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Low Energy Interplanetary
Transfers Exploiting Invariant
Manifolds of the Restricted
Three-Body Problem’

Francesco Topputo,” Massimiliano Vasile,’ and Franco Bernelli-Zazzera*

Abstract

In this paper, a technique for the analysis and the design of low-energy interplanetary
transfers, exploiting the invariant manifolds of the restricted three-body problem, is pre-
sented. This approach decomposes the full four-body problem describing the dynamics of
an interplanetary transfer between two planets, in two three-body problems each one having
the Sun and one of the planets as primaries; then the transit orbits associated to the invari-
ant manifolds of the Lyapunov orbits are generated for each Sun-planet system and linked
by means of a Lambert’s arc defined in an intermediate heliocentric two-body system.

The search for optimal transit orbits is performed by means of a dynamical Poincaré sec-
tion of the manifolds. A merit function, defined on the Poincaré section, is used to optimally
generate a transfer trajectory given the two sections of the manifolds. Due to the high mul-
timodality of the resulting optimization problem, an evolutionary algorithm is used to find
a first guess solution which is then refined, in a further step, using a gradient method. In this
way all the parameters influencing the transfer are optimized by blending together dynami-
cal system theory and optimization techniques.

The proposed patched conic-manifold method exploits the gravitational attractions of the
two planets in order to change the two-body enérgy level of the spacecraft and to perform a
ballistic capture and a ballistic repulsion. The effectiveness of this approach is demonstrated
by a set of solutions found for transfers from Earth to Venus and to Mars.

Introduction

A class of future interplanetary missions would require the maximization of the
payload mass without any particular restriction on the transfer time. For instance,
the construction of a permanent base on Mars will require many preparatory mis-
sions aimed at delivering experiments and robotic devices on the planet. Moreover,
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a manned journey to Mars could involve several cargo missions to carry the facili-
ties necessary to allow human survival in hostile conditions. Such missions could
be carried out by following low energy interplanetary trajectories through the li-
bration points. On the other hand, as recently demonstrated by the designers of the
Bepi Colombo mission [1], a gravitational capture can be used to avoid a single
point failure of a classical chemical orbit insertion burn typical of a hyperbolic ap-
proach. These goals can be achieved all together by extending the classical two-
body model used to define the interplanetary transfer trajectories.

When an interplanetary trajectory is designed by the patching conic technique,
indeed, several two-body problems are solved at a time and different conic arcs are
linked together in order to define the whole path. By this technique the transfer
problem can be formulated analytically and this description fits well with the fur-
ther optimization processes. If the problem is well-posed and the solution exists, a
transfer that minimizes a certain function, usually the total cost (Av), in order to
maximize the payload mass or to reduce the launch mass, can be found. The re-
sulting trajectory, due to the discontinuities involved with its definition, is intrinsi-
cally forced to high energy levels making the patched-conic path a good first guess
solution in the further refinement processes.

If a low energy level is required, as for the ballistic capture, the effects of more
than one gravitational attraction acting on the spacecraft can be appreciated. Low
energy trajectories exploiting such a feature have been proven to provide a reduced
Av cost [2]. However, within an n-body problem, the definition of the orbits is not
a trivial task since the integrability of the system is lost and the analyticity of the
solution no longer exists. In particular, the conservation of the angular momentum
vanishes and so the orbital parameters, useful for the description of the two-body
motion, are no longer defined. Moreover, even if n-body problems are governed by
Newtonian dynamics, they turn out to be chaotic in nature and make trajectory de-
sign a challenging task.

The easiest extension of the two-body model is represented by the circular re-
stricted three-body problem (CR3BP). This problem has only one integral of mo-
tion (the Jacobi constant) meaning that the lost information has to be replaced using
the dynamical knowledge of the phase space. Hence, the equilibrium points L, and
L., the periodic orbits around them and the invariant manifolds associated both to
the libration points and to the periodic orbits should be used as dynamical “tools”
in order to assure preliminary information to the design.

In the past, much attention has been paid to the description of the restricted three-
body problem (R3BP) dynamics, especially in the neighborhood of the equilibrium
points. Llibre et al. [3] analyzed the behavior of the invariant manifolds associated
to the periodic orbits around L,. They established the existence of separatrices for
the states of motion demonstrating the relevance of the dynamical system theory for
qualitative analyses. The same theory was used by Howell et al. [4] to formulate a
general method for the trajectory design of libration point missions in the Sun-
Earth system. This technique is based on the injection of the spacecraft on the sta-
ble manifold associated to the final periodic orbit around L; or L,.

More recently, the works of Koon et al. [5—7] evidenced the importance of the
invariant manifolds associated with the periodic orbits around libration points.
These tubes, due to their property described in Llibre et al., separate different or-
bits in the phase space: those transiting through the forbidden region and those
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remaining forever in the exterior or in the regions around the two primaries. Hence,
if an intersection between the manifolds of two different systems occurs in the con-
figuration space, a Av maneuver performs the intersection in the whole phase space
and a low energy transfer between two bodies could be accomplished with the
coupled three-body problems approximation. This invariant manifolds approach al-
lowed to explain the dynamics behind the Weak Stability Boundary (WSB) trans-
fers to the Moon [2, 6] and led to the formulation of a general technique to obtain
low energy transfers in the solar system [7]. The invariant manifolds technique rep-
resents a smart solution to overcome the difficulty of designing transfers in the
four-body problem but it requires an intersection of the manifolds in the configura-
tion space for the definition of the final trajectory. This makes such a method only
suitable for transfers, as between two outer planets or two moons around a giant
planet, where the physical constants and the orbital parameters allow the required
intersection. Unfortunately, such interplanetary transfers (e.g., Jupiter-Saturn) entail
very long times of flight making these solutions of questionable practical use [5].

The present study deals with the possibility to further develop the invariant
manifolds technique in order to design interplanetary transfers among inner planets
even if an intersection between the manifolds does not occur. Venus, Mars, and
Earth have been considered since Mercury, due to the high value of its orbital ec-
centricity, does not match the hypothesis of the CR3BP. Analyzing the profile of the
two-body energy associated to the manifolds of the points, a hypothesis has been
formulated on the conservation, after a finite period, of such two-body energy.
Hence, an additional two-body problem has been added to the two R3BPs and
the non-intersecting manifolds have been linked by using an intermediate conic or
thrust arc. The full four-body model is divided into a first three-body problem
(Sun-Earth-spacecraft), an intermediate two-body problem (Sun-spacecraft) and a
final three-body problem (Sun-target planet-spacecraft). The proposed patching
conic-manifolds method exploits the two gravitational attractions of the planets to
change the energy level of the spacecraft and to perform a ballistic capture and a
ballistic repulsion.

A computational algorithm is presented to design such transfers: first, a merit
function is associated to the Poincaré sections of the manifolds, with the surface of
section that is free to move to find a suitable configuration of the system; then, an
optimization step minimizes the total cost for the transfer between two circular
orbits, one around the Earth and the other around the target planet. The solutions
found show that cheaper transfers, if compared to the Hohmann solutions linking
the same departure and arrival orbits, could be accomplished with the developed
technique. Since the results depend on the mass parameter, characterizing the R3BP
considered, a preliminary description of such a model is given.

Dynamics of the R3IBP
Equations of Motion

The equations describing the planar motion of a particle (here called spacecraft)
under the gravitational attractions of two primaries (here called Sun and planet) are
written in a synodic system. This rotating system has the origin in the Sun-planet
center of mass and the x-axis defined by the Sun-planet line with the planet on the
positive direction. Normalizing the distance between the primaries to one, their
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angular velocity to one (the period is equal to 277), indicating with mp the mass of
the planet and ms the mass of the Sun and introducing the mass parameter of the
problem as

mp

p=——t— M

m5+mp

the equations of motion can be written in the second order Lagrangian form as [8]

¥—2y=Q,
y+2x =1, 2
where the subscripts denote the partial derivatives of
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with respect to the coordinates of the spacecraft (x, y). The two radial distances in
equation (3) are

rn=Vx+ w?+y
=V -1+ p?+y> “

The system has a first integral of motion, called the Jacobi integral, which is
given by

Clx,y, %, ) = 2Qx, y) — (3* +y?) (5)

and represents a three-dimensional manifold for the states of the problem within the
four-dimensional phase space. Once a set of initial conditions is given, the Jacobi
integral defines some forbidden and allowed regions bounded by zero velocity or
Hill’s curves. Such curves, defined by equation (5) with the kinetic term set to zero,
are useful for a qualitative analysis of the motion giving a rough depiction of the
energy level. The energy of the spacecraft and the Jacobi constant are related by

C=—-2E ©6)

which states that a high value of C is associated with a low energy of the spacecraft.
For a low value of the energy the spacecraft is bounded to orbit around one of the
two primaries. If the energy is increased the allowed regions of motion enlarge and
the spacecraft is free to leave one of the primaries (Fig. 1).

Libration Points

The fixed points of the system are defined as the singular points of the Jacobi
constant [8]

C.=C,=C,=C,=0 @)
which means, from equation (5), that
A,=Q,=x=y=0 )

and by equation (2) one can easily find that in such points the dynamics reduces to
¥i=3y=0 9
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FIG. 1. Libration Points and Hill’s Curves for Several Values of C with u = 0.1.

or both the velocities and the accelerations, relative to the synodic frame, are equal
to zero. Hence, the singular points of the 3-D submanifold C = constant are
equilibrium points for the dynamical system.

The five Lagrangian, or libration, points, shown in Fig. 1, represent also some
zero-dimensional manifolds in the phase space: three, called L;, L», and L3, are
collinear with the primaries; two, L4 and Ls, are at the vertex of two equilateral tri-
angles with the primaries. The linearized dynamics around the three collinear
points is always like the product of a saddle times a center, so these points are un-
stable; on the contrary, the stability of the triangular points depends on the mass
parameter of the system [8].

The present study deals with the possibility to obtain free arcs of transfer ex-
ploiting the nature of the libration points. This goal can be achieved only consider-
ing L; and L, since L3 has a “slow dynamics and a mild instability” [9] while
triangular points L4 and Ls are always stable for any Sun-planet-spacecraft prob-
lems in the solar system; therefore they are not suitable for the design of transfers
among planets. Furthermore low energy levels, or high values of the Jacobi con-
stant in equation (6), are associated with L, and L,. This means that already for low
energy levels, Hill’s curves open at L; and L, allowing the motion of the spacecraft
outside the forbidden regions.

While the position of the triangular points is trivial, the location of the collinear
points can be found by solving fifth-order polynomials derived by the equation (8).
These equations give the distance from the planet (smallest primary) to both L; and
L,. They can be solved numerically by Newton’s method using, for small values of
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W, the value (u/3)"? as a good starting point [10]. Table 1 shows the mass param-

eter and the dimensionless x-coordinate of L, and L, for the problems discussed in
this paper.

Although both L, and L, represent unstable equilibria, some infinitesimal Lya-
punov orbits, lying in the x-y plane, can be obtained by the linearized equations of
motion with initial conditions that cancel the stable and unstable parts. They can be
continued, under the whole dynamics, to finite size periodic orbits. Since these pe-
riodic solutions orbit an unstable equilibrium point, there are some invariant mani-
folds associated with them. These 2-D tubes have been employed in this study to
define the low energy trajectories that approach or depart from the planet.

Invariant Manifolds of the Lyapunov Orbits

The method used to compute the manifolds of the orbits is based on the linear
approximation of the flow mapping around a periodic orbit. Thus, once the mono-
dromy matrix M associated with a periodic orbit has been obtained, the manifolds
are computed by propagating the flow along the directions associated with the
Floquet multipliers of that orbit. In particular, since the monodromy matrix repre-
sents the first-order approximation for the mapping of X, into a point X on a generic
surface of section

X—Xo + M(x — X) (10)

its eigenvectors give the direction of the 1-D manifolds of the x, point. Hence, its asso-
ciated stable manifold can be obtained by propagating backward the initial condition

Xo,5s = Xo X &Vy (11

where vs is the eigenvector associated with the stable eigenvalue of the monodromy
matrix evaluated in Xo.

In the same way, the unstable manifold associated to that point can be achieved
by forward integration with initial condition taken in the direction of the unstable
eigenvector. The invariant manifolds tube can be obtained by repeating this process
for each point of the orbit.

The perturbation & represents the distance, in the direction of the eigenvectors,
between the orbit and the initial condition taken for the integration. It is obvious
that the smaller the value of & the better the approximation of the manifold is that
this first-order method can supply. The value of ¢ is typically bounded between
10~ and 1076,

It is important to observe that, since the Jacobi constant is a three-dimensional
surface, the manifolds of the orbits are separatrices and they split different regimes

TABLE 1. Mass parameter and location of L, and L, in the Sun-Planet problems faced
in this study. The mass parameter of the Sun-Earth system takes into account the
presence of the Moon.

System we 10° L, L,
S-Venus 2.4510 0.9906782 1.0093750
S-Earth 3.0359 0.9899909 1.0100701

S-Mars 0.3233 0.9952484 1.0047659
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of motion. This means that orbits lying on the manifolds are asymptotic trajectories
and wind to or from the periodic orbits; those starting inside the tubes, flowing
under the dynamical system, will continue to remain in that tube. These trajectories
are called transit orbits because they are the only ones able to go through the small
allowed region and to approach the planet for a given energy value (Fig. 2). Re-
cently, the behavior of these orbits under the influence of perturbing forces has been
investigated by Yamato and Spencer [11].

The present work aims at using the invariant manifolds theory as additional in-
formation for the trajectory design within the R3BP. This means that, once an en-
ergy level has been fixed and a periodic orbit around the libration point has been
computed, the associated transit orbits are the candidate trajectories useful to a low
energy transfer between two bodies.

When a transit orbit is built and propagated using equations (2) in the synodic
reference frame, it can first be translated in the planar sidereal coordinate system
(planets in planar and circular orbits) and then, using an analytical ephemeris
model, in the 3-D space by the transformation

Xabs — Rxsid (12)

taking into account the real eccentricity and inclination of planetary orbits. The first
term in (12) represents the trajectory in the 3-D absolute Sun-centered reference
frame, R = R(i, , w, 6) is the rotation matrix and X* is the trajectory in the side-
real system

0.1 T T T T T T T T s 3
0.08- Transit Orbit |
Forbidden Region
0.06 2
2 004f |
< x=1 -l
= 7,
g 7 |
= 0.02F 77
= iy i
= ole—— _.JU[)I[EI'D i & 777 |
i Sun : »
[70]
g —0.02F |
g
=, —0.04f i
-0.06+ : ; : i
Forbidden chmn _
-(0.08 A
1 1 1 | N ; g |

| 1
0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
x (adim., S-J rotating frame)

FIG. 2. Invariant Manifolds Associated with a Lyapunov, Transit, and Asymptotic Orbits near the
Sun-Jupiter L.
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Xsid — {xsid’ ysid’ O}T (13)

Repeating the same process for the velocities, it is also possible to obtain the
velocity vector in the absolute Sun-centered reference frame.

The Design Approach
Intersecting the Manifolds

The manifolds of different Sun-planet systems are computed in the synodic
frames and then translated in the Sun-centered sideral frame because this system
represents a homogeneous environment when looking for an intersection between
the manifolds. The transformation from the synodic to the sideral frame introduces
a time variable or a phase angle, here called 6, between the planets.

The manifolds associated with a Lyapunov orbit can be computed given the
semi-amplitude of the orbit A, and &, the parameters introduced in the previous sec-
tion. If 6 is the angular location of a surface of section, the three variables &, A,,
and 6 uniquely define a configuration for the manifold. Without any loss of gener-
ality, the starting planet, generically called P,, is taken aligned with the x-axis and
its unstable manifold develops until the angular coordinate is 8 = 6,. The stable
manifold, taken from the second R3BP, develops until 8 = 6,, so the arrival planet,
called P,, has an angular position equal to 6, + 6, (Fig. 3). Working with polar co-
ordinates and using 6 as a parameter, the surface of section can be easily shifted by
varying its value.

By giving the following set of six variables [&,, Ax,a, 62, &b, Ax s, 05] the two man-
ifolds shown in Fig. 3 can be computed. The representation of the two section
curves on the Poincaré surface is given by the two curves (Fig. 4)

Ya(ras 72) and  yu(rs, 75) (14)
On the surface of section the following function can be defined as
D(a Far 15, 15) = Vara = n)* + B(Fa — is)?
(ra:7a) € va (15)

(rb. 7p) € Vb

where « and B are two weighting factors. Such a parameter is a distance metric,
taken on the surface of section, that can be used to indicate how close in the section
space two points belonging to the manifolds are. It is clear that, given two points,
D is also a function of the variables introduced so far

D = D(&4,Av.a, Oa, €5, Ars, Ob, @, B) (16)

Given the two section curves vy, and 7,, enclosing an infinite number of transit
orbits, the metric D selects the two points, A € vy, and B € v,, which correspond
to the minimum distance metric between the two curves

A B= {(r, 7) € R®:D(A, B) = min D(ra, Fay 1oy fb)} (17)
Ta Ta) € Ya
(rp. FR)E W
Departure and Arrival Legs

The two points A and B selected by equation (17) correspond to two asymptotic
orbits wrapping onto the two sources Lyapunov orbits defined by A, , and A, ,. If
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FIG. 3. Geometry of the Invariant Manifolds in the Sideral Plane for the Earth-Jupiter Case.
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these two conditions are used to define the departure and arrival legs, a link be-
tween the two libration points is obtained instead of a link between the two plan-
ets. The two transit orbits, departure and arrival legs of the whole transfer path, are
computed by propagating the perturbations of the two points A and B

A+38A and B =* 8B (18)

where 8A and 6B are assumed arbitrary small, for instance equal to

0A = w{(ra,max - ra,min) (ia,max - i‘a,min)} (19)

and the same for 6B. In the present paper the perturbation w has been taken equal
to 0.01. The sign ambiguity in equation (18) is solved with the imposition that both
points must lie inside the two curves.

Propagations, forward for the arrival leg and backward for the departure one,
stop when the closest approach with the planet is reached. Figure 5 shows the ar-
rival transit orbit corresponding to the example in Figs. 3 and 4. In systems with in-
tersecting manifolds the method described so far can be used to find a low energy
transfer between two bodies; such property can be exploited when moving between
two outer planets or between two moons around a giant planet. Nevertheless, when
inner planets are considered (Earth, Mars, and Venus assumed in this work) the
manifolds do not intersect or their intersection occurs very seldom. Since this work
aims to find low energy transfers between inner planets, an intermediate arc must
be added to match the two legs.
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Link Hypothesis

As stated above, a low energy transfer between two celestial bodies could be ob-
tained by intersecting the manifolds of the two R3BPs considered so far. When the
manifolds intersect in the configuration space but not in the phase space, a single
Av maneuver is sufficient to link the two transit orbits. Unfortunately, the R3BPs
involved in this study, due to their small mass parameters (Table 1), do not allow
the manifolds to develop far enough in order to approach each other; hence in this
case the manifolds do not intersect even in the configuration space. This holds in a
simple model considering circular and coplanar orbits. In more refined models,
contemplating the full solar system dynamics, a closer approach or even an inter-
section, after hundreds of years, may occur. If no intersection occurs both in the
configuration and phase space, the existing technique [6, 7] does not apply and a
further development is required to find solutions of practical interest.

The four-body problem, characterizing such low energy transfers, has been ap-
proached by examining the behavior of the transit orbits far from both primaries.
For instance, let us consider the external leg of the L, unstable manifold (W{}) in
the Sun-Earth system. This manifold, indeed, is close in the phase space to the low
energy transit orbits, escaping from the Earth, associated to small size Lyapunov or-
bits. If (W{}) is integrated for a long time, it could be noticed that, after an initial
evolution, the trajectory becomes invariant and quasi-periodic. This suggests that,
in general, if no other actions are considered, in systems with a low mass parame-
ter and far from the smallest primary a spacecraft is only subject to the gravitational
attraction of the largest primary. This statement can be verified by analyzing the
Sun-spacecraft two-body energy associated to that manifold without considering
the presence of the Earth. It is well known, indeed, that in the two-body problem
(2BP) the energy remains constant, therefore for any point of (W) this quantity
can be calculated through

E=—v*—— (20)

where r and v are respectively the modulus of the position and the velocity vectors,
both expressed in the absolute system and ks is the gravitational constant of the Sun.

As can be seen in Fig. 6, the two-body energy E = E(¢), after an initial growth,
when the spacecraft is close to the Earth, remains almost constant and the motion
of the spacecraft is mainly governed by the Sun. This means that flowing on a tran-
sit orbit corresponds, in the two-body representation of the dynamics, to an energy
change, provided by the planets’ gravitational fields, which can be either a propul-
sive effect, at departure, or a braking effect, at arrival. These effects can be seen in
the fast growth of E in Fig. 6.

On the other hand, when the spacecraft is far from both planets, the energy as-
sociated with the Sun-spacecraft 2BP stabilizes about a constant value and the end
point of the two transit orbits, shown in Fig. 7, can be considered subject only to
the gravitational attraction of the Sun and linked with a conic arc, solution of a
Lambert’s problem.

Therefore the existing technique in [6, 7] has been extended to treat cases in
which no intersection between the manifolds can be found. The full four-body
problem is decomposed as follows:
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FIG. 6. Two-Body Energy Associated with W (Sun-Earth Systems) Integrated for Five Years.

e an initial R3BP with the Sun and the departure planet as primaries. The un-
stable manifolds associated to the periodic orbits around L, or L, are com-
puted in this system together with their transit orbits;

e an intermediate Sun-spacecraft 2BP in which a conic arc links the extremes
(or terminal points) of the two transit orbits;

o afinal R3BP the Sun and the arrival planet as primaries. The stable manifolds
of periodic orbits around L or L, and the transit orbits, ballistic captured tra-
jectories, are computed in this second frame.

Two intermediate deep space maneuvers, leading to a multi-burn transfer, are
then required to realize the link in the phase space between the conic arc and the
stable and unstable transit orbits. The total cost associated with the conic link can
be tuned either by changing the width of the departure and arrival periodic orbits,
with a consequent change of the energy associated to the transit orbits, or by vary-
ing the time of the Lambert’s arc.

The Patched Conic-Manifold Method

As shown in Fig. 7, the departure and arrival legs are translated into a sideral he-
liocentric reference frame by introducing a time variable and the real ephemeris of
the planets. Since the planar R3BP has been assumed to derive the transit orbits,
these are on the planets orbital planes. If T; is the departure epoch and At is the
time interval of the Lambert’s arc, the variable vector

X = {ea, Ax,a, 011, Eb, Ax,b, eb, a, B» TS’ AtL} (21)

uniquely defines a transfer trajectory. The vector x takes into account the parame-
ters used to describe the two transit orbits (equation (16)) and those needed to com-
pute the Lambert’s arc. The total cost for a patched conic-manifold transfer is

Av(x) = Avs + Av; + Av, + Avg 22)
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where the four terms are explained as follows:

e Avg: cost required to inject the spacecraft in a transit orbit inside the unstable
manifold starting from a rs circular orbit around the departure planet;

e Av;: cost of the first deep space maneuver necessary to “jump” from the un-
stable trajectory to the conic arc;

e Av;: cost of the second deep space maneuver necessary to inject the space-
craft on the captured transit leg;

e Avg: cost required to place the spacecraft in a rg circular orbit around the ar-
rival planet.

As discussed in the previous section, the two transit orbits are generated by
perturbing two points defined on the Poincaré section of the manifolds and their
propagation stops when the closest approach with the planet is reached. Hence the
two radii rs and rz depend on the set of chosen variables. If the cost for the analo-
gous Hohmann transfer, linking the same starting and arriving circular orbits, is de-
fined as

AVH = AVH(rs, TE) = AVH(rs(X), rE(x)) = AVH(X) (23)
then the objective function used for the optimization of the transfer is
f(x) = Av(x) — Avu(x) (24)

In (24) both the total cost of the patched conic-manifold transfer and the cost for
the analogous Hohmann transfer are functions of the state variable x. Therefore the
value x = x* which makes f(x*) negative is expected to correspond to the optimal
altitude for the arrival and departure orbits.
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Hybrid Optimization of the Transfer

The problem stated in the previous section is solved splitting the optimization
into two steps:

e a first global search, implemented with an evolutionary algorithm (EA),
explores the search domain and provides a good initial solution;

e a local optimization, employing a sequential quadratic programming (SQP)
algorithm, is used to further refine the solution found by the EA.

The selection of this sequence is due to the nature of the present problem: since
the SQP algorithm is a gradient based method, it requires an initial condition to start
the search; if this condition lies inside the basin of attraction of the global mini-
mum, the SQP will converge to it. Since it is very difficult to provide a good first
guess solution for the problem stated above, due to the complex relations among
the objective function f(x), the state variable x and the corresponding trajectory, the
EA, by its extended preliminary search in the whole domain, is able to assure a
good first guess solution to the SQP. The integer  is used to indicate the total num-
ber of function evaluations and it is equal to the sum n; = nf* + nf%* where nf*
and nf?" are respectively the evaluations required to the EA and to the SQP. Fig-
ure 8 illustrates the typical convergence profile of the objective function versus the
total number evaluations. The solid line represents the EA convergence history
while the dashed line, leading to the final value (the star on the bottom-right), is the
SQP step.

Study Cases

In this section the patched conic-manifold approach, described in the previous

section, is applied to the design of some representative transfers among inner plan-

ets. The cases considered here are the transfers from Earth to Venus and from Earth

to Mars. The results are compared in terms of total Av and At to the corresponding
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classical bicircular Hohmann transfers between the same departure and arrival cir-
cular orbits, with radius rs and rg, around the two planets considered. In particular,
as stated in equation (24), the solutions are compared in terms of the objective func-
tion f= Av — Avy where the total cost Av takes into account the two maneuvers
around the planets (Avs and Avg) and the two additional deep space maneuvers (Av,
and Av;) necessary to perform the injection from the manifold to the conic arc and
vice versa. The search has been performed over a wide launch window starting in
2010 and ending in 2020 and a set of three representative solutions are presented
for each case showing the effectiveness of the developed algorithm.

Earth-Venus Transfer

The solutions found for the Earth-Venus case, represented in Table 2, show that
the objective function fis negative; this means that these transfers are cheaper than
the Hohmann solutions. This result confirms that the patched conic-manifold tra-
jectories, as expected, are more energetically efficient than the corresponding
patched conics.

Solution 2, the best found in this study, has a total cost equal to Av = 3843 m/s
while the analogous Hohmann transfer costs Avy = 4395 m/s. The first maneuver
(Avs = 202 m/s) injects the spacecraft in a transit orbit inside the (W{,) of the
Sun-Earth system departing from a high altitude circular orbit around the Earth.
The second burn (Av, = 2362 m/s) is used to lower the perihelion of the conic
arc while the third maneuver (Av, = 1310 m/s) places the spacecraft inside the
(W?,po) of the Sun-Venus system. Finally, the fourth maneuver (Ave = 150 m/s) is
used to stabilize the spacecraft in a high altitude circular orbit around Venus. This
solution takes 766 days to reach Venus, while the time of flight for a Hohmann trans-
fer is 145 days long. Solutions 1 and 3 have a total cost equal to Av = 4208 m/s
(Avs = 368 m/s), (Av; = 2034 m/s), (Av, = 1752m/s) (Avg = 52m/s), and
Av = 4051 m/s (Avs = 440 m/s), (Avi = 472 m/s), (Av, = 3014 m/s), (Avg =
124 m/s) therefore, since they refer to different parking orbits, they turn out to be
again cheaper than the corresponding Hohmann solutions. Figure 9 shows a typical
portrait of the arrival transit orbit circularized around Venus. Figure 10 shows a de-
tail of the arrival transit orbits associated to Solutions 1 and 2 in a neighborhood
of the L, point. In this frame the problem is autonomous and the algorithm selects
two close solutions characterized by different departure epochs. Figure 11 illus-
trates a typical interplanetary trajectory associated to an Earth-Venus transfer. The
algorithm finds similar transit orbits for any simulation because, as the above re-
sults demonstrate, the objective function (24) is influenced mostly by the two deep
space maneuvers characterized by the configuration of the planets. Hence the tran-
sit orbits need only to be slightly adjusted to provide the best initial conditions for
the Lambert’s arc depending on the starting epoch.

TABLE 2. Solutions for the Earth-Venus Transfer

Ts (MJD) f(m/s) Av (m/s) Avy (m/s) At (days) rs (km) re (km)

4741 —47 4208 4255 571 207700 334530
5813 —552 3843 4395 766 525590 384380
6561 —156 4051 4207 494 173520 294710
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It must be pointed out that these results correspond to 3-D trajectories and so the
change of the inclination has been also taken into account in the total cost. The re-
sults found in this section are expected to be quite accurate if compared to equivalent
transfers computed in a full four-body problem; this is due to the small value of the
orbital eccentricity of both Earth and Venus, ¢ = 0.006 and ¢ = 0.016 respectively,
that makes the circular R3BP a good model to derive these low energy transfers.

Earth-Mars Transfer

The solutions for the Earth-Mars transfer are summarized in Table 3. Also in this
case these results present negative values of the objective function making these tra-
jectories cheaper than the Hohmann transfers. Solution 1 presents a Av = 3755 m/s
and a time of flight equal to 999 days; the corresponding Hohmann transfer costs
Avy = 4436 m/s and is 246 days long. Solutions 2 and 3 allow savings of 588 m/s

TABLE 3. Solutions for the Earth-Mars Multi-Burn Transfer

Ts (MID) f(m/s) Av (m/s) Avy (m/s) At (days) r, (km) re (km)

3861 —681 3755 4436 999 185940 142820
4169 —588 4105 4693 707 410270 317040
7203 —429 3967 4396 910 165200 123760
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and 429 m/s because they cost Av = 4105 m/s and Av = 3967 m/s while the
Hohmann solutions need Avy = 4693 m/s and Avy = 4396 m/s.

Figure 12 shows the circular orbit around the Earth and the transit orbit into the un-
stable manifold tube; Fig. 13 illustrates the typical interplanetary path for the Earth-
Mars transfer. The three legs have here the same meaning as in the Earth-Venus

-1.5
FIG. 13. Interplanetary Earth-Mars Patched Conic-Manifold Transfer Trajectory.
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case with the only difference that this time the departure occurs from the exterior
tube (Wip) of the Sun-Earth system) and the arrival leg is close to Mars’ interior
equilibrium point (W, of the Sun-Mars system).

The orbital eccentricity of Mars is e = 0.093, thus a small error is expected in
the description of the arrival leg since this time the circular R3BP is not adequate
to describe the real Sun-Mars-Spacecraft dynamics as in the former case.

The achieved results show that the use of the transit orbits, in the R3BP, leads to
a substantial saving in Av for interplanetary travels toward Venus and Mars. Such a
saving is paid in terms of time of transfer which is on average one and half year
longer, for a transfer to Venus, and more than two years long, for a transfer to Mars.
This is due to the slow dynamics, in the neighborhood of the libration points, gov-
erning the transit orbits. Moreover, the method described above, through the equa-
tion (18), selects two transit orbits shadowing the asymptotic paths associated to the
periodic orbits. This means that, among all the transit orbits, the ones used to gen-
erate the transfers are dynamically close to the asymptotic orbits and thus they lead
to a slow approach and departure from the planet.

Conclusions

This paper describes a method that expands the technique of using invariant
manifolds with systems where the physical parameters do not allow any intersec-
tion between two manifolds in the configuration space. The resulting low energy
trajectories can be used for interplanetary transfers among inner planets.

The results found for both transfers to Venus and to Mars show that a saving in the
propellant mass fraction is possible by exploiting the three-body dynamics in
the neighborhood of the collinear libration points L; and L, of the generic Sun-
planet-spacecraft problem. The cheapest solution found for the Earth-Venus case
allows savings up to 12% in total Av if compared with the analogous Hohmann
transfer. Nevertheless, the shortest solution has a time of flight that is more than
300% of the Hohmann one. If the patched conic-manifold method is applied to de-
sign an Earth-Mars transfer, up to 15% of the total Av can be saved, but the time of
flight increases. The shortest solution, indeed, is 280% longer than the correspon-
ding Hohmann transfer.

Thus, the main drawback of such transfers is the high time of flight. Even if the
cost reduces the time of flight increases up to three times compared to the Hohmann
transfer. Therefore these trajectories are suitable for missions, as the ones cited
above, where the payload mass must be maximized without any particular con-
straint on the time of transfer.

Since the full trajectories computed in this work have been obtained by patching
arcs obtained with different dynamics, the whole interplanetary paths need to be veri-
fied in a more refined model describing the real n-body dynamics of the solar system.

A final remark concerns the starting and arrival circular orbits that the developed
method, by itself, selects. The results summarized in Tables 2 and 3 show that very
high altitude circular orbits can be linked with the patched conic-manifold method.
This outcome appears also when just the total cost (Av) is optimized instead of the
fitness function (24). This is a consequence of the intrinsic nature of the problem:
in order to bound the energy of the transit orbits, small amplitude periodic orbits are
selected to generate the invariant manifolds tubes. It is well known that below cer-
tain amplitudes of the periodic orbits such manifolds do not approach the smallest
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primary [4], thus a direct link between a low energy transit orbit and a low altitude
orbit around a planet is forbidden a priori. If the energy level increases, high
amplitude orbits can be obtained with their manifolds coming close to the planets.
Unfortunately, in these cases the benefits are lost and an interplanetary transfer com-
puted with the patched conic-manifold method is not convenient. A further devel-
opment, currently under investigation, concerns the use of elliptical orbits, instead
of the circular, to link a low altitude point close to the planet and a transit orbit.
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