
                                                                                                              Revista Brasileira de Ornitologia 26(2): 2018

Revista Brasileira de Ornitologia 26(2): 90–104.
June 2018

ARTICLE

HABITAT USE AND SELECTION IN BIRDS: 
FROM THEORY TO MODEL FIT

In the last decades, habitat use and selection has emerged 
as a basic aspect of bird ecology, due to its importance in 
natural history, distribution, response to environmental 
changes, management and conservation of bird species 
(Cody 1985, Guisan & Thuiller 2005, Engler et al. 
2017). Despite the long tradition of the study of habitat 
use and selection in birds, however, almost 20 years 
ago, Jones (2001) had noticed ornithologists usually 
tended to be inconsistent of what habitat use and 
selection represent, with major implications on their 
hypothesis and conclusions about bird ecology (Jones 
2001). Currently, some confusion between these terms 
still persists as a general issue in animal ecology (Lele 
et al. 2013, Boyce et al. 2016, McGarigal et al. 2016). 
Here, “habitat” is defined as a distinctive set of physical 
environmental factors that a species uses for survival and 
reproduction (Jones 2001, Lele et al. 2013). “Habitat 
use” refers to the way in which an individual or species 
uses habitats to meet its life history needs (Jones 2001). 
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ABSTRACT: Studies on habitat use and habitat selection represent a basic aspect of bird ecology, due to its importance in natural 
history, distribution, response to environmental changes, management and conservation. Basically, a statistical model that identifies 
environmental variables linked to a species presence is searched for. In this sense, there is a wide array of analytical methods that 
identify important explanatory variables within a model, with higher explanatory and predictive power than classical regression 
approaches. However, some of these powerful models are not widespread in ornithological studies, partly because of their complex 
theory, and in some cases, difficulties on their implementation and interpretation. Here, I describe generalized linear models and 
other five statistical models for the analysis of bird habitat use and selection outperforming classical approaches: generalized additive 
models, mixed effects models, occupancy models, binomial N-mixture models and decision trees (classification and regression 
trees, bagging, random forests and boosting). Each of these models has its benefits and drawbacks, but major advantages include 
dealing with non-normal distributions (presence-absence and abundance data typically found in habitat use and selection studies), 
heterogeneous variances, non-linear and complex relationships among variables, lack of statistical independence and imperfect 
detection. To aid ornithologists in making use of the methods described, a readable description of each method is provided, as well 
as a flowchart along with some recommendations to help them decide the most appropriate analysis. The use of these models in 
ornithological studies is encouraged, given their huge potential as statistical tools in bird ecology. 
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“Habitat selection”, by contrast, refers to a hierarchical 
process of behavioral responses that may result in the 
disproportionate use of habitats to influence survival and 
fitness of individuals (McGarigal et al. 2016). Therefore, 
habitat selection refers to a process, whereas habitat use 
refers to the pattern resulting from habitat selection 
(Jones 2001).

In the field, standard approaches to assess bird 
habitat use or selection involve: (1) sampling the presence 
or abundance of individuals of a species across sampling 
units (typically transects or point counts; Bibby et al. 2000) 
across different habitat types, (2) comparing presence 
locations with random locations where the species could 
potentially be present across different habitat types (use-
availability or case-control approach; Jones 2001, Keating 
& Cherry 2004, Johnson et al. 2006), or (3) using tracking 
devices on individual birds to acquire location data and 
compare them to available locations where the species 
was not recorded (Burger & Shaffer 2008, Wakefield et 
al. 2009, Bridge et al. 2011). With the rise of powerful 
statistical methods and the advancement of computing 
facility, more complex designs have been developed 



Model selection in bird ecology
Palacio

91

                                                                                                              Revista Brasileira de Ornitologia 26(2): 2018

to assess habitat use and selection. For instance, these 
approaches can be extended to make repeated visits at 
the same sampling sites (temporal dependence), repeated 
observations on the same individuals (e.g. individuals 
tracked) or sampling many sites located nearby (spatial 
dependence). Notwithstanding, a plethora of statistical 
models outperforming classical linear models and which 
have been used for a while in other research areas (e.g. 
generalized linear and additive mixed models, Hastie & 
Tibshirani 1990, Bolker et al. 2009, Zuur et al. 2009; 
classification and regression trees, De'ath 2002, 2007; 
Ecological Niche Factor Analysis, Hirzel et al. 2002, 
Basille et al. 2008; quantile regression, Cade & Noon 
2003; regularization methods such as ridge regression and 
LASSO, Reineking & Schröder 2006, James et al. 2013; 
Artificial Neural Networks, Lek & Guégan 1999; Flexible 
Discriminant Analysis, Hastie et al. 1994; Support Vector 
Machines, Kecman 2005; Bayesian approaches, Ellison 
2004) are still not widespread among ornithologists. 
Some of these methods (e.g. generalized additive models, 
mixed models), nevertheless, have been widely used in 
some particular bird groups, such as seabirds (Wakefield 
et al. 2009, Engler et al. 2017). This phenomenon may 
be partly due to their relatively complex theory, and in 
some cases, difficulties on their implementation and 
interpretation (Bolker et al. 2009, Zuur et al. 2009, 
Dahlgren 2010). This is accentuated for Bayesian 
modeling, which represents a completely different 
statistical paradigm (Dennis 1996, Dorazio 2016). 
Moreover, early-career researchers tend to be reluctant to 
new analytical methods, as a result of self-perceived lack 
of quantitative training (Barraquand et al. 2014). Despite 
these issues, the methods mentioned typically both offer 
greater insight than classical approaches and represent no 
longer a problem in terms of statistical assumptions (Elith 
et al. 2006, Bolker et al. 2009, Elith & Graham 2009, 
Shabani et al. 2016).

From a statistical view, habitat use models aim to 
identify environmental variables linked to a species 
presence or abundance, and are species distribution models 
by definition (Guisan & Zimmerman 2000). On the 
other hand, habitat selection models link environmental 
variables with some proxy of fitness (nest site location, 
territories, reproductive output; Jones 2001). Although 
both types of models represent a correlative relationship 
between a bird species and its habitat, they are often 
expressed as a causal relationship, where the environment 
influences or explains the presence or abundance of a 
certain species:

� �0Ŷ b f x� �  

where Ŷ  is the probability of occurrence or abundance 
of a bird species, b0 is the intercept, x is an environmental 
variable, which may be represented by a categorical 

(different habitat types), ordinal or quantitative variable 
(e.g. environmental gradient), and f(x) is a function of 
x. This simple model is suited for both habitat use and 
habitat selection studies, as it makes no assumptions of 
underlying processes, but just represents relationships 
between variables. It depends on the researcher whether 
this model is to be considered a habitat use or selection 
model (see Jones 2001). Beyond this theoretical discussion, 
the aim of this work is to describe some statistical methods 
appropriate for modeling the relationship between birds 
and their environment. As stated before, there is a myriad of 
methods that identify important environmental variables 
within a model, such as generalized additive models, 
mixed effects models, occupancy models, binomial 
mixture models and decision trees (classification and 
regression trees, bagging, random forests and boosting). 
In particular, these methods allow dealing with non-
normal distributions (presence-absence and abundance 
data typically found in habitat use and selection studies), 
heterogeneous variances, non-linear relationships among 
variables, lack of statistical independence and imperfect 
detection. Here, I review these methods in order to (1) 
show the basics of each model with a readable description, 
(2) encourage ornithologists who are unfamiliar with the 
benefits of these methods to apply some of these analyses 
in their studies, and (3) help them to decide on which 
model to fit.

All graphs and models were built in R 3.3.1 (R Core 
Team 2016) using the packages lme4 (Bates et al. 2015), 
mgcv (Wood 2006), unmarked (Fiske & Chandler 2011), 
rpart (Therneau et al. 2015) and rpart.plot (Milborrow 
2017). 

REVIEW OF MODELING METHODS

Classical approaches: Generalized Linear Models

Generalized Linear Models (GLM) extend the classical 
linear regression approach by allowing different error 
distributions (not only normal) and the inclusion of non-
homogeneous variances (Nelder & Wedderburn 1972). 
Every GLM has three basic components: (1) an error 
structure or random component, (2) a linear predictor or 
systematic component, and (3) a link function. The error 
structure corresponds to the distribution probability of 
the residuals (i.e. observed – predicted values), whereas 
the linear predictor represents the set of environmental 
variables. Finally, the link function � �ˆg Y  is a function 
of the response variable that links the error structure 
with the linear predictor, and makes the function linear 
(Dobson 2002):

� � 0 1
ˆg Y b b x� �
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where Ŷ  is the predicted occurrence or abundance of a bird 
species, � �ˆg Y  is a function of Ŷ , x is an environmental 
variable, and b0 and b1 represent model coefficients. This 
simple model can be expanded to include non-linear 
effects through quadratic and interaction terms:

g�Y�� = b0+b1x1+b2x2+b3x1
2+b4x2

2+b5x1x2 

where x1 and x2 represent environmental variables and 
bi's represent model coefficients. Although GLMs can 
provide non-linear fits by including quadratic or cubic 
terms, they must use a high degree to produce flexible 
fits. Presence-absence data follow a binomial distribution 
(Pearce & Ferrier 2000), whereas count data may follow a 
Poisson, negative binomial or zero–inflated distributions 
(Welsh et al. 1996, Guisan et al. 2002, Ver Hoef et al. 
2007). For the univariate case, binomial and Poisson 
GLMs are expressed, respectively, as:

� �
� �

� �

0 1

0 1

0 1

expˆ
1 exp

ˆ exp

b b x
Y

b b x

Y b b x

�
�

� �

� �

where b0 and b1 are model coefficients. Link functions 
transforming both models into a straight line are the logit 

ˆ
log

ˆ1

Y
Y

� �
	 

�� 

 and the log function, respectively (Dobson 

2002):

� �
0 1

0 1

ˆ
log

ˆ1

ˆlog

Y b b x
Y

Y b b x

� �
� �	 


�� 

� �

The binomial GLM predicts the probability of 
occurrence of a species (Fig. 1), but the measured 
outcome is often codified as 0 (absent) and 1 (present). 
This model describes a logistic curve, and indeed, 
aroused independently from linear regression under the 
name of logistic regression (Hosmer-Jr. et al. 2013). 
The Poisson GLM, in contrast, predicts values between 
0 and +∞, as the response is represented by count data 
(Fig. 1). By using a Poisson distribution, heterogeneous 
variances are controlled, given that the expected value 
(mean) equals the variance. Thus, the larger the Ŷ , the 
larger the variance of the residuals (Fig. 1). However, in 
ecological data it is common for the variance to be larger 
than expected under a Poisson distribution (e.g. clumped 
distributions), which is termed “overdispersion” (Ver Hoef 
& Boveng 2007, Richards 2008, Lindén & Mäntyniemi 
2011). Overdispersion may lead to wrong conclusions as 

it inflates P-values, and thus it is imperative to control 
for it (Zuur et al. 2009). There are several ways to do 
so, which depends on the kind of data and amount of 
overdispersion. Essentially, it can be corrected by either 
including an overdispersion parameter (quasi-Poisson 
GLM) or using another distribution (negative binomial 
or zero-inflated; Potts & Elith 2006, Ver Hoef & Boveng 
2007). 

Examples of GLMs applied to birds include Oppel 
et al. (2012), who compared five modeling techniques, 
including GLMs, to predict the distribution of the 
Balearic Shearwater Puffinus mauretanicus. Rodríguez-
Pastor et al. (2012) used a Poisson GLM to assess habitat 
use of the invasive Monk Parakeet Myiopsitta monachus 
in an urban area from Mexico, and Shahan et al. (2017) 
assessed the importance of local and landscape variables 
on grassland bird occurrence of prairie fragments using 
binomial GLMs.

Beyond linearity: Generalized Additive Models

GLMs establish relationships between the response 
and the environmental variables in a linear fashion. 
However, it is common for a species to show non-linear 
relationships with environmental variables, where species 
select environmental conditions in which they can survive 
and reproduce optimally. As a result, the presence or 
abundance of a species along an environmental gradient is 
usually unimodal (Austin 1987, Palmer & Dixon 1990). 
Generalized Additive Models (GAMs) extend GLMs 
by allowing the estimation of non-linear relationships 
between the response and the environmental variables, 
without assuming an a priori shape (Hastie & Tibshirani 
1990, Yee & Mitchell 1991, Guisan et al. 2002). They 
are said to be data-driven instead of model-driven (like 
GLMs). A GAM is expressed as:

g�Y�� = b0+f(x) 

where f(x) is a non-linear function of x. Therefore, this 
model assumes no particular relationship between the 
response and the environmental variables. Like GLMs, 
GAMs can also use the same error distributions to model 
presence-absence and abundance data (binomial, Poisson, 
negative binomial, zero-inflated distributions) and link 
functions (logit, log; Yee & Mitchell 1991, Barry & 
Welsh 2002). Therefore, for presence-absence and count 
data, respectively, univariate GAMs are expressed as:

� �
� �

� �

0

0

0

exp
ˆ

1 exp

ˆ exp

b f x
Y

b f x

Y b f x

�� �� ��
� �� �� �

� �� �� �
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Basically, GAMs fit a smoothing curve by dividing 
the data into regions called “windows” at certain point 
locations called “knots”, and then fit individual functions 
called splines within each window (Hastie & Tibshirani 
1990, Zuur et al. 2009, James et al. 2013). There are many 
types of splines, but the most common involve cubic 
regression and smoothing splines. Cubic regression splines 
are cubic polynomials which are then joined together to 
form a smoothing curve (Zuur et al. 2009, James et al. 
2013). Smoothing splines (also called penalized splines 
or P-splines) arise in a different situation, in which the 
aim is to find a function f(x) minimizing a residual sum 
of squares (RSS) subject to a smoothness penalty (Zuur et 
al. 2009, James et al. 2013):

� � � �2

Y f x J f�� �� �� ��
The first term is the RSS and measures the fit 

between the observed Y and expected values f(x).  

Minimizing only this term would lead to a function f(x) 
that exactly interpolates the data (James et al. 2013). Such 
a curve would be extremely rough, zigzagging among the 
different observed values, and with low predictive value. 
The second term is a penalty term measuring the degree 
of smoothness of the function f(x) (James et al. 2013), 
which is the product of a smoothness or tuning parameter 
� and 

� � � �
2

''J f f x dx� �
 where f ''(x) is the second derivative of f(x). In practical 
terms, J(f) is a summed curvature of f(x), which means it 
is a measure of roughness: it is large if f(x) is very wiggly, 
and it is zero if it is a straight line (James et al. 2013). If 
� = 0, the penalty term has no effect, and f(x) will exactly 
interpolate the data. When � is large, f(x) will be perfectly 
smooth (i.e. a straight line). Whatever type of spline is 
used, the result is that each environmental variable is 

Figure 1. Flowchart illustrating how to select appropriate habitat use and selection models according to data properties. Rectangles 
hold questions, and ellipses contain recommended models. For most models (except for the classification tree), a hypothetical example 
using only one environmental variable is shown for the two most common data types in habitat models: presence-absence and 
abundance data. Points depict observations, black lines depict overall fitted models and red bands represent 95% confidence intervals. 
In decision trees, Xs represent environmental variables and values inside boxes, predicted values. Different colors in mixed models 
(GLMM and GAMM) indicate different levels of random effects (e.g. individuals, transects, point counts, etc.). Rounded corner boxes 
include R packages to perform the analysis. This is not a comprehensive review, but merely a guide to aid ornithologists to use an 
appropriate method. To choose a model, the researcher should also accompany this flowchart with data exploration, model validation 
and selection (see text for further details). BM - Binomial Mixture, GLM - Generalized Linear Model, GLMM - Generalized Linear 
Mixed Model, GAM - Generalized Additive Model, GAMM - Generalized Additive Mixed Model.
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included in the model as a non-parametric smoothing 
function (Fig. 1). This only applies for numeric and 
ordinal data; nominal variables are included like in GLMs, 
in which case it is called a semi-parametric model, since 
it includes both non-parametric and parametric terms 
(James et al. 2013):

g�Y�� = b0+f(x1)+b1x2 

where x1 and x2 are numeric and nominal, respectively, 
variables, and b1 is a parametric coefficient.

GAMs, in contrast to GLMs, provide non-linear fits 
by increasing the number of knots but keeping the degree 
fixed (James et al. 2013). The main drawback of GAMs 
is that the fitted model is represented by a complex 
equation, and no coefficient estimates and standard errors 
are provided (Wood 2006, Zuur et al. 2009, Hegel et al. 
2010). Instead, the significance of the model itself and 
the environmental variables is assessed, and a graphical 
display of the model relating environmental with response 
variables is often more useful (Wood 2006, Hegel et al. 
2010). 

Seabird ecology, contrary to terrestrial bird ecology, 
has often used GAMs as part of its statistical toolbox 
(Wakefield et al. 2009). As an example, Olivier & 
Wotherspoon (2006) assessed habitat selection in Wilson's 
Storm Petrel (Oceanites oceanicus) in both ice and ice-
free areas where it nests. By using remote-sensing data, 
Fauchald et al. (2017) applied GAMs to relate foraging 
locations of Antarctic Petrels (Thalassoica antarctica) 
with melting ice and primary production. Pereira et al. 
(2018) used a combination of different models, including 
GAMs, to predict 30 seabird distributions as a function 
of different environmental stressors (fishing intensity, 
ship density and oil pollution risk). An example of 
the use of GAMs in terrestrial birds is Whitaker et al. 
(2015), who investigated the habitat use of the threatened 
Newfoundland Gray-cheeked Thrush (Catharus minimus 
minimus) at both local and landscape scales.

When assumptions of classical models are not met: 
mixed effects models

In habitat use and selection studies, it is often the 
case for ornithologists to take repeated samples of the 
same units (individual birds, point counts, transects, 
nests) over time (within a year, across years) or to have 
hierarchical or nested data (e.g. several samples of the 
same bird on different times). Under these scenarios of 
statistical non-independence, GLMs and GAMs are 
no longer valid, as these assume independence among 
observations (Hastie & Tibshirani 1990, Dobson 2002, 
Zuur et al. 2009). To cope with this, mixed effects models 
(or just mixed models; Bolker et al. 2009, Dingemanse 

& Dochtermann 2013, Schielzeth & Nakagawa 2013) 
treat some factors grouping several observations that do 
not represent a directly measured effect (e.g. individual, 
point count, year, date, site, etc.) as random variables (i.e. 
random factors or effects). For the sake of simplicity, I will 
consider only one random factor (e.g. individuals or point 
counts with repeated observations). Fixed effects, on the 
contrary, represent the effects that explanatory variables 
have on the response variable and are supposed to be 
determined or fixed by the researcher (Bolker et al. 2009, 
Dingemanse & Dochtermann 2013), here represented by 
the environmental variables. Models are termed “mixed” 
because they include both random and fixed effects 
(Dingemanse & Dochtermann 2013) and are particularly 
valuable for identifying the source of unobserved variability 
and accounting for it, thus reducing the overall variance 
of the model (Bolker et al. 2009). Overall, mixed models 
extend GLMs and GAMs by including random effects, 
which are called, respectively, Generalized Linear Mixed 
Models (GLMMs) and Generalized Additive Mixed 
Models (GAMMs). As extensions of GLMs and GAMs, 
mixed models may use the same error and link functions. 

In the simplest case, GLMMs and GAMMs can be 
expressed, respectively, as:

� �
� � � �

0 1

0

ˆ

ˆ

g Y b b x

g Y b f x

�

�

� � �

� � �
 

Here, the intercept b0 represents the grand mean 
of average individual or point count responses, whereas 
� is each individual›s or point count›s unique average 
response (random effect) with � coefficients normally 
distributed with a certain variance (Zuur et al. 2009, 
Dingemanse & Dochtermann 2013). In this model, the 
contribution of individuals or point counts is estimated 
as the difference from the population line by including 
intercepts for each individual or point count and keeping 
slopes constant (Dingemanse & Dochtermann 2013). 
This is called a random intercept model, as the intercepts 
of the individuals or point counts are assumed to be 
normally distributed with mean zero and variance �2 
(Zuur et al. 2009, Dingemanse & Dochtermann 2013). 
This �2 represents the variance across random intercepts of 
individuals or point counts. In other words, in a random 
intercept GLMM there is an overall trend represented by 
the first two terms of the model (fixed effect), and one 
line fitted to each individual or point count parallel to the 
population fitted line (random effect), whose intercepts 
are assumed random (Fig. 1). 

We may further suspect that the relationship 
between the environmental variables and the response is 
different for each individual or point count (i.e. they have 
different intercepts and slopes). By extension, intercepts 
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�1 and slopes �2 can vary randomly by assuming normal 
distributions with means zero and variances �1

2 and �2
2, 

respectively. This is called a random intercept and slope 
model (Zuur et al. 2009; Fig. 1):

� � � � � �

� � � � � �
0 1 1 2

0 1 2

ˆ

ˆ

g Y b b x z

g Y b f x z

� �

� �

� � � �

� � � �� �� �

The first two terms represent the average 
relationship between presence or abundance and an 
environmental variable x, whereas the last two terms 
represent now individual curves for each of the point 
counts or individuals, whose intercepts �1 and slopes �2 
vary randomly. In this model, z may be represented by 
different environmental variables including x, but this 
notation is used to distinguish the fixed component 
from the random one. The decision between both kinds 
of models is based on model selection or in biological 
meaning (see below; Zuur et al. 2009). It is worth 
mentioning that more complex designs exist, that allow 
including nested random factors, as well as spatial and 
temporal autocorrelation (nearby sampling units in 
space or time) commonly found in ornithological studies 
(Zuur & Ieno 2016). A comprehensive review is beyond 
the scope of this work. Under these scenarios, readers 
are encouraged to see Dormann et al. (2007), Zuur et al. 
(2009) and Zuur & Ieno (2016).

Mixed models have been used to fit the abundance 
and/or occurrence of birds to environmental variables. 
As examples, Paiva et al. (2010, 2013a, 2013b) analyzed 
foraging habitat use of different populations of Cory's 
Shearwater (Calonectris diomedea borealis) using Gaussian 
or binomial GLMMs with foraging trip nested within 
individual bird as random factor. Palacio (2016) assessed 
the habitat use of the Tufted-tit Spinetail (Leptasthenura 
platensis) in several forest remnants using a binomial 
GLMM with forest patch as random factor grouping 
occurrence records. Heldbjerg et al. (2017) analyzed 
GPS-location use of different land cover types as a 
function of the distance to the nest in the European 
Starling (Sturnus vulgaris) using a binomial GLMM 
with the identity of the individual as random factor. As 
in the case of GAMs, seabird ecologists have often used 
GAMMs to model habitat use and selection (Wakefield 
et al. 2009). Paiva et al. (2017), for instance, compared 
foraging habitat use derived from GPS-loggers between 
female and male Cory's Shearwaters in six breeding 
seasons. An example of GAMM applied to terrestrial 
birds is Sitters et al. (2014), who assessed the relationship 
between forest bird occurrence of 15 bird species, habitat 
structure and time since fire in a 70-year chronosequence 
using binomial GAMMs and specifying landscape (units 
of 100 ha separated by at least 3 km) and site (transects 

within landscapes) as random factors.

Accounting for imperfect detection: occupancy and 
binomial N-mixture models

So far, all the models described assume that detection of 
a species is perfect, that is, that every individual in the 
field is recorded. True absences are virtually impossible 
to assure, given the different sources of variation that 
may cause false negatives (a species may occur unnoticed 
either due to low abundance, cryptic or elusive habits, 
misidentification, or erroneous sampling designs; 
MacKenzie et al. 2005, Zuur et al. 2009, Guillera-Arroita 
2017). Failure to account for imperfect detection may bias 
model parameter estimates, as the proportion of sites with 
presences (occupancy) will always underestimate the true 
occupancy, even with low levels of non-detection (Gu & 
Swihart 2003). Occupancy models account for imperfect 
detection by estimating both an occupancy probability � 
and a detection probability p based on making multiple 
visits at the same sample sites (called “detection histories”; 
MacKenzie et al. 2005, Guillera-Arroita 2017; Fig. 1). 
Mathematically, imperfect detection means p < 1. The 
essence of the method is that if a species is recorded in a 
given site (usually coded as 1), and then it is undetected 
(usually coded as 0), it is assumed that the site is 
occupied and the absences represent non-detections. As 
probabilities, both occupancy and detection are assumed 
to be binomially distributed (MacKenzie et al. 2005). In 
turn, each parameter may be constant or a function of 
one or more environmental variables, alike a binomial 
GLM (Welsh et al. 2013):

� �
� �

� �
� �

0 1

0 1

0 1

0 1

exp

1 exp

exp

1 exp

b b x
b b x

x
p

x

�

� �
� �

�
�

� �

�
�

� �

 

where � is occupancy probability, p is detection 
probability (given the species is present in a certain 
sampling site), x is an environmental variable (it may 
be the same or not for both occupancy and detection), 
and b0, b1, �0 and �1 are model coefficients (Fig. 1). This 
occupancy model may be one of the simplest approaches, 
and several extensions have been developed to expand 
this framework (e.g. multi-season: MacKenzie et al. 2003; 
multi-species: Dorazio et al. 2006, Richmond et al. 2010, 
Rota et al. 2016; alternative sampling designs: Lele et al. 
2012, Specht et al. 2017).

A similar idea may be applied to deal with abundance 
instead of presence-absence data. Binomial N-mixture 
models (or N-mixture models) estimate both abundance 
N and detection probability p from abundance data 
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(Dodd-Jr. & Dorazio 2004, Kéry et al. 2005, Royle et al. 
2005; Fig. 1). As before, p is assumed to be binomially 
distributed, whereas N is assumed to follow some 
distribution for count data (Poisson, negative binomial, 
zero inflated; Kéry 2008, Joseph et al. 2009). Assuming 
a Poisson distribution with mean �, both � and p can be 
modeled as functions of environmental variables:

where N is the expected number of individuals, � is the 
mean expected abundance, p is detection probability, x is 
an environmental variable, and b0, b1, �0 and �1 are model 
coefficients.

Models accounting for imperfect detection have 
several assumptions, the most important being the 
independence among sampling sites and the closed state 
of occupancy or demographic closure (Kéry et al. 2005, 
MacKenzie et al. 2005), which means that occupancy 
does not change at a site within the sampling period. 
Despite being promising tools, occupancy models suffer 
from several caveats. The estimating equations often 
have multiple solutions and the estimates are unstable 
when data are sparse, making accurate inference difficult 
(Welsh et al. 2013). Most importantly, when detection 
depends on abundance, model estimates are biased 
with similar magnitude to those biases obtained when 
ignoring non-detection (Welsh et al. 2013). As Welsh et 
al. (2013) has shown in a simulation study, occupancy 
modeling is not always applicable and should not be used 
indiscriminately to account for imperfect detection. In 
particular, sparse data (i.e. low number of occupied sites) 
results in extreme fits (0 or 1) for both detection and 
occupancy, because small changes in the data have large 
effects on the estimated parameters. Also, when detection 
is suspected to depend on abundance, occupancy models 
perform poorly (Welsh et al. 2013; but see Guillera-
Arroita et al. 2014). Recently, however, Specht et al. 
(2017) proposed an alternative sampling design in which 
each of the sites is visited once, and sites where the species 
is encountered in the first survey are visited an additional 
number of times to better estimate detection probability. 
This conditional design expending a greater relative effort 
at occupied sites leads to improved parameter estimates 
(Specht et al. 2017). 

In the last years, numerous applications of 
occupancy modeling and, to a lesser extent, N-mixture 
models have been applied to bird habitat use and 
selection. For instance, Parashuram et al. (2015) related 
Forest Thrush (Turdus lherminieri) abundance to forest 

structure using a binomial N-mixture model, and 
Suwanrat et al. (2015) applied a beta-binomial mixture 
model to estimate the abundance of the secretive Siamese 
Fireback (Lophura diardi) from camera trapping data in 
pristine and degraded forests. Glisson et al. (2017) and 
Huber et al. (2017) modeled the occupancy probability 
of the endangered wetland bird Yuma Ridgeway's Rail 
(Rallus obsoletus yumanensis) and the Wood Warbler 
(Phylloscopus sibilatrix), respectively, as a function of 
different environmental and anthropogenic disturbance 
variables.

Complex interactions among variables but simple 
decision rules: decision trees

Additional tools to identify important environmental 
variables in habitat use and selection models are decision 
trees (Breiman et al. 1984, De'ath & Fabricius 2000, 
De'ath 2002). Decision trees are non-parametric models 
that predict responses by recursively splitting the space 
of predictors (environmental variables) into a number of 
simple regions, giving as a result a dichotomous branching 
tree showing the hierarchy of importance of predictors 
as well as the nature of interactions between variables 
(Breiman et al. 1984, De'ath & Fabricius 2000, De'ath 
2002). The tree is built by repeatedly splitting the data, 
defined by a simple rule based on a single explanatory 
variable (Fig. 1). At each split, the data is partitioned 
into two mutually exclusive groups, each being as 
homogeneous as possible. At each level of the tree, the 
mean of the observations in the region to which it belongs 
is used to make predictions (De'ath & Fabricius 2000). If 
the predicted response is presence-absence data, the tree 
is called classification tree; if the response is quantitative 
the tree is named regression tree (Breiman et al. 1984, 
Zuur et al. 2007; Fig. 1). A major advantage of decision 
trees is their simple and attractive graphical output (Fig. 
1). As such, there is some terminology associated with 
trees, much alike phylogenetic trees. The root represents 
the top of the tree and initial split, and the terminal nodes 
are called leaves. The interpretation of the tree is made as 
follows: start at the root, and ask a sequence of questions 
about the environmental variables. The interior nodes are 
labeled with questions, and the edges or branches between 
them labeled by the answers (Fig. 1). Usually, each 
question refers to only a single variable, and has a yes/no 
answer. Arbitrarily, if the answer is “yes”, we proceed to 
the left branch; otherwise, we proceed to the right branch 
(Fig. 1). The mean value of a group of observations is 
given as a prediction at the end of a branch. 

A major issue to deal with is that decision trees tend 
to overfit, as a result of high complexity (i.e. many leaves). 
Overfitting leads to poor predictions, but using a small 
tree might also result in a poor fit (James et al. 2013). 
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A common approach to reduce overfitting is to grow a 
very complex tree and then apply an algorithm to prune 
it (Breiman et al. 1984). Intuitively, the aim is to find 
a sequence of subtrees of decreasing size, each of which 
is the best of all trees of its size, and then select the tree 
that gives better predictions. Pruning may be carried out 
through a cost-complexity approach. The cost can be 
defined by a metric such as the residual sum of squares 
(RSS) with a complexity penalty based on the size of the 
tree (Zuur et al. 2007):

RSS + cp × tree size 

The RSS measures data fit (see also GAMs), and cp 
is called complexity parameter (cp ≥ 0). If the size of the 
tree is large, the RSS is relatively low and vice versa (recall 
that more complex trees tend to overfit thus reducing the 
RSS). The essence is to obtain a sequence of best subtrees 
as a function of cp, and then select the best subtree. cp 
values can be selected by cross-validation (Zuur et al. 
2007, James et al. 2013), in which data are split in K 
(typically K = 10) subsets (K-fold cross validation). Each 
of these subsets is left out in turn, and a tree is computed 
for the remaining (K – 1)/K percent of the data (90% 
if K = 10). Once the optimal tree size is calculated for 
a given cp value using the 90% subset, predictions are 
made and compared to observed values in the remaining 
10% subset. The sum of squared differences between 
the observed and mean values per leaf is the prediction 
error. This process is applied for each of the K = 10 cross 
validations, giving 10 values of prediction errors. These 
10 values are averaged for each cp value, and the cp value 
that minimizes the average prediction error is chosen 
(James et al. 2013). 

Building a classification tree is quite similar to 
building a regression tree. However, RSS cannot be used 
in classification trees, as the outcome is 0 or 1. The Gini 
impurity index G can be used instead (Breiman et al. 
1984):

� �1G p p� ��
where p is the proportion of observations that belong to 
a given class. It is a measure of total variance across the K 
classes; if all observations belong to one class, G = 0 (no 
variance) and the node is considered “pure” as we can be 
pretty certain that the predicted values is either 0 or 1.

Main advantages of decision trees are: (1) their 
non-parametric nature, as they make no distributional 
assumptions about the data, (2) their simplicity and 
usefulness for interpretation, which make them ideal to 
explain to non-scientists (James et al. 2013), and (3) better 
at dealing with non-linearity and complex relationships  
between  explanatory  variables  than  other approaches 

(GLM, GAM and mixed models; Zuur et al. 2007, James 
et al. 2013).  On the other hand, they are less competitive 
in terms of statistical accuracy than other methods (e.g. 
GAMs). However, by aggregating many decision trees 
with methods like bagging, random forests, and boosting, 
the predictive performance of trees can be substantially 
improved (James et al. 2013).

A consequence of overfitting is that decision trees 
suffer from high variance. This means that splitting 
a dataset at random and fitting decision trees to each 
subset may give rather different results. To overcome 
this, bagging uses bootstrapping techniques to generate 
N different datasets (typically 100–1000), and then 
averages resulting predictions from each tree (Breiman 
1996, De'ath 2007, James et al. 2013). Although bagging 
results in improved accuracy over prediction of a single 
tree, it is no longer possible to represent the results using 
one tree, and it is no longer clear which variables are the 
most important ones (James et al. 2013). However, it is 
possible to obtain a summary of the importance of each 
environmental variable by computing the decrease in RSS 
(regression trees) or Gini index (classification trees) due 
to splits over a given explanatory variable, averaged over 
all trees; a large value indicates an important predictor. 

Now suppose the following setting: there is one very 
strong explanatory variable in the data set, and a number 
of other moderately strong predictors. In the set of bagged 
trees, most or all of the trees will use this strong predictor 
as first split. Consequently, all of the bagged trees will be 
similar to each other, and their predictions will be highly 
correlated. Averaging many highly correlated values does 
not substantially decrease variance as averaging many 
uncorrelated quantities. Another tree-based technique, 
called random forests, provides an improvement over 
bagging, as a way to reduce correlations between 
predictions of different trees (Breiman 2001, Cutler et 
al. 2007, James et al. 2013). As in bagging, a number of 
decision trees are built on bootstrapped samples, but each 
time a split in a tree is considered, a random sample of m 
predictors is chosen from the full set of p predictors. The 
number of m random predictors is typically fixed at p . 

A third approach for improving predictions of 
decision trees is boosting, also called boosted trees, in 
which each tree is grown sequentially using information 
from previous trees to improve error (De'ath 2007, 
Elith et al. 2008, James et al. 2013). Boosting assigns a 
weight to each model based on classification error. At 
each iteration, weights are increased on the incorrectly 
classified classes to focus the algorithm on these cases. The 
basic method proceeds as follows: given a current model, 
a decision tree is fitted using the residuals of the models 
as response. This new decision tree is added into the fitted 
function in order to update the residuals. Each of these 
trees can be small, with a few leaves. By fitting small trees 
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to the residuals, the function is slowly improved in areas 
where it does not perform well. Boosting does not involve 
bootstrapping; each tree is fitted on a modified version of 
the original dataset instead. For a detailed description of 
the method see De'ath (2007). 

Decision trees applied to birds have been typically 
used in Ecological Niche Modeling (Engler et al. 2017). 
Examples include Marini et al. (2009, 2010), Quillfeldt 
et al. (2017), and Krüger et al. (2018), who used several 
models, including GAMs, classification trees, boosting 
and random forests to predict the abundance of the Red-
spectacled Amazon (Amazona pretrei), 26 bird species 
from South America, the Black-browed Albatross 
(Thalassarche melanophris), and seven large seabird species 
of the Southern Ocean, respectively. Carrasco et al. (2017) 
used random forests to analyze the presence of breeding 
colonies in six species of herons and egrets as a function of 
land-use variables, and Steel et al. (2017) assessed habitat 
use in 15 terrestrial birds across a vineyard-matorral 
landscape using boosted classification trees.

HOW TO CHOOSE THE RIGHT MODEL?

After presenting some methods to analyze bird habitat 
use and selection, the obvious question is: “Which 
model should I fit to my data?” In an attempt to answer 
this question, I provide some general guidelines for 
ornithologists to decide on which model to use, partly 
summarized in Fig. 1. In the next sections, I will also 
briefly describe three broad issues in order to help 
researchers to recognize, at least, an appropriate model: 
(1) data types, sampling design and biological knowledge, 
(2) data exploration and model validation, and (3) model 
selection. Researchers must be aware that more than one 
model may be used to fit a particular dataset. Alternatively, 
and although I have tried to cover the most important 
types of data and designs in ornithological studies, none 
of the methods presented could fit a dataset well. Under 
these circumstances, researchers are encouraged to see 
also other methods mentioned in the current review.

Data types, sampling design and biological 
knowledge

The nature of the data gathered will undoubtedly have 
consequences on the type of model it can be applied, since 
it leads immediately to a subset of possible probability 
distributions to be handled. The two most common data 
types in habitat models are presence-absence and count 
data. As stated above, presence-absence data follow a 
binomial distribution, whereas count data may follow a 
Poisson, negative binomial or zero-inflated distributions. 
Zero-inflated Poisson (ZIP) or negative binomial (ZINB) 
distributions will be particularly useful for cryptic and 

rare birds, in which there are an excess of zeroes and a 
low number of records (Welsh et al. 1996, Martin et 
al. 2005, Zuur et al. 2012). Extensions to account for 
imperfect detection have also been developed (Wenger & 
Freeman 2008, Joseph et al. 2009, Dénes et al. 2015). 
Although both data types are, by far, the most widely 
used in habitat models, they are not the only ones. In 
seabirds, for example, it is common to assess habitat use 
using proxies of foraging activity and distribution (e.g. 
trip duration, time required for a bird to pass through 
a circle with a given radius–first passage time duration–, 
foraging area, home ranges of foraging excursions; Pinaud 
2007, Paiva et al. 2013b, 2017), which are continuous 
variables following Gaussian or beta distributions.

Sampling design and field methods are other major 
drivers of the model to be applied (Zuur & Ieno 2016). 
In bird habitat selection studies, it is common to have one 
or more sources of dependency. For example, transects or 
point counts are usually visited multiple times within a 
season, a year or between different years. These multiple 
visits represent a source of dependency, which may be 
modeled by mixed models (Zuur et al. 2009), occupancy 
or binomial N-mixture models. The same applies to 
repeated foraging observations of individual birds, in 
which the individual must be included as a random factor 
in a mixed model. Another valuable method used to model 
bird habitat selection is GPS tracking of individual birds, 
in which individual locations are dependent observations 
(Wakefield et al. 2009, Singh et al. 2016, Paiva et al. 
2017). In this case, the individual bird is treated as a 
random factor in a mixed model.

Biological knowledge on the species under study 
has also implications for choosing a given model 
(Burnham et al. 2011). For instance, occupancy and 
binomial N-mixture models are ideal for terrestrial 
birds, for which there are many sources of variation 
impairing detection (see above), and, in particular, for 
cryptic or elusive species, for which p << 1 (Wenger & 
Freeman 2008). More rarely, occupancy models have 
been applied to seabirds. This is because the absence of 
vegetation and the size and conspicuousness of nesting 
colonies allows p being considered nearly or equal 
to 1 (Passuni et al. 2016). As an example, Passuni et 
al. (2016) assessed habitat selection with occupancy 
models in breeding colonies of three tropical seabird 
species and its relationship with oceanographic 
conditions and prey availability. In mixed models, 
for instance, if a bird appears in flocks (or any other 
groups, such as colonies, roosts or leks, namely areas 
where males aggregate to perform competitive displays 
for the females) then the flock should be treated as a 
random factor, since the presence and abundance of a 
species depends on the movement of other individuals 
in the group (Avilés & Bednekoff 2007, Xu et al. 2010, 
Végvári et al. 2016).
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Data exploration and model validation

A fundamental step in data analysis is data exploration, 
as it provides insight into the data and their limitations, 
helps the researcher to identify appropriate models and 
allows checking model assumptions (Zuur et al. 2010). 
In this sense, graphical tools are advocated as the most 
important devices for data exploration, whereas certain 
statistical tests are warned against (Quinn & Keough 
2002, Läärä 2009). Zuur et al. (2010) provide a 
protocol for data exploration covering important issues 
in exploratory data analysis, such as heterogeneity of 
variance, dependence among observations, zero inflation 
in GLMs and types of relationships between the response 
and explanatory variables. In particular, visualization of 
model residuals represents a key step to check whether 
a model meets its assumptions (i.e. model validation; 
Quinn & Keough 2002, Zuur et al. 2010, Zuur & Ieno 
2016). To this end, a plot of residuals vs. fitted values, 
residuals vs. each environmental variable, and residuals 
vs. time or space coordinates, if relevant, must be made 
(Zuur et al. 2009, 2010). In all these plots, residual 
variation should be similar, showing no pattern. Although 
sometimes the researcher may think observations are a 
priori independent (which justifies the use of a GLM, 
GAM, occupancy models or binomial N-mixture models, 
Fig. 1), residuals may show some pattern. In these cases, 
a GLMM or GAMM should be a better choice (Fig. 1; 
Zuur et al. 2009, Zuur & Ieno 2016). Under temporal or 
spatial dependence, a GLMM or GAMM with temporal 
or spatial autocorrelation structure may be needed (Zuur 
et al. 2009). Finally, the choice between a linear and 
an additive model is based on the type of relationship 
between the response and the environmental variables 
(Fig. 1). If the relationship is linear or quadratic, consider 
using a GLM or GLMM; for more complex relationships 
consider applying a GAM or GAMM (Fig. 1; Zuur et 
al. 2009, Zuur & Ieno 2016). For complex relationships 
and interaction effects, decision trees are appropriate 
models. Although these assume no independence among 
observations, however, they are sensitive to autocorrelation 
effects (Segurado et al. 2006).

Model selection

A great body of literature has been devoted to the topic 
of model selection in ecology during the last decade 
(Burnham & Anderson 2004, Johnson & Omland 2004, 
Whittingham et al. 2006, Diniz-Filho et al. 2008, Burnham 
et al. 2011, Warren & Seifert 2011, Aho et al. 2014, Mac 
Nally et al. 2018). Once the researcher has identified an 
appropriate habitat model, he/she must choose one or 
several alternatives among a set of candidate models. To 
this, there are major two algorithms: (1) stepwise model 
selection (Whittingham et al. 2006) and (2) information-

theoretic approaches (IT approaches; Burnham & 
Anderson 2002). Stepwise selection sensu lato operates 
by successive addition or removal of significant or non-
significant terms (forward selection or backward selection, 
respectively). Others operate by forward selection but also 
check the previous term to see if it can now be removed 
(stepwise selection sensu stricto; Whittingham et al. 2006). 
Stepwise selection is considered a poor procedure and 
is not recommended anymore, because it includes bias 
in parameter estimation, inconsistencies among model 
selection algorithms, the problem of multiple hypothesis 
testing, and an inappropriate focus or reliance on a single 
best model (Whittingham et al. 2006). Also, they are not 
able to compare non-nested models. For all these reasons, 
I will focus on IT approaches.

IT methods provide measures of the strength of 
evidence for a set of hypotheses (i.e. statistical models) 
given the data (Burnham & Anderson 2002). These are 
called “information-theoretic” because they are based 
on Kullback-Leibler (K-L) information (also called K-L 
distance or divergence). In essence, K-L information 
represents the information loss when model gi is used to 
approximate reality f (process that generated observed 
data), or, in other words, the distance between gi and f 
(Burnham et al. 2011). Thus, the idea is to select the model 
in the set of R models that minimizes K-L information 
loss (Burnham et al. 2011). Akaike (1973) found a simple 
expression describing the information loss when fitting a 
model, called Akaike's Information Criterion (AIC):

 
L is the likelihood, i.e. the probability of a model given 
the data, and K is the number of parameters in the 
model. Conceptually, the expression describes a trade-off 
between goodness-of-fit (first term with a negative effect 
on AIC) and complexity (second term with a positive 
effect on AIC). So, the higher the fit and the lower the 
number of parameters, the lower the AIC (i.e. principle of 
parsimony). In practice, AIC is computed for each of the 
R candidate models and the model with the smallest AIC 
value is selected as “best” (Burnham et al. 2011). Thus, 
it is the AIC differences (ΔAIC) that are important for 
ranking the models:

               for i = 1, 2, 3, …, R.

where AICmin is the minimum of the AIC values for the 
R models. Akaike weights wi are a measure of strength 
of evidence and represent the probability of each model 
given the data and the R models under consideration 
(Burnham et al. 2011). In the literature, it is common 
to discard models with ΔAIC < 2. This arbitrary cutoff 
rule is now known to be poor, and models within the 
2–7 range have support and should rarely be dismissed 

�AICi=AICi-AICmin 

��� = 	2 ln 
 + 2� 
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(Arnold 2010, Burnham et al. 2011). After this 
procedure, nevertheless, there might be substantial model 
selection uncertainty, which is quantified by Akaike 
weights (e.g. the best model has probability 0.3). Under 
these circumstances, inferences should be based on all the 
models in the set of best models, which can be done with 
model averaging (Burnham & Anderson 2002). Grueber 
et al. (2011) suggest model averaging when wi of the best 
model < 0.9. Basically, average coefficients result from a 
weighted average of the coefficients that appear in the 
best models, where the weights are represented by Akaike 
weights (Grueber et al. 2011). At this point, there are 
two approaches to compute these averages (Grueber et al. 
2011): (1) full-model averaging or zero method, in which 
parameters not included in a model are set to zero and 
included when averaging the coefficient estimates, or (2) 
conditional-model averaging or natural average method, in 
which only those parameters included in a model are used 
for averaging (Burnham & Anderson 2002). The choice 
between both approaches depends on the aim of the study; 
Nakagawa & Freckleton (2011) recommend full-model 
averaging when the aim of the study is to determine those 
factors with the strongest effect on the response variable. 
On the other hand, when there is a particular factor of 
interest and it is possible that this factor may have a weak 
effect compared to other covariates, conditional-model 
averaging should be used to avoid shrinkage towards zero 
(Nakagawa & Freckleton 2011). 

As AIC provides a relative measure of model fit, 
many different types of models may be compared. The 
comparisons are only valid for models fitted to the same 
response variable, so nested or non-nested models can be 
compared (Burnham & Anderson 2002, Grueber et al. 
2011). Model 1 is said to be nested in model 2 if the 
parameters in model 1 are a subset of the parameters in 
model 2. For instance, a random intercept GLMM with 
one environmental variable is nested within another 
random intercept GLMM with the same environmental 
variable plus a quadratic term of the same variable. Another 
example is a random intercept GAMM and a random 
intercept and slope GAMM with the same environmental 
variable. Thus, different structures of random factors 
may be compared in mixed models (Zuur et al. 2009). 
It should be noted, however, that comparisons between 
mixed models is an active area of research, as there is 
no current consensus of how to handle random factors 
(Müller et al. 2013, Schielzeth & Nakagawa 2013, Rocha 
& Singer 2018, Sciandra & Plaia in press). Following the 
previous reasoning, GLMs are nested within GLMMs 
(GLMs with random factors), GAMs are nested within 
GLMMs (GAMs with parametric coefficients and 
random factors), and GAMMs encompass all these types 
of models (GLMs, GAMs and GLMMs), which means 
that all these are nested (Zuur et al. 2009). In contrast, a 

GAM and a regression tree represent non-nested models, 
but they also can be compared using AIC. Thereby, IT 
approaches are a useful way to compare the different 
models presented in this review.

Overall, some basic principles guiding the use of 
AIC may be summarized: (1) AIC is a relative measure of 
model parsimony, so it only has meaning when comparing 
AIC values for different models; lower AIC indicates a 
more parsimonious model, relative to a model with a 
higher AIC (Burnham & Anderson 2002, Burnham et 
al. 2011), (2) nested, as well as non-nested, models can 
be compared (Burnham & Anderson 2002, Grueber et 
al. 2011), (3) too many models should not be compared, 
because a model with the lowest AIC, that is not the most 
appropriate model, might be found by chance; competing 
models should be based on biological meaning (Burnham 
et al. 2011), (4) it is possible to have multiple models 
performing similarly to each other, which may lead or 
not to model averaging (Grueber et al. 2011), (5) models 
with small sample sizes (as a rule of thumb, when n/K 
< 40) should be compared with the AIC corrected for 
small sample sizes (AICc; Hurvich & Tsai 1989), which 
penalizes stronger for the number of parameters in the 
model than AIC:

where n is sample size, and (6) the model identified as the 
“best” model may still have low explanatory or predictive 
power, so its adequacy needs to be addressed (Mac Nally 
et al. 2018); this can be achieved with different measures 
of explained variance (pseudo-R2, R2

GLMM; Nakagawa et al. 
2017) coupled with cross-validation (Mac Nally et al. 2018).

Finally, AIC is not the only information criterion 
to determine the amount of information contained in a 
given model, but at present, it is by far the most widely 
used in ecology (Symonds & Moussalli 2011, Mac 
Nally et al. 2018). Other alternatives proposed include 
the Bayesian information criterion (BIC), the deviance 
information criterion (DIC), and the Watanabe-Akaike 
information criterion (WAIC), among others (see Box 1 
in Grueber et al. 2011). For the criticisms of these indices, 
readers are encouraged to see Spiegelhalter et al. (2002) 
and Murtaugh (2009).

CONCLUDING REMARKS

This review presents powerful tools to model habitat 
use and habitat selection in ornithological studies. A 
comprehensive review of the methods available is beyond 
the scope of this work. Instead, this contribution is 
intended to give a broad overview of some of the most 
relevant approaches to analyze relationships between 

AICc = AIC + 2� (�+1)
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birds and its environment, some of which still remain 
underused by ornithologists. Many other methods are 
available to model bird habitat use or selection, some of 
which require presence-only data such as Environmental 
Envelope Models (Hijmans & Graham 2006), Maximum 
Entropy (Elith et al. 2011, Merow et al. 2013) or 
Ecological Niche Factor Analysis (Hirzel et al. 2002, 
Basille et al. 2008). Other promising but more complex 
algorithms derived from machine-learning theory are 
Artificial Neural Networks (Lek & Guégan 1999, Yen 
et al. 2004) and Support Vector Machines (Guo et al. 
2005, Kecman 2005). Hopefully, this work will attract 
ornithologists' interest in using some of the techniques 
presented, who will undoubtedly achieve a quality leap. 
Overall, the use of these models in ornithological studies 
is encouraged, given their huge potential as statistical 
tools in bird ecology.
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