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Quaternion Attitude
Estimation Using Vector

Observations

F. Landis Markley ' and Daniele Mortarf '

Abstract

This paper contains a critical comparison of estimators minimizing Wahba's loss func­
tion. Some new results are presented for the QUaternion ESTimator (QUEST) and EStima­
tors of the Optimal Quaternion (ESOQ and ESOQ2) to avoid the computational burden of
sequential rotations in these algorithms. None of these methods is as robust in principle as
Davenport's q method or the Singular Value Decomposition (SVD) method, which are sig­
nificantly slower. Robustness is only an issue for measurements with widely differing accu­
racies, so the fastest estimators, the modified ESOQ and ESOQ2, are well suited to sensors
that track multiple stars with comparable accuracies. More robust forms of ESOQ and
ESOQ2 are developed that are intermediate in speed.

Introduction

In many spacecraft attitude systems, the attitude observations are naturally repre­
sented as unit vectors. Typical examples are the unit vectors giving the direction to
the Sun or a star and the unit vector in the direction of the Earth's magnetic field.
This paper will consider algorithms for estimating spacecraft attitude from vector
measurements taken at a single time, which are known as "single-frame" methods
or "point" methods, instead of filtering methods that employ information about
spacecraft dynamics. Almost all single-frame algorithms are based on a problem
proposed in 1965 by Grace Wahba [1]. Wahba's problem is to find the orthogonal
matrix A with determinant +1 that minimizes the loss function

(1)

where {hi} is a set of unit vectors measured in a spacecraft's body frame, {r.} are
the corresponding unit vectors in a reference frame, and {ai} are non-negative
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weights. In this paper we choose the weights to be inverse variances, a, = (J"i-
2

, in
order to relate Wahba's problem to Maximum Likelihood Estimation [2]. This
choice differs from that of Wahba and many other authors, who assumed the weights
normalized to unity.

It is possible and has proven very convenient to write the loss function as

with

and

L(A) = Ao - tr(ABT
) (2)

(3)

(4)

Now it is clear that L(A) is minimized when the trace, tr(ABT
) , is maximized.

This has a close relation to the orthogonal Procrustes problem, which is to find
the orthogonal matrix A that is closest to B in the Frobenius norm (also known as
the Euclidean, Schur, or Hilbert-Schmidt norm) [3]

Now

IIMII} == 2: Ml = tr(MM T
)

i,j

(5)

so Wahba's problem is equivalent to the orthogonal Procrustes problem with the pro­
viso that the determinant of A must be +1.

The purpose of this paper is to give an overview in a unified notation of al­
gorithms for solving Wahba's problem, to provide accuracy and speed comparisons,
and to present two significant enhancements of existing methods. The popular
QUaternion EStimator (QUEST) and EStimators of the Optimal Quaternion (ESOQ
and ESOQ2) algorithms avoid singularities by employing a rotated reference system.
Methods introduced in this paper use information from an a priori quaternion esti­
mate or from the diagonal elements of the B matrix to determine a desirable refer­
ence system, avoiding expensive sequential computations. Also, tests show that a
first-order expansion in the loss function is adequate, avoiding the need for iterative
refinement of the loss function, and motivating the introduction of new first-order
versions of ESOQ and ESOQ2, which are at present the fastest known first-order
methods for solving Wahba's problem.

First Solutions of Wahba's Problem

J. L. Farrell and J. C. Stuelpnagel [4], R. H. Wessner [5], J. R. Velman [6], 1. E.
Brock [7], R. Desjardins, and Wahba presented the first solutions of Wahba's prob­
lem. Farrell and Stuelpnagel noted that any real square matrix, including B, has the
polar decomposition

B= WR (7)

where W is orthogonal and R is symmetric and positive semidefinite. Then R can be
diagonalized by
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R = VDV T
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(8)

where V is orthogonal and D is diagonal with elements arranged in decreasing order.
The optimal attitude estimate is then given by

A opt = WV diag[1 1 det W]V T

In most cases, det W is positive and A opt = W, but this is not guaranteed.
Wessner and Brock independently proposed the alternative solution

A opt = (B T)-I(B TB)l/2 = B(BTB)-l/2

(9)

(10)

but the matrix inverses in equation (10) exist only if B is nonsingular, which means
that a minimum of three vectors must be observed. it is well known that two vectors
are sufficient to determine the attitude; and the method of Farrell and Stuelpnagel,
as well as the other methods described in this paper, only require B to have
rank two.

Singular Value Decomposition (SVD) Method

This method has not been widely used in practice, because of its computational
expense, but it yields valuable analytic insights [8, 9]. The matrix B has the Singular
Value Decomposition [3]

(11)

where U and V are orthogonal, and the singular values obey the inequalities ~ 11 2::

~22 2:: ~33 2:: O. Then

The trace is maximized, consistent with the constraint det A = 1, by

which gives the optimal attitude matrix

A opt = U diag[1

(det U) (det V)]

(det U) (det V)]V T

(13)

(14)

The SVD solution is completely equivalent to the original solution by Farrell and
Stuelpnagel, since equation (14) is identical to equation (9) with U = WV. The dif­
ference is that robust SVD algorithms exist now [3, 10]. In fact, computing the SVD
is one of the most robust numerical algorithms.

It is convenient to define

(15)

so that SI 2:: S2 2:: IS31. We will loosely refer to SI, S2, and S3 as the singular values,
although the third singular values of B is actually IS31. It is clear from equation (11)
that redefinition of the basis vectors in the reference or body frame affects V or U,
respectively, but does not affect the singular values.

The estimation error is characterized by the rotation angle error vector cPerr in the
body frame, defined by

(16a)
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where [c/JX] is the cross product matrix

[c/JX] == [ 23
-4>2

Markley and Mortari

(16b)

(16c)

The SVD method gives the covariance of the rotation angle error vector as

P = U diag[(s2 + S3)-I (S3 + SI)-I (SI + S2)-I]U
T

Davenport's q Method

Davenport provided the first useful solution of Wahba's problem for spacecraft at­
titude determination [11,12]. He parameterized the attitude matrix by a unit quater­
nion [13, 14]

as

q = [q] = [e Sin(4)/2)]
q4 cos(4)/2)

(17)

(18)

The rotation axis e and angle 4> will be useful later. Since A(q) is a homogeneous
quadratic function of q, we can write

where K is the symmetric traceless matrix

K == [s -zI/r B tr
Z
B ]

with

(19)

(20)

(21)

The optimal attitude is represented by the quaternion maximizing right side of
equation (19), subject to the unit constraint Iql = 1, which is implied by equa­
tion (17). It is not difficult to see that the optimal quaternion is equal to the normal­
ized eigenvector of K with the largest eigenvalue, i.e., the solution of

Kqopt == Amaxqopt

With equations (2) and (19), this gives the optimized loss function as

(22)

(23)

Very robust algorithms exist to solve the symmetric eigenvalue problem [3, 10].
The eigenvalues of the K matrix, Amax == Al ~ A2 ~ A3 ~ A4 == Amin, are related

to the singular values by [11,15]

Al = SI + S2 + S3, A2 = SI - S2 - S3, A3 = -SI + S2 - S3,

A4 = -Sl - S2 + S3 (24)



Quaternion Attitude Estimation Using Vector Observations 363

The eigenvalues sum to zero because K is traceless. There is no unique solution if the
two largest eigenvalues of K are equal, or 52 + 53 = O. This is not a failure of the q
method; it means that the data are not sufficient to determine the attitude uniquely.
Equation (16c) shows that the covariance is infinite in this case. This is expected,
since the covariance should be infinite when the attitude is unobservable.

Quaternion Estimator (QUEST)

This algorithm, first applied in the MAGSAT mission in 1979, has been the most
widely used algorithm for Wahba's problem [16, 17]. Equation (22) is equivalent to
the two equations

and

[(Amax + tr B)/ - S]q = q4Z (25)

(26)

Equation (25) gives

q = q4[(Amax + tr B)/ - S]-lZ

= {q4/det[(Amax + tr B)/ - S] }adj[(Amax + tr B)/ - S]z (27)

The optimal quaternion is then given by

qopt = V y 2 ~ Ixl 2 [~]
where

(28)

x == adj[(Amax + tr B)/ - S]z = [a/ + (Amax - tr B)S + S2]Z (29)

and

with

y == det[(A max + tr B)/ - S] = a(A max + tr B) - det S

a == A;'ax - (tr B)2 + tr(adj S)

(30)

(31)

The second form on the right sides of equations (29) and (30) follows from the
Cayley-Hamilton Theorem [3, 17].

These computations require knowledge of Amax, which is obtained by substituting
equations (28) and (29) into equation (26), yielding

o = l/J(A max) == y(A max - tr B) - zT[a/ + (Amax - tr B)S + S2]Z (32)

Substituting a and y from equations (30) and (31) gives a fourth-order equation in
Amax, which is simply the characteristic equation det(A max/ - K) = O. Shuster
observed that Amax can be easily obtained by Newton-Raphson iteration of equa­
tion (32) starting from Ao as the initial estimate, since equation (23) shows that Amax
is very close to Ao if the optimized loss function is small. In fact, a single iteration
is generally sufficient. But numerical analysts know that solving the characteristic
equation is an unreliable way to find eigenvalues, in general, so QUEST is in prin­
ciple less robust than Davenport's original q method. The analytic solution of the
quartic characteristic equation is slower and no more accurate than the iterative
solution.
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Shuster provided the first estimate of the covariance of the rotation angle error
vector in the body frame as

p = [~ ai(/ - bib;)J-1 (33)

He also showed that 2L(A opt ) obeys a X 2 probability distribution with 2n obs - 3 de­
grees of freedom, to a good approximation and assuming Gaussian measurement er­
rors, where nobs is the number of vector observations. This can often provide a useful
data quality check, as will be seen below.

The optimal quaternion is not defined by equation (28) if y2 + Ixl 2
= 0, so it is

of interest to see when this condition arises. Applying the Cayley-Hamilton theorem
twice to eliminate S4and S3after substituting equation (29) gives, with some tedious
algebra

y2 + Ixl 2
= y(dlfi/dA) (34)

where lfi(A) is the quartic function defined implicitly by equation (32). The discus­
sion following equation (15) implies that dlfi/dA is invariant under rotations, since the
coefficients in the polynomial lfi(A) depend only on the singular values of B [15].
The Newton-Raphson iteration for Amax requires dlfi/dA to be nonzero, so y2 +
Ixl 2

= 0 implies that y = O. This means that (qopt)4 = 0 and the optimal attitude
represents a 1800 rotation. Shuster devised the method of sequential rotations to
avoid this singular case [16-19].

Reference Frame Rotations

The (Qopt)4 = 0 singularity occurs because QUEST does not treat the four compo­
nents of the quaternion on an equal basis. Davenport's Q method avoids this singu­
larity by treating the four components symmetrically, but some other methods have
singularities similar to that in QUEST. These singularities can be avoided by solv­
ing for the attitude with respect to a reference coordinate frame related to the origi­
nal frame by 1800 rotations about the x, y, or z coordinate axis. That is, we solve for
one of the quaternions

qi == q ® [~iJ = [:J ® [~iJ = [q4ei_~ ~e~ eiJ for i = 1,2,3 (35)

where e is the unit vector along the rh coordinate axis. We use the convention of
reference [14] for quaternion multiplication, rather than the historic convention. The
products in equation (35) are trivial to implement by merely permuting and chang­
ing signs of the quaternion components. For example,

(36)

The equations for the inverse transformations are the same, since a 1800 rotation in
the opposite direction has the same effect. These rotations are also easy to imple­
ment on the input data, since a rotation about axis i simply changes the signs of the
jth and kth columns of the B matrix, where {i, j, k} is a permutation of {I, 2, 3}. The
reference system rotation is easily "undone" by equation' (36) or its equivalent after
the optimal quaternion has been computed.

The original QUEST implementation performed sequential rotations one axis at a
time, until an acceptable reference coordinate system was found. It is clearly prefer­
able to save computations by choosing a single desirable rotation as early in the
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computation as possible. This can be accomplished by considering the components
of an a priori quaternion, which is always available in a star tracker application
since an a priori attitude estimate is needed to identify the stars in the tracker's field
of view. If the fourth component of the a priori quaternion has the largest magni­
tude, no rotation is performed, while a rotation about the ith axis is performed if the
ith component has the largest magnitude. Then equation (36) or its equivalent shows
that the fourth component of the rotated quaternion will have the largest magnitude.
This magnitude must be at least 1/2, but no larger magnitude can be guaranteed, be­
cause a unit quaternion may have all four components with magnitude 1/2. The use
of a previous estimate as the a priori attitude guarantees q 4 > cos 82.5° = 0.13 in
the rotated frame if rotations between successive estimates are less than 45~

Fast Optimal Attitude Matrix (FOAM)

The singular value decomposition of B gives a convenient representation for
adj B, det B, and IIBII}. These can be used to write the optimal attitude matrix as
[15]

where

(38)

It's important to note that all the quantities in equations (37) and (38) can be com­
puted without performing the singular value decomposition. In this method, Amax is
found from

Amax = tr(AoptBT)

= (KAmax - det B)-l[(K + IIBII}) IIBII} + 3Amax det B - tr(BBTBBT)] (39)

or, after some matrix algebra

o = f/J(A max) == (A;ax - IIBII})2 - 8Amax det B - 411adj BII} (40)

Equations (32) and (40) for f/J(A max) would be numerically identical with infinite­
precision computations, but the FOAM form of the coefficients is less subject to er­
rors arising in finite-precision computations.

The FOAM algorithm gives the error covariance as

(41)

A quaternion can be extracted from A opt, with a cost of 13 MATLAB flops. This has
several advantages: the four-component quaternion is more economical than the
nine-component attitude matrix, easier to interpolate, and more easily normalized
if A opt is not exactly orthogonal due to computational errors [19].

Estimator Of The Optimal Quaternion (ESOQ Or ESOQl)

Davenport's eigenvalue equation, equation (22), says that the optimal quaternion
is orthogonal to all the columns of the matrix

(42)

which means that it must be orthogonal to the three-dimensional subspace spanned
by the columns of H. The optimal quaternion is conveniently computed as the gener­
alized four-dimensional cross-product of any three columns of this matrix [20-22].
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Another way of seeing this result is to examine the classical adjoint of H. Repre­
senting K in terms of its eigenvalues and eigenvectors and using the orthonormality
of the eigenvectors gives, for any scalar A

adj(K - AI) = ad{~l (AJL - A)qJLqJ] = ~l (Au - A)(A p - A)(A, - A)qJLqJ

(43)

We use Greek indices to label different quaternions, to avoid confusion with Latin
indices used to label quaternion components; and let {/L, v, p,T} denote a permuta­
tion of {I, 2, 3, 4}. Setting A = A max = A1 causes all the terms in this sum to vanish
except the first, with the result

adj H = (A2 - A max) (A3 - A max) (A4 - Amax)qoptq;Pt (44)

Thus qopt can be computed by normalizing any nonzero column of adj H, which we
denote by index k. Let F denote the symmetric 3 X 3 matrix obtained by deleting
the kth row and kth column from H, and let f denote the three-component column
vector obtained by deleting the kth element from the kth column of H. Then the kth
element of the optimal quaternion is given by

(qopt)k = -c det F

and the other three elements are

(qopt)1, ... ,k-l,k+l, ... ,4 = c(adj F)f

(45)

(46)

where the coefficient c is determined by normalizing the quaternion. It is desirable
to let k denote the column with the maximum Euclidean norm, which equation (44)
shows to be the column containing the maximum diagonal element of the adjoint.
Computing all the diagonal elements of adj H, though not as burdensome as
QUEST's sequential rotations, is somewhat expensive; but this computation can be
avoided by using an a priori quaternion as in QUEST. In the ESOQ case, however,
no rotation is performed; we merely choose k to be the index of the element of the
a priori quaternion with maximum magnitude.

The original formulation of ESOQ used the analytic solution of the characteristic
equation [23]; but the analytic formula sometimes gives complex eigenvalues, which
is theoretically impossible for a real symmetric matrix. These errors arise from in­
accurate values of the coefficients of the quartic characteristic equation, not from
the solution method. It is faster, and equally accurate, to compute A max by iterative
solution of equation (40). Equation (32) would give a faster solution, but it would be
less robust, and an even more efficient solution is described below.

First Order Update (ESOQ1.l)

Test results show that higher-order updates do not improve the performance of the
iterative methods, providing motivation for developing a first-order approximation.
The matrix H can be expanded to first order in aA = Ao - Amax as

where

H = HO + (aA)/ (47)

(48)

The vector f does not depend on Amax , which only appears in the diagonal elements
of H; but the matrix F depends on Amax , giving
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F = FO + (dA)/
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(49)

where FO is derived from HO in the same way that F is derived from H. Matrix iden­
tities give

and

det F = det FO + (dA)tr(adj FO)

(50)

(51)

to first order in dA. The characteristic equation can be expressed to the same order
as

o = det H = (H2k + dA)det F - fT(adj F)f

= H2k det FO - fTg + [H2k tr(adj FO) + det FO - fTh]dA (52)

where

(53)

and

(54)

Equation (52) is easily solved for dA == Ao - Amax, and then the first order quater­
nion estimate is given by

and

(Qopt)1, ...,k-l,k+l, ...,4 = c(g + hdA)

Second Estimator Of The Optimal Quaternion (ESOQ2)

(55)

(56)

This algorithm uses the rotation axis/angle form of the optimal quaternion, as
given in equation (17). Substituting these into equations (25) and (26) gives

(Amax - tr B)cos(4)/2) = z Te sin(4)/2)

and

z cos(4)/2) = [(Amax + tr B)/ - S]e sin(4)/2)

Multiplying equation (58) by (Amax - tr B) and substituting equation (57) gives

Me sin(4)/2) = 0

where

(57)

(58)

(59)

M == (Amax - tr B) [(Amax + tr B)/ - S] - zz T = [m, : m, : m-] (60)

These computations lose numerical significance if (Amax - tr B) and z are both
close to zero, which would be the case for zero rotation angle. We can always avoid
this singular condition by using one of the sequential reference system rotations
[16-18] to ensure that tr B is less than or equal to zero. If we rotate the reference
frame about the ith axis

(tr B)rotated = tB; - Bj j - Bkk)unrotated = (2B ii - tr B)unrotated (61)
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where {i, j, k} is a permutation of {1, 2, 3}. Thus no rotation is performed in ESOQ2
if tr B is the minimum of {B l1 , B22, B33 , tr B}, while a rotation about the ith axis is
performed if B; is the minimum. This will ensure the most negative value for the
trace in the rotated frame. As in the QUEST case, the rotation is easily "undone" by
equation (36) or its equivalent after the quaternion has been computed. Note that ef­
ficiently finding an acceptable rotated frame for ESOQ2 does not require an a priori
attitude estimate.

Equation (59) says that the rotation axis is a null vector of M. The columns of
adj M are the cross products of the columns of M, given as

(62)

Because M is singular, all these columns are parallel, and all are parallel to the rota­
tion axis e. Thus we set

e = y/lyl (63)

where y is the column of adj M (i.e., the cross product) with maximum norm. Be­
cause M is symmetric, it is only necessary to find the maximum diagonal element of
its adjoint to determine which column to use.

The rotation angle is found from equation (57) or one of the components of
equation (58). We will show that equation (57) is the best choice. Comparing equa­
tion (20) with the eigenvector/eigenvalue expansion

establishes the identities

and

h

K = 2:A/Lq/LqJ
/L=1

4

tr B = 2:A/L(q/L)~
/L=1

4

Z = 2:A/L(q/L)4q/L
/L=1

(64)

(65)

(66)

Using equation (65) and the orthonormality of the eigenvectors of K, we find that

4

Izl 2 = 2: A~(q/L)~ - (tr B)2
/L=1

(67)

This equation and ~~=1 (q /L)~ = 1 give the inequality

Izi ~ max IA/LI = max(A max , - Amin ) (68)
/L=1,···,4

This shows that choosing the rotated reference system that provides the most nega­
tive value of tr B makes equation (57) the best equation to solve for the rotation
angle. With equation (63), this can be written

(Amax - tr B) IYlcos(</>/2) = (z . y)sin(</>/2)

which means that there is some scalar 11 for which

cos(</>/2) = 11(Z . y)

(69)

(70)
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and

sin(c/J/2) = TJ(A max - tr B) Iyl
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(71)

(72)

Substituting into equation (17) and using equation (63) gives the optimal quaternion
as [24,25]

1 [(Amax - tr B)Y]
qopt = v'1(A max - tr B)y12 + (z . y)2 Z . Y

Note that it is not necessary to normalize the rotation axis. ESOQ2 does not define
the rotation axis uniquely if M has rank less than two. This includes the usual case
of unobservable attitude and also the case of zero rotation angle. Requiring tr B to
be non-positive avoids zero rotation angle singularity, however. We compute Amax by
iterative solution of equation (40) in the general case, as for ESOQ.

First Order Update (ESOQ2.1)

The motivation for and development of this algorithm are similar to those of the
first order update used in ESOQ1.l. The matrix M can be expanded to first order in
LlA == Ao - Amax as

where

M = MO + (LlA)N (73)

and

MO == (Ao - tr B) [(A o + tr B)! - S] - ZZT = [m]' : m~ : m~] (74)

(75)N == S - 2Ao! = [01 : 02 : 03]

To this same order, we have

y == m, X mj = (m]' + oiLlA) X (m]' + ojLlA) = yO + pLlA (76)

where

(77)

and

(78)

The maximum eigenvalue can be found from the condition that M is singular. This
gives the first-order approximation

o = det M = (m, X m.) . m, = (yO + pLlA) . (m] + okLlA)

= r" . m] + (yo. n, + m] . p)LlA (79)

where {i, j, k} is a cyclic permutation of {I, 2, 3}. This is solved for LlA and the atti­
tude estimate is found by substituting equation (76) and Amax = Ao - LlA into
equation (72).

There is an interesting relation between the eigenvalue condition det M(A) = 0
used in ESOQ2.1 and the condition fjJ(A) = 0 used in other algorithms. Since M(A)
is a 3 X 3 matrix quadratic in A, the eigenvalue condition is of sixth order in A.
Straightforward matrix algebra shows that

det M(A) = (A - tr B)2fjJ(A) (80)
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Thus det M(A) has the four roots of tfJ(A), the eigenvalues of Davenport's K matrix,
and an additional double root at tr B. Choosing the rotated reference frame maxi­
mizing -tr B ensures that this double root is far from the desired root at Amax •

Tests

We test the accuracy and speed of MATLAB implementations of these methods,
using simulated data. The q and SVD methods use the functions eig and svd, respec­
tively; the others use the equations in this paper. MATLAB uses IEEE double­
precision floating-point arithmetic, in which the numbers have approximately
sixteen significant decimal digits [26].

We analyze three test scenarios. In all these scenarios, the pointing of one space­
craft axis, which we take to be the spacecraft x axis, is much better determined that
the rotation about this axis. This is a very common case that arises in spacecraft
that point a single instrument (like an astronomical telescope) very precisely. This
is also a characteristic of attitude estimates from a single narrow-field-of-view star
tracker, where the rotation about the tracker boresight is much less well determined
than the pointing of the boresight. The x axis error and the yz error, which is the
error about an axis orthogonal to the x axis and determines the x axis pointing, are
computed from an error quaternion qerr by writing

qerr = [qerr] = [ex Sin(cPx/2)] ® [eyZ Sin(cPyz/2)]

qerr4 cos(cPx/2) cos(cPyz/2)

= [ex cos(cPyz/2)sin(cPx/2) + eyz cos(cPx/2)sin(cPyz/2) - (ex X eyz)Sin(cPx/2)Sin(cPyz/2)]

cos (cPx /2)cos (cPyz /2)

(81)

where ex = [1 0 O]T and e yz is a unit vector orthogonal to ex. We can always find <Px
in [-1T,1T] and cPyz in [0,1T] by selecting e y z appropriately. Then, since e y z and
ex X eyz form an orthonormal basis for the y- z (or 2-3) plane, the error angles are
given by

(82)

and

(83)

Equations (82) and (83) would be unchanged if the order of the rotations about ex
and e y z were reversed; only the unit vector e yz would be different.

The magnitude cPerr of the rotation angle error vector defined by equation (16a) is
given by

COs(cPerr/2) = qerr4 = cos(cPx/2)cos(l/Jyz/2) (84)

Thus l/Jerr/2 is the hypotenuse of a right spherical triangle with sides l/Jx/2 and
l/Jyz/2. The angles l/Jx and l/JyZ are the spherical trigonometry equivalents of two or­
thogonal components of the error vector.

First Test Scenario

The first scenario simulates an application for which the QUEST algorithm has
been widely used. A single star tracker with a narrow field of view and boresight at
[1, 0, O]T is assumed to track five stars at
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[

0.99712 ]
b 3 = -O.~7584,

[

0.99712 ]
and h, = 0

-0.07584
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(85)

We simulate 1000 test cases with uniformly distributed random attitude matrices,
which we use to map the five observation vectors to the reference frame. The refer­
ence vectors are corrupted by Gaussian random noise with equal standard deviations
of 6 arcseconds per axis and then normalized. Equation (33) gives the covariance
for the star tracker scenario as

[
S ]-1

P = (6 arcsec)" 51 - ~ bib; = diag[l565, 7.2, 7.2] arcsec '

which gives the standard deviations of the attitude estimation errors as

(86)

a; = Y1565 arcsec = 40 arcsec and O"yz = Y7.2 + 7.2 arcsec = 3.8 arcsec

(87)

This is a very favorable five-star case, since the stars are uniformly and symmetri­
cally distributed across the tracker's field of view. One advantage of simulating a
fixed star distribution and applying Gaussian noise to the reference vectors rather
than the observation vectors is that equations (85-87) are always valid, and the pre­
dicted covariance can be compared with the results of the Monte Carlo simulation.

The loss function is computed with measurement variances in (radians)", since
this results in 2L(A opt ) approximately obeying a X 2 distribution. The minimum and
maximum values of the loss function in the 1000 test runs are 0.23 and 12.1, respec­
tively. The probability distribution of the loss function is plotted as the solid line in
Fig. 1, and several values of p(x2

1 v) for X 2 = 2L(A opt ) and v = 2n obs - 3 = 7 are
plotted as circles [23]. The agreement is seen to be excellent, which indicates that
the measurement weights accurately reflect the normally-distributed measurement
errors for this scenario.

The RSS (outside of parentheses) and the maximum (in parentheses) estimation
errors over the 1000 cases for the star tracker scenario are presented in Table 1. The
q method and the SVD method should both give the truly optimal solution, since
they are based on robust matrix analysis algorithms [3, 10]. The q method is taken
as optimal by definition, so no estimated-to-optimal differences are presented for
this algorithm, and the differences between the SVD and q methods provide an esti­
mate of the computational errors of both methods. No estimate of the loss function
is provided when no update of Amax is performed, accounting for the lack of entries
in the loss function column in the tables for these cases.

The loss function is computed exactly by both the q and SVD methods, in prin­
ciple. Equation (3) gives Ao = 5.9 X 109 rad -2 for this scenario, so the expected
errors in double-precision machine computation of Amax and thus of the loss function
is on the order of 10- 16 times this, or about 10-6

, in rough agreement with the differ­
ence shown in the table. In fact, all the algorithms that compute the loss function
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FIG. 1. Empirical (Solid Line) and Theoretical (Circles) Loss Function Distribution for the
Seven-Degree-of-Freedom Star Tracker Scenario.
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give nearly the same accuracy in this scenario. The table also shows show that one
Newton-Raphson iteration for Am ax is always sufficient, with a second iteration
providing no practical improvement.

Although the attitude estimates of the different algorithms in Table 1 may be
closer or farther from the optimal estimate, all the algorithms provide estimates that
are equally close to the true attitude. The number of digits presented in the table is
chosen to emphasize this point, but these digits are not all significant; the results of
1000 different random cases would not agree with these cases to more than two
decimal places. The smallest angle differences in the table, about 10-10 arcseconds,
are equal to 5 X 10- 16 radians, which is at the limit of double precision math. The
differences between the estimated and optimal values further show that no update
of Amax is required in this scenario, since the estimates using Ao are equally close to
the truth. Finally, it is apparent that the covariance estimate of equation (86) is quite
accurate.

Second Test Scenario

The second scenario uses three observations with widely varying accuracies to
provide a difficult test case for the algorithms under consideration. The three obser­
vation vectors are

We simulate 1000 test cases as in the star tracker scenario, but with Gaussian noise
of one arcsecond per axis on the first observation and 1° per axis on the other two.
This models the case that the first observation is from an onboard astronomical tele­
scope, and the other two observations are from a coarse Sun sensor and a magne­
tometer, for example. A very accurate estimate of the orientation of the x axis is
required in such an application, but the rotation about this axis is expected to be
fairly poorly determined. This is reflected by the predicted covariance in this sce­
nario, which is to a very good approximation

giving

a ; = 9.3 deg and O"yz = 1.4 arcsec

(89)

(90)

The minimum and maximum values of the loss function computed by the q method
in the 1000 test runs for the second scenario are 0.003 and 8.5, respectively. The
probability distribution of the loss function is plotted as the solid line in Fig. 2, and
several values of the X 2 distribution with three degrees of freedom are plotted as
circles. The agreement is almost as good as the seven-degree-of-freedom case.

The estimation errors for this scenario are presented in Table 2, which is similar
to Table 1 except that the rotation errors about the x axis are given in degrees. The
agreement of the q and SVD methods is virtually identical to their agreement in the
star tracker scenario, but the other algorithms show varying performance. The best
results for the attitude accuracies are in agreement with the covariance estimates of
equation (89).
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FIG. 2. Empirical (Solid Line) and Theoretical (Circles) Loss Function Distribution for the
Three-Degree-of-Freedom Unequal Measurement Weight Scenario.

TABLE 2. Estimation Errors for Unequal Measurement Weight Scenario

RSS (max) estimated-to-optimal RSS (max) estimated-to-true

Algorithm
Amax iterations loss function x (deg) yz (arcsec) x (deg) yz (arcsec)

q 9.5 (34) 1.42 (3.57)
SVD 1.6 (6.9) X 10-5 1.4 (8.0) X 10- 5 7.7 (24) X 10- 11 9.5 (34) 1.42 (3.57)
FOAM 0 1.5 (9.9) 7.9 (29) X 10-3 9.5 (34) 1.42 (3.57)

1 0.09 (0.7) 0.09 (1.1) 8.0 (26) X 10- 3 9.5 (34) 1.42 (3.57)
2 0.0007 (0.012) 0.0008 (0.013) 7.8 (29) X 10- 3 9.5 (34) 1.42 (3.57)

QUEST 0 1.9 (12) 0.4 (3.8) X 10- 3 9.6 (34) 1.42 (3.57)
1 768 (2329) 60 (170) 2.3 (9.0) X 10-3 48 (90) 1.42 (3.57)
2 1796 (38501) 62 (175) 4.8 (95) X 10- 3 48 (91) 1.42 (3.57)

ESOQ2 0 1.5 (9.9) 1.1 (6.8) X 10- 3 9.5 (34) 1.42 (3.57)
1 0.09 (0.7) 0.09 (1.1) 1.3 (9.4) X 10- 3 9.5 (34) 1.42 (3.57)
2 0.0007 (0.012) 0.0008 (0.013) 1.1 (7.1) X 10- 3 9.5 (34) 1.42 (3.57)

ESOQ2.1 1 59 (370) 39 (178) 1.5 (14) X 10- 3 29 (91) 1.42 (3.57)
ESOQ 0 1.9 (12) 4.8 (23) X 10- 3 9.6 (34) 1.42 (3.57)

1 0.09 (0.7) 0.10 (1.1) 5.3 (28) X 10- 3 9.5 (34) 1.42 (3.57)
2 0.0007 (0.012) 0.0008 (0.013) 5.2 (24) X 10- 3 9.5 (34) 1.42 (3.57)

ESOQ1.1 1 327 (1727) 60 (177) 2.6 (34) X 10- 3 43 (90) 1.42 (3.57)
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Equation (3) gives Ao = 8.5 X 1010 rad -2 for this scenario, so the expected accu­
racy of the loss function in double-precision machine computations is on the order of
10-5

, which is the level of agreement between the values computed by the q and
SVD methods. None of the other methods computes the loss function nearly as ac­
curately. This differs from the first scenario, where all the algorithms came close to
achieving the maximum precision available in double-precision arithmetic. The
iterative computation of Amax in QUEST, ESOQ1.1, and ESOQ2.1 is poor, but this
has surprisingly little effect on the determination of the x axis pointing. The deter­
mination of the rotation about the x axis is adversely affected by an inaccurate com­
putation of Amax , however, with maximum deviations from the optimal estimate of
almost 180°. The only useful results of QUEST are obtained by not performing any
iterations for Amax •

As noted in the discussion of the analytic solution of the characteristic equation
for ESOQ1, errors in the computation of the eigenvalues are believed to arise from
inaccurate values of the coefficients of the quartic characteristic equation rather
than from the solution method employed. The superior accuracy of the iterative
computation of Am a x in FOAM, ESOQ, and ESOQ2 as compared to QUEST,
ESOQ1.1, and ESOQ2.1 is likely due to the fact that equation (40) deals with B di­
rectly, while the other algorithms lose some numerical significance by using the
symmetric and skew parts Sand z.

Third Test Scenario

The third scenario investigates the effect of measurement noise mismodeling, il­
lustrating problems that first appeared in analyzing data from the Upper Atmo­
sphere Research Satellite [27]. Of course, no one would intentionally use erroneous
models, but it can be very difficult to determine an accurate noise model for real
data, and the assumption of any level of white noise is often a poor approximation to
real measurement errors. This scenario uses the same three observation vectors as
the second scenario, given by equation (88). We again simulate 1000 test cases, but
with Gaussian white noise of 1°per axis on the first observation and 0.1° per axis on
the other two. The estimator, however, incorrectly assumes measurement errors of
0.1° per axis on all three observations, so it weights the measurements equally.

The minimum and maximum values of the loss function computed by the q
method in the 1000 test runs for the third scenario are 0.07 and 453, respectively.
The probability distribution of the loss function is plotted in Fig. 3. The theoretical
three-degree-of-freedom distribution was plotted in Fig. 2; it is not plotted in Fig. 3
since it would be a very poor fit to the data. More than 95% of the values of L(Aopt )

are theoretically expected to lie below 4, according to the X 2 distribution of Fig. 2,
but almost half of the values of the loss function in Fig. 3 have values greater than
50. Shuster has emphasized that large values of the loss function are an excellent
indication of measurement mismodeling or simply of bad data.

The estimation errors for this scenario are presented in Table 3, which is similar
to Tables 1 and 2 except that all the angular errors are given in degrees. The truly
optimal q and SVD methods agree even more closely than in the other scenarios.
Equation (3) gives Ao = 5 X 105 rad -2 for this scenario, so the expected accuracy of
the loss function in double-precision machine computations is on the order of 10-10

,

the level of agreement between the q and SVD methods. As in the second scenario,
none of the other methods computes the loss function nearly as accurately. In the
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FIG. 3. Empirical Loss Function Distribution for the Mismodeled Measurement Weight Scenario.

TABLE 3. Estimation Errors for Mismodeled Measurement Weight Scenario

RSS (max) estimated-to-optimal RSS (max) estimated-to-true

Algorithm
A. max iterations loss function x (deg) yz (deg) x (deg) yz (deg)

q 0.96 (3.62) 0.49 (1.17)
SVD 4.1 (22) X 10- 10 3.8 (17) X 10-12 2.3 (7.3) X 10-14 0.96 (3.62) 0.49 (1.17)
FOAM 0 0.7 (5.9) 4.0 (21) X 10-3 1.18 (5.42) 0.49 (1.16)

1 2.6 (24) 0.020 (0.33) 1.0 (11) X 10-4 0.96 (3.60) 0.49 (1.17)
2 0.004 (0.07) 0.4 (10) X 10-4 1.7 (35) X 10-7 0.96 (3.62) 0.49 (1.17)

QUEST 0 0.9 (7.6) 4.3 (29) X 10-3 1.27 (7.66) 0.49 (1.16)
1 2.6 (24) 0.023 (0.33) 1.1 (11) X 10-4 0.96 (3.60) 0.49 (1.17)
2 0.004 (0.07) 0.4 (10) X 10-4 1.7 (35) X 10-7 0.96 (3.62) 0.49(1.17)

ESOQ2 0 0.7 (5.9) 4.0 (21) X 10-3 1.18 (5.42) 0.49 (1.16)
1 2.6 (24) 0.020 (0.33) 1.0 (11) X 10-4 0.96 (3.60) 0.49 (1.17)
2 0.004 (0.07) 0.4 (10) X 10-4 1.7 (35) X 10-7 0.96 (3.62) 0.49 (1.17)

ESOQ2.1 1 2.6 (24) 0.020 (0.33) 0.6 (5.8) X 10-4 0.96 (3.60) 0.49 (1.17)
ESOQ 0 0.9 (7.6) 4.3 (29) X 10-3 1.27 (7.66) 0.49 (1.16)

1 2.6 (24) 0.023 (0.33) 1.1 (11) X 10-4 0.96 (3.60) 0.49 (1.17)
2 0.004 (0.07) 0.4 (10) X 10-4 1.7 (35) X 10-7 0.96 (3.62) 0.49(1.17)

ESOQl.l 1 2.6 (24) 0.023 (0.33) 1.3 (27) X 10-6 0.96 (3.60) 0.49(1.17)
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third scenario, though, the iterative computation of Amax works well for all the al­
gorithms, and both iterations improve the agreement of the loss function and atti­
tude estimates with the optimal values. The first order refinement is reflected in a
reduction of the attitude errors, particularly in determining the rotation about the x
axis, but no algorithm is aided significantly by a second-order update. As in the
first scenario, all the algorithms with the first order update to Amax perform as well
as the q and SVD methods.

Speed

Absolute speed numbers are not very important for ground computations, since
the actual estimation algorithm is only a part of the overall attitude determination
data processing effort. Speed was more important in the past, when thousands of at­
titude solutions had to be computed by slower machines, which is why QUEST was
so important for the MAGSAT mission. For a real-time computer in a spacecraft at­
titude control system or a star tracker, which must finish all its required tasks in a
limited time, the longest computation time is more important than the average time.
This would penalize some algorithms for real-time applications, unless we elimi­
nate the need for sequential rotations by using the methods described above. Our
speed comparisons use an a priori quaternion for QUEST and ESOQ, or the diago­
nal elements of B for ESOQ2, to eliminate these extra computations. Its indepen­
dence from a priori attitude information somewhat favors ESOQ2 for real-time
applications.

Figures 4 and 5 show the maximum number of MATLAB floating-point opera­
tions (flops) to compute an attitude using two to six reference vectors; the times to
process more than six vectors follow the trends seen in the figure. The inputs for the
timing tests are the nobs normalized reference and observation vector pairs and their
nobs weights. One thousand test cases with random attitudes and random reference
vectors with Gaussian measurement noise were simulated for each number of refer­
ence vectors.

Figure 4 plots the times of the more robust methods. The break in the plots for
FOAM, ESOQ, and ESOQ2 at nobs = 3 results from using an exact solution of the
characteristic equation in the two-observation case, when det B = 0 and equa­
tion (40) shows that t/J(A max) is a quadratic function of A;ax. For three or more
observations, these algorithms are timed for a first-order update to Amax using
equation (40). Additional iterations for Amax are not expensive, costing only 11 flops
each. It is clear that the q method and the SVD method require significantly more
computational effort than the other algorithms, as expected. The q method is more
efficient than the SVD method, except in the least interesting two-observation case.
The other three algorithms are much faster, with the fastest, ESOQ and ESOQ2,
being nearly equal in speed. An implementation of the q method computing only the
largest eigenvalue of the K matrix and its eigenvector would be faster in principle
than eig; which computes all four eigenvalues and eigenvectors. However, the
MATLAB routine that can be configured this way is much slower than eig, This op­
tion was not investigated further, since the q method is unlikely to be the method of
choice when speed is a primary consideration.

Figure 5 compares the timing of the fastest methods, which generally use zeroth
order and first order approximation for Amax. Both QUEST(l) and ESOQ2.1 use the
exact quadratic solution for Amax in the two-observation case, but ESOQ1.1 uses its



378 Markley and Mortari

·····SVO············

" " " " :.. " q.~~t~~ " " "..

......................................................................................
· . .· . .· .· .
· . .· . ..................................................................................................................
· . .· . .· . .

600

1100 .

1000 . . " " "" "--'. ---,.....,........

12oo,...----------r--------~--------r-----------,

500

400

............................. : : : .
· .· .· .· .· .· .

654
number of observedvectors

ESOQ

3

FOAM

300

2OO'--------.........-------"'---------.a...---------'
2

FIG. 4. Execution Times for Robust Estimation Algorithms. FOAM, ESOQ, and ESOQ2 Use First
Order Approximation for "-max.

faster first order approximation for any number of observations. It is clear that
ESOQ and ESOQ2 are the fastest algorithms using the zeroth order approximation
for Amax , and ESOQl.l is the fastest of the first order methods.

Conclusions

This paper has examined the most useful algorithms for estimating spacecraft at­
titude from vector measurements based on minimizing Wahba's loss function.
These were tested in three scenarios, which show that the most robust, reliable, and
accurate estimators are Davenport's q method and the Singular Value Decomposi­
tion (SVD) method. This is not surprising, since these methods are based on robust
and well-tested general-purpose matrix algorithms. The q method, which computes
the optimal quaternion as the eigenvector of a symmetric 4 X 4 matrix with the
largest eigenvalue, is the faster of these two.

Several algorithms are significantly less burdensome computationally than the q
and SVD methods. These methods are less robust in principle, since they solve the
quartic characteristic polynomial equation for the maximum eigenvalue, a proce­
dure that is potentially numerically unreliable. Algorithms that use the form of the
characteristic polynomial from the Fast Optimal Attitude Matrix (FOAM) algo­
rithm performed as well as the q and SVD methods in practice, however. The fastest
of these algorithms are the EStimators of the Optimal Quaternion, ESOQ and
ESOQ2. The execution times of these methods are reduced by using the information
from an a priori attitude estimate to eliminate sequential rotations in QUEST and
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extra computations in ESOQ, or information derived from the observations to speed
ESOQ2.

All the algorithms tested perform as well as the more robust algorithms in cases
where measurement weights do not vary too widely and are reasonably well mod­
eled. If the measurement uncertainties are not well represented by white noise, how­
ever, an update is required, while this update can be unreliable if the measurement
weights span a wide range. The examples in the paper show that these robustness
concerns are not an issue for the processing of multiple star observations with com­
parable accuracies, the most common application of Wahba's loss function. Thus the
fastest algorithms, the zeroth-order ESOQ and ESOQ2 and the first-order ESOQl.l,
are well suited to star tracker attitude determination applications. In general-purpose
applications where measurement weights may vary greatly, one of the more robust
algorithms may be preferred.
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