! “)

Pij(sin ) = [1 — (sin )2 }2 ——

where Py is the new state error variance-covariance matrix based on the new state from
least squares result. After the new state, Xy, and its associated error variance-
covariance matrix, Py, are calculated, this state and associated error matrix replace
the a priori state, X, in equation (3) and the a priori state error variance-covariance
matrix, P, in equation (4). The least squares solution may be recalculated to
provide an improved solution. The solution can be further improved by iterating
this process. The least squares solution typically converges after two to four itera-
tions with no substantial improvement thereafter.

The least squares solution may ingest a batch of data over a given span of time
to estimate the state at a single specified epoch, k. The matrix and vector terms,
H/'Ri;'Hy and H{R; 'y, in equation (3) may be accumulated as
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HIR:'H = > H'R'H,
=1
and
HIR'[ye™ — yi] = 2 H'R [y — yi]
I=1

where H, is the observation-specific mapping matrix for the Ith observation, R; is
the Ith observation covariance matrix, yf® is an individual observation, and y; is the
empirically expected observation at time .

Associated with the observation vector, R, is the observation error covariance
matrix that contains an estimate of the uncertainty in yf™. R; is estimated before the
least squares method is applied. The diagonals of R; represent the error variance in
the observations defined by the instrument and observation system accuracy. The
off-diagonals in R; are assumed to be zero, meaning there are no correlations in
the observation errors.

If the amount of information required to describe a given solution resolution ex-
ceeds the amount of information available in the observations, a linear dependence
will occur in the system of equations to be solved, and the system is said to be ill-
conditioned [34, 35]. In an ill-conditioned system, the matrix to be inverted in equa-
tion (3) is close to singular, i.e. one or more eigenvalues are close to zero, and the
inversion cannot be computed without introducing numerical errors. The inclusion
of the state error variance-covariance matrix, P, helps stabilize the inversion, but
in ill-conditioned systems, the solution is very sensitive to the choice for P, [49].
Providing an accurate estimate for P, may be difficult, particularly if P, is con-
stantly changing with the dynamic neutral atmosphere. As a result, there is a limi-
tation on the achievable resolution based on the amount of information contained
in the observations. The results in this research indicate that two remote sensing
satellites provide sufficient information to calculate a solution up to degree 4
(5 X 5) every ten minutes. Increasing the resolution further introduces numerical
errors, particularly in the higher order terms of equation (2), offsetting the benefits
of the increased resolution.

Evaluating the System Using Two Remote Sensing Satellites

For results analysis, the solutions are scored on how well they reproduce the de-
fined truth thermosphere through a standard root mean square error, RMSE, and
pattern correlation calculation, y. The RMSE between the truth file and the least
squares estimated state is calculated as

N
RMSE = 4[> (pn — pS™)?/N )
n=1

where p, is the estimated density at a particular grid point, n, and pS™ is the cor-
responding nth grid point of the CTIM-defined truth density. N is the total number
of grid points.

The RMSE calculation is a useful tool for calculating the overall error in the es-
timate, but the RMSE provides no insight as to how well the solution pattern
matches the true structure. The accuracy of the solution’s structure can be quanti-
fied through the calculation of a pattern correlation coefficient [50]. This pattern
correlation coefficient, y, may be calculated as
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y = cov(p, p™)/Vvar(p) - var(p™) (6)

where cov(p, p™) is the covariance between the estimated, §, and true, p°™, pat-

terns and is calculated as
cov(p, p™) = é[(ﬁn - a™)]/N
and the variance in the estimate as
var(p) = é,(ﬁ” — AP/N
and the variance in the truth state as
Var(pCTIM) — é(pSTIM _ ACTIM)Z/N

If the state estimate from the data assimilation system provides an accurate
representation of the true structural pattern, then a correlation coefficient calcu-
lation will have a value close to but not exceeding one. Having a correlation co-
efficient of exactly one represents an exact correlation. If the estimated structure
does not match the truth, then a correlation coefficient near zero will result. Ideally,
one would wish to obtain a pattern correlation coefficient that is as close to one
as possible.

Hlustrative Example

A two-day period, at spring equinox, is simulated to provide the test case. An
equinox scenario provides a thermosphere where roughly equal heating of the
Southern and Northern Hemispheres exists. The test case simulates a 24-hour
period of low geomagnetic activity with an energy input of about 10 GW, which is
approximately equal to an a, index of about 7. After the 24-hour quiet period, a
12-hour geomagnetic storm with a power input of about 260 GW follows, equiva-
lent to an a, index of approximately 300. After this 12-hour storm period, another
12-hour quiet time period, with an a, of 7, follows. The total simulation period
covers 48 hours. The results, during the quiet period from O to 24 hours, demon-
strate the quiet-time accuracy of the least squares solution during undisturbed con-
ditions. At 24 hours, the geomagnetic storm commences. During the 12-hour storm
period, from hour 24 to 36, the data assimilation system must then react to rapidly
changing conditions, increased winds, density variations, etc. The final 12 hours of
quiet, from hour 36 to 48, demonstrate the recovery characteristics of the least
squares solution, during which the composition is still changing as it recovers from
the storm to quiet conditions.

The remote sensing observing system considers a combination of two Sun-
synchronous satellites, with 09:30 and 13:30 LT crossings. Both SSULI and SSUSI
instruments are simulated to take one measurement every 0.07 seconds, where
SSUSI is viewing only on the limb. The SSUSI instrument is simulated to take ob-
servations only on the limb. The measurement error of the temperature is assumed
to have a standard deviation roughly 15% for both SSULI and SSUSI instruments
in daylight, and it is assumed that no measurements are available on the night side.
The observation platform is summarized in Table 1.
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TABLE 1. Summary of the Remote Sensing System

Standard
Deviation of
Noise Added
Number of | Observation | Observation Inferred Observation to each
Solution Type | Satellites Source Parameter | Observation Rate Observation
remote sensing 2 Sun- timely UV airglow | temperature |1 measurement/ 15%
(empirical | synchronous | observations | intensity | from which | 0.07 seconds
model satellites — from (dayside density can

corrected using| 09:30 and | 1 SSULI and only) be obtained
remote sensing| 13:30 LT 1 SSUSI

via a least crossings instrument
squares on each
solution) satellite
RMS Errors Results

To quantify the average accuracy of the data assimilation system, the RMSE over
the entire globe is computed, according to equation (5). The RMSE values for
various resolutions for the spherical harmonic representation are shown in Fig. 3.
The figure demonstrates that accuracy improves with increasing resolution from
degree 0 (1 X 1) to 4 (5 X 5). No significant improvements are observed with
increasing resolution beyond degree 4. For degree 5 and higher, numerical errors
from the ill-conditioning offset any benefits from the increased resolution.

The degree O result is simply a global correction to the empirical model. In other
words, the entire density structure estimated by the empirical model is adjusted uni-
formly. The large variations in the RMSE for degree 0 for all phases indicate an in-
ability to capture the overall global structure. The storm and recovery between 24
and 42 hours increase in RMSE indicates the inability to capture the storm and re-
covery conditions at this low resolution.

The degree 2 case contains corrections to the structure of the empirical model
based on a 3 X 3 grid. Degree 2 matches the maximum stable resolution obtained
by Casali and Barker for the 60-satellite space surveillance study [21]. The degree 2
case in Fig. 3 shows an overall improvement in the average RMSE between the
quiet, storm, and recovery phases as compared to degree 0, indicating an improved
ability to distinguish the overall global structure. The higher degree 2 resolution
shows improvement in capturing the storm and recovery effects as the RMSE dur-
ing this period between 24 and 42 hours is now reduced.

The RMSE for the degree 4 case (5 X 5) in Fig. 3 shows further improvement in
the quiet, storm, and recovery solution accuracy. Although the RMSE increases
during the storm for degree 4, the comparatively lower RMSE during all phases in-
dicates improved overall accuracy, including storm and recovery. The influence of
the storm becomes apparent at the storm’s end (hour 36) in comparison with the
quiet-time RMSE. The RMSE during the storm, between hours 24 and 36, in-
creases slightly as the thermosphere becomes increasingly disturbed as the storm
progresses. During the storm, the increase in RMSE illustrates the limitation of
two-satellite remote sensing coverage when trying to capture the rapidly changing
storm-time structure. In other words, storm-induced changes are occurring in the
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FIG.3. Time-Dependent RMS Errors in Temperature for the Remote Sensing Simulation Using a Two
Sun-Synchronous Satellites at 09:30 and 13:30 LT Crossing for Varying Spherical Harmonic Resolutions.

unobserved regions. Overall, however, the two remote sensing satellites still provide
enough information to provide a stable degree 4 resolution and provide an im-
provement over the degree 2 case for all periods, including the storm’s peak.
Figure 4 is provided to help visualize the truth thermosphere (top panel), the
resolution of the degree 4 result (middle), and absolute difference (bottom) between
the truth and the degree 4 result. The top panel shows the exospheric temperature
in Kelvin for the truth thermosphere at the storm’s end (hour 36). The top panel
illustrates the auroral heating at the end of the 12-hour storm, indicated by the
large, red (high temperature) regions at high latitudes. The middle panel shows the
degree 4 least squares solution for the two-satellite remote sensing case, also at
storm’s end. The solution in the middle panel appears “smooth” because of the ill-
conditioning limitation in the resolution. The least squares solution in the middle
panel does, however, resemble the general structure of the top panel with solar heat-
ing on the dayside (between 130 and 310 degrees longitude) and heating due to the
storm at higher latitudes, but much of the finer structure is missing. The bottom
panel shows the absolute difference between the truth top panel and the remote
sensing solution middle panel. Red areas in the bottom panel indicate regions of
high error, and blue areas indicated regions of low error. Red areas particularly at
the higher latitudes are shown in the bottom panel of Fig. 4 indicating increased
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FIG. 4. Exospheric Temperature by Remote Sensing Using Two Sun-Synchronous Satellites at 09:30 and
13:30 LT Crossing for Degree 4 (5 X 5) Spherical Harmonic Resolution at Equinox at Hour 36.

errors in these regions due to limited coverage and the inability to observe all of
the storm-induced changes. The bottom panel of Fig. 4 shows the largest error on the
night side since the remote sensing satellites are assumed to take no observations
on the night side. Some dayside errors still exist but are smaller in comparison.

Correlation Patterns Results

Although the RMS error calculations provide a way of estimating average global
accuracy, the correlation pattern coefficient, y, equation (6), provides insight into
how well the data assimilation solution structurally represents the truth thermo-
sphere. Pattern correlation coefficient results are shown in Fig. 5 for varying spher-
ical harmonic resolution.

Like the RMSE calculations in Fig. 3, the pattern correlation coefficient calcula-
tions in Fig. 5 also show improvements in accuracy for increasing resolution. A
maximum resolution, again, is reached at degree 4 (5 X 5), with no significant im-
provement for higher degrees as a result of ill-conditioning.

The degree 0 (1 X 1) and 2 (3 X 3) results show significantly varying pattern
correlation coefficients during the quiet, storm, and recovery phases. The degree 0
and 2 resolutions appear almost random in Fig. 5. These variations can be attri-
buted to the inability of this resolution to represent the global structural patterns.
Degree 2 demonstrates some ability to distinguish differences between the quiet,
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FIG. 5. Time-Dependent Pattern Correlation Coefficient for the Remote Sensing Simulation for Varying
Spherical Harmonic Resolutions.

storm, and recovery phases. For degree 2, the pattern correlation coefficient does
decrease during the storm period and increases again during recovery, although the
correlation coefficient fluctuates significantly with time. The seemingly random vari-
ations for degree 0, on the other hand, demonstrate an almost complete inability to
distinguish between the quiet and storm density/temperature structural patterns.

Increasing the resolution to degree 4 appears to improve the structural represen-
tation in the solution as the variation in the correlation with time is reduced. The
decrease in the correlation at the storm’s end is distinct, although the correlation ap-
pears to vary during the course of the storm as well as during quiet times. The vari-
ations in the degree 4 resolution can be attributed to the limited global coverage
provided by two remote sensing satellites. As stated earlier, two satellites cannot
observe the entire globe at any given time, and storm-induced changes in unob-
served regions will lead to poorer pattern correlation coefficients in specifying the
global structure.

Although limitations exist in the remote sensing system, two remote sensing
satellites do indicate a high overall pattern correlation coefficient with values con-
sistently above 0.92. The pattern correlation coefficient is typically less affected by
instrument errors, as compared to RMS, since it more indicative of the amount of
instrument and satellite coverage, which can be accurately determined and should
closely match actual instrument-satellite systems.
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Conclusions

This research provides an introductory examination into the usefulness of remote
sensing for global neutral density estimation in a data assimilation system. Results
presented herein provide a preliminary measure for the potential of remote sensing
for its use in discerning the small-scale, short-term neutral density structure. Results
show that remote sensing may be better adept at capturing the small-scale, short-
term density structure due to its high temporal resolution as compared with space
surveillance. This research comes to this conclusion based on the ability of remote
sensing to obtain a higher stable solution through the data assimilation system as
compared with space surveillance. The effects of ill-conditioning in the solution are
reduced due to the high temporal resolution of remote sensing, and ultimately, a
higher temporal and spatial resolution can be achieved in the final estimate.

Using two dayside-only remote sensing satellites with SSULI and SSUSI-
type instruments demonstrates that the neutral density can be specified with a
stable solution up to and including a spherical harmonic resolution of degree 4
(5 X 5) every ten minutes. No significant improvement in the RMSE or pattern cor-
relation coefficient is observed after degree 4. This result indicates that remote
sensing can provide a higher degree of resolution as compared with space sur-
veillance systems, which have a lower degree 2 (3 X 3) maximum resolution every
18 hours with a degree-0 (1 X 1) correction every three hours due to the longer ob-
servation period required. Although coverage from two remote sensing satellites is
limited, the coverage is sufficient to provide a pattern correlation coefficient con-
sistently higher than 0.92.

Although remote sensing indicates a higher stable resolution, it is not possible,
in this research, to know the quality of this resolution. RMSE and pattern correla-
tion coefficients are calculated in this research to provide some guidance in the over-
all accuracy of the density estimates, but these results pertain to a simulated ther-
mosphere with simulated instruments. This research assumes ideal observation
conditions, i.e. no data loss, normalized errors, no unmodeled biases, no time-
correlations, etc. To make a proper comparison with space surveillance from an ac-
curacy point-of-view, while not considering resolution alone, a more rigorous study
is required, most likely with actual data. However, at a minimum, these results provide
some baseline for analyzing remote sensing systems and future observing sources.
These results therefore indicate the potential usefulness for remote sensing as ad-
ditional observation source in the continual expansion and development of current
data assimilation systems. The results presented here also support the use of other
observation sources, like in situ observations, that provide data with a high tempo-
ral and spatial resolution.
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