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Science is the construction and testing of systems that bind symbols to sensations according to
rules. Material implication is the primary rule, providing the structure of definition, elaboration,
delimitation, prediction, explanation, and control. The goal of science is not to secure truth,
which is a binary function of accuracy, but rather to increase the information about data
communicated by theory. This process is symmetric and thus entails an increase in the
information about theory communicated by data. Important components in this communication
are the elevation of data to the status of facts, the descent of models under the guidance of
theory, and their close alignment through the evolving retroductive process. The information
mutual to theory and data may be measured as the reduction in the entropy, or complexity, of
the field of data given the model. It may also be measured as the reduction in the entropy of the
field of models given the data. This symmetry explains the important status of parsimony (how
thoroughly the data exploit what the model can say) alongside accuracy (how thoroughly the
model represents what can be said about the data). Mutual information is increased by
increasing model accuracy and parsimony, and by enlarging and refining the data field under
purview.
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My contribution is more philo-
sophical than scientific. This is risky.
‘‘Scientists need philosophers,’’ it has
been said, ‘‘like birds need ornithol-
ogists.’’ Philosophy is necessary,
however, because not all simple
questions have simple answers; in-
deed, not all simple questions are well
posed (Machado & Silva, 2007) and
may frame an investigation in a
suboptimal way. The enduring ques-
tions in philosophy often endure
because they are the wrong questions.
To ask, as Skinner (1950) did, ‘‘Are
theories of learning necessary?’’ begs
a more difficult question: ‘‘Necessary
for what?’’ As behaviorists, what are
our scientific goals, in light of which
theories of learning may be deemed
necessary, unnecessary, or even coun-
terproductive to their achievement?
Any credible answer, such as ‘‘to
describe the conditions under which
learning occurs,’’ requires a clear
definition of learning, an ability to
determine what a condition is, how
to measure both, and how best to

determine their relation. Most impor-
tant, it requires us to understand
what a theory is, and that in turn
requires embedding it in a coherent
scientific structure. Scientists need
philosophy, as we shall see, like
ornithologists need birds.
Aristotle gave us the structure to

frame the answers to these questions.
He identified the four (or five) kinds
of information needed to compre-
hend phenomena (Alvarez, 2009;
Killeen, 2001). These kinds of infor-
mation, mistranslated as ‘‘causes’’
(Hocutt, 1974), are shown in Figure 1
for the operant response. These
causes may be parsed into immediate
or molecular causes (the inner circle)
and molar or long-term causes. Cir-
cling through the molecular causes,
the three-term contingency defines
the operant as a movement of the
organism that satisfies some criterion
(e.g., switch closure), triggered by a
discriminative stimulus, and charac-
teristically followed and maintained
by a reinforcing stimulus. The final
cause, or function, of the response is
its instrumentality in obtaining the
reinforcer. The neurophysiology of
the process is currently uncertain but
is some variant of Hebb’s law.
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At a molar level, the efficient cause
describes the context in which learn-
ing occurs, as exemplified in, for
example, Timberlake’s behavior sys-
tems theory (1993, 1994; Timberlake
& Lucas, 1989). The molar material
cause tells us how organisms are
configured to learn, typically in the
language of genetics and epigenetics.
The final causes tell us why organ-
isms are endowed with abilities to
learn and perform an operant re-
sponse, and that answer lies in the
selection by consequences of organ-
isms that learn, that is, by evolution-
ary theory. The molar formal causes,
the theories and models of behavior,
comprise the central topic of this
paper.
The Aristotelian framework is a

principled way to approach any
important phenomenon. It is useful
for inquiries as divergent as compre-
hending the nature of operant behav-
ior (Killeen, 2001), embodied cogni-
tion (Killeen & Glenberg, 2010),
developmental disabilities (Killeen,
Tannock, & Sagvolden, 2012), and
exceptional abilities (Killeen & Nash,
2003). It reminds us that explanations

in terms of reinforcement (conse-
quentialism), or substrate (reduction-
ism), or triggers (mechanistic), or
equations (formalistic) are each im-
portant but incomplete parts of a
comprehensive treatment and not
improvements on, or substitutes for,
the other causes. There is substantial
debate within this scientific commu-
nity on the precedence of one explan-
atory mode over another (e.g.,
Schlinger, 2011, and his references)
but general recognition of their im-
portance in toto. In subsequent
writing, Aristotle added a fifth cause:
an effect’s ability to function as a
trigger in the future. This is central to
behavioral theory, exemplified by
reinforcement in the context of a par-
ticular discriminative stimulus hav-
ing the ability to make that stimulus
increasingly effective as a trigger of the
response. But this paper focuses on
formal causes, because they provide
the structure of science.

PARTS AS MODELS
OF WHOLES

One of the objections to theories of
learning, residing at the molar level of

Figure 1. Aristotle’s four causes applied to the analysis of the operant response. These causes
answer when, what, why, and how questions. Formal causes, the focus of this paper, concern the
form of the object of inquiry, given by reference to a formula: sentences, symbols, maps,
cumulative records, or equations.
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formal causes, is that they often build
too much into the brain (or into our
accounts of what the brain does),
giving those parts characteristics of
the whole that they are proposed to
explain. This is a kind of metonymy: a
figure of speech in which a part stands
for the whole or vice versa. People
associate events and compute out-
comes; should we be permitted to say
that brains do the same things? How
much is permitted of a theory? May
we treat thinking as subvocal speech?
Not only can the part stand for the
whole, as above, but the whole may
be embodied in the part. The homun-
culus is a small straw man, a minus-
cule version of us, who lives in our
skull, monitors synapses for input,
and pulls tendons for output. He
associates stimuli and computes re-
sponses. There are some things that
we can do that our homunculus
cannot (e.g., hit a pop fly to left field
or dress a turkey). The central ques-
tion in considering the homunculus as
a theory is what, if any, things the
homunculus can do as well or better
than we, his shell plus him, can do.
Does he add enough value to reify
him? Our bodies cannot time travel,
other than by moving ahead stolidly,
one day at a time, but fantasy takes
our homunculus elsewhen. Might this
create enough evolutionary pressure
to evolve such an incubus to help us
with planning? How are the radical
behaviorist positions (that thinking is
covert behavior, that imagining is
seeing without the thing seen, and the
like) anything other than shrinking a
human to homuncular size and kick-
ing him upstairs? What constraints
need to be placed on those assertions,
and what constraints do they need to
place on data, to be proper? To get
answers beyond the conventional ar-
guments (which are numerous and
sophisticated; see again the volume
introduced by Schlinger, 2011), we
have to understand the nature and
constraints on science and the proper
place of analogies and their proper
responsibilities.

Skinner’s objections to theory echo
his objections to mentalisms. He
draws a fine line by abjuring mental-
istic explanations such as ‘‘expecta-
tion’’ and ‘‘purpose,’’ but he embraced
sanitized versions of them; personali-
ties as multiple interacting repertoires,
and behavior as organized ‘‘with re-
spect to’’ reinforcers (Skinner, 1953).
Theories, Skinner said, are ‘‘any expla-
nation of an observed fact which
appeals to events taking place some-
where else, at some other level of
observation, described in different
terms, and measured, if at all, in
different dimensions’’ (1950, p. 193).
Such theories, many behaviorists infer,
are off limits to our discipline. Consid-
er, however, how you might explain
thunder to your child. It starts with
cloud formation through the sun’s
evaporation of ocean water, with the
segregation of electric charges in the
clouds producing an electric field.
Eventually the field exceeds the air’s
dielectric constant, causing light-
ning. Air rushes in to fill the vacuum
left by the stroke, causing thunder.
This account appeals to events that
take place somewhere else, at differ-
ent levels of observation, described
in different terms, and measured, if
at all, in different dimensions (cer-
tainly not in the decibels of thun-
der). But just how would one give an
explanation of thunder in terms of
decibels? The common explanatory
recourse of behaviorists to a ‘‘histo-
ry of reinforcement’’ refers to events
somewhere else, at some other level
of observation. Theories generally
invoke phenomena that are different
from the things that they explain.
They are part of a layered formal
framework (the top wedge of Fig-
ure 1) that provides the substance of
this essay.

THE EPISTEMOLOGICAL
LAYER CAKE

Figure 2 shows a conventional
separation of phenomena into two
realms, the rational and the empiri-
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cal. Inhabitants of the former are
things we call structures and symbols,
equations and formulas, that is,
formal causes. They are generated
and refined by formalists. Inhabitants
of the latter are things we call data.
They are generated and refined by
empiricists. The business of science is
to construct links between these
realms. Scientists are the gluons that
bind data to symbols, symbols to
models. They use theories to con-
struct models that share some of the
character of the data.

Formal Systems

Formal systems are collections of
abstract structures, including defini-
tions of their elements and rules of
their interaction. The interactions
may be static or dynamic. Euclidean
geometry is a classic formal system.
An angle is the structure formed by
the intersection of two straight lines.
That the sum of three angles of a
triangle equals 180u is a static rule of
interaction. Given a triangular struc-
ture, specification of two angles
determines the size of the third angle
and dictates its distance. Rational
systems such as geometry help us to
cope with the empirical world be-
cause there is order in the latter that
rational models can emulate. By
order is meant that the empirical
world is not as random as possible;
its entropy is less than it might be. It
is this order that models abstract and
clarify. We triangulate distances,
whether to mountains or houses,
using the same geometric model. This
mapping of formal structures onto
empirical structures is the fundamen-
tal act of making meaning. All
meaning is metaphorical in that sense:
It is a mapping into one system (one
we believe we have some understand-
ing of) to parts of another (that we
seek to understand). Metaphors are
allusions, colored by connotations on
a canvas of historical associations.
Models, whether logical or mathemat-
ical, put a finer point on metaphor’s
broad brush. They do so by reducing
the degrees of freedom for interpreta-
tion that is inherent in metaphor.
They trade the metaphor’s evocative-
ness for the model’s precision.

Empirical Systems

In its lowest form, this is the ur-
world of primitive sensations, the
world that the introspectionist psy-
chologists Wilhelm Wundt and E. B.
Titchener hoped to recover by stud-
ied regression to the naive perceptual
state of a child (Boring, 1929). But by
the time a child is old enough to be a

Figure 2. Science as mapping. Naming,
numbering, measuring, circumscribing, elabo-
rating, explaining, and predicting are all parts
of the job descriptions of scientists. Engineers
and technicians control. In all cases these
activities involve finding, creating, or using a
correspondence between formal structures
and empirical structures. The logical rule of
implication plays a key role in all of these
functions.
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subject in the laboratory, his or her
earliest ‘‘buzzing-booming confu-
sion’’ (James, 1890/1983) has con-
gealed ineradicably into ‘‘things.’’
Had they caught the child any earlier,
he or she could not have spoken
coherently about the buzz. The treat-
ment of primitive sensations as data,
and data’s elevation into facts, are
but the first steps up a many-tiered
layer cake. Rest for a moment on
these two levels, model and facts, and
consider the mappings that science
draws between them according to the
task that the individual assays. The
first question to address is the process
by which the maps are constructed.

MAPPINGS

Implication

One rational structure stands out
as a universal tool for the operation
of all five bridging operations be-
tween the formal and the empirical
domains. The material implication,
also called the material conditional,
is a logical connective written AR C.
Although the symbols A and C refer
to antecedent and consequent, the
implicit ‘‘before’’ and ‘‘after’’ in those
labels refer to their location in the
logical phrase, as written from left to
right. We do not require that the
antecedent precede the consequent in
time, when those are instantiated as
particular events. Material implica-
tion plays a key role in all of the
endeavors of a scientist. For instance,
a term is typically defined by listing
the Conditions A under which we will
call an Event C: If the rat depresses
the lever with at least 0.1-N force,
then that is a response. Operational
definitions list the criteria for mea-
surement required to assert that a
particular event should be included in
a class of that name. Such definitions
clarify how we should talk, not
necessarily how nature is. When out
of touch with viable models of the
phenomena, operational definitions
can mislead; and when used in ways
too divergent from common usage (a

tactic called ‘‘shifting the referent’’),
they often provide a quick solution to
an intellectual quandary that is like
the fast food from a vending ma-
chine: somewhat surprising, briefly
appealing, and ultimately bad for
you.
Sufficiency. Material implications

are statements of sufficiency: If the
antecedent occurs, the consequent
must follow: If A, then C. Nothing
else is required. In particular, the
presence of C does not entail the
presence of A: C may appear for
other reasons, as a sneeze may be due
to a cold, or an allergy, or bright
sunlight. The form of argument
called modus ponens involves the
presentation of A and invocation of
a rule AR C, to conclude C. We may
also infer from that rule that if C
does not occur, A could not have
been present: ,C R ,A. The form
of argument called modus tollens
involves the demonstration of the
absence or failure of C, ,C, to
conclude ,A. This is a statement of
necessity: Without C, no A; C is
necessary for A. Thus the one rule, A
R C, supports both the positive
argument of modus ponens, and,
through its dual, ,C R ,A, the
negative argument of modus tollens.
The first defines what it means for
one thing to be sufficient for another;
the second what it means for one
thing to be necessary for another.
Truth tabled. These relations may

also be couched as truth values: If
both A and A R C are true, then C
must be true. Mathematicians and
rhetoricians will often use the truth
value interpretation for two impor-
tant types of inference, induction and
reductio ad absurdum. In the former,
they show that if an equation is true
for some number n, then it is true for
n + 1. Next they show that it is true
for some number, say n 5 1. They
may then conclude that it is true for
all n. It is clear that this use of
implication succeeds because it takes
the consequent, n + 1, and uses it as
the new antecedent n; the argument is
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iterated. This is the process used in
one of the most beautiful inductive
arguments of all time, constructed
near the beginning of all recorded
time: Euclid’s demonstration that
there is no greatest prime number.
Scientific induction is less trustwor-
thy, because it is impossible to
establish the crucial f(n) R f(n + 1).
On the n + 1st morning the farmer
comes, not to feed the turkey, but to
feed on him. Less trustworthy still is
its use in politics, where an induction
called the domino effect has provided
pretext for wars: If the nth country
falls, then too must the n + 1st. Used
this way, it is an instance of the
slippery slope fallacy.
If the mathematician wishes to

prove A, and can show that (a)
(,A) R C, and (b) C is impossible
(i.e., show ,C either directly, or
through an iterated chain of argu-
ment as in induction), then (c) by
modus tollens he or she can then
assert the falsity of the antecedent:
(,A) is false. Finally (d) because
,(,A) R A, the point is proven. A
classic use of this proof by contradiction
is the proof that !2 is irrational. In
more general terms, it is the form of
argument called reductio ad absur-
dum: using the implication of an
absurd consequent to discredit the
antecedent. This is at the core of null
hypothesis tests, which involve both
induction and contradiction. If a
sample has ensemble the character
M (e.g., a mean 5 M), then the set of
all samples probably has ensemble the
character m < M. We assume m5 0
(the fact that we hope to disprove). (m
5 0) R (M < 0). We want to show
that the consequent is false so we can
reject the antecedent. If data show
that M is in fact sufficiently different
from 0, so that expecting m to 5 0 is,
in retrospect, somewhat absurd [i.e.,
unlikely: p (M |m < 0) , .05], then we
reject the null hypothesis ,(m 5 0).
There is much to dislike about this
argument, not least of which is that it
lets us conclude nothing about what
we hope to prove (Killeen, 2005).

In vulgar parlance, a reductio ad
absurdum is heard in the elocution:
‘‘If that’s the case, then I’m a
monkey’s uncle!’’ Some strange con-
sequents, being less absurd to some
ears than to others, may leave the
auditor believing the implication
rather than rejecting the premise. It
is unwise to practice the logic of
reductio ad absurdum in a bar.
The truth value interpretation,

along with the defining truth table
for implication, reaches limits in the
case in which the antecedent has not
been observed or is false. According
to traditional logic, in this case of
counterfactual conditionals, anything
follows. That is because the rule itself
is given a ‘‘true’’ truth value whatever
the consequent. It does this because
implication is only a relation of
sufficiency, not necessity. There are
other ways C may come about or not
come about. If it rains hard then the
sidewalks will be wet. It doesn’t rain.
Then the sidewalks may be wet or
not, depending whether sprinklers
come on, a carton of liquid is
dropped, and so on. From a false
premise anything follows: ‘‘If wishes
were horses, then beggars would
ride’’; but equally: ‘‘If wishes were
haystacks, then beggars would ride.’’
The mapping of propositional logic
to scientific inference fails here; it is
itself driven to absurdity. A solution
is to never assign truth values to
rules. A better role will be found for
truth values in a subsequent section
of this paper. Of facts we may say
‘‘observed’’ or ‘‘not observed’’; of
rules we may say ‘‘holds’’; ‘‘fails’’;
or ‘‘not tested’’. Then A R C holds if
A and C are observed; fails if A and
,C are observed; and was not tested
if ,A. Doing otherwise is to assign a
truth value to a rule on the basis of
no evidence.
The above exercises with implica-

tion are important, because all of the
roles of a scientist (representation,
delimitation, explanation, prediction
and control) involve that logical
structure. This includes one of the
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scientist’s chief tasks, inferring causal
relations. If temporal precedence is
required, along with a few other
conditions, then material implication
is part of a model of efficient
causality. It may also be adduced as
a model of selection by consequences:
If a stimulus or response A has been
followed reliably by a reinforcing
consequence C, then the rule A R
C may be induced. Its manifestation
is called a conditioned response, be-
cause the response C is conditional
on the presentation of t A.

Representation

A subset of the elements in the
empirical field is associated with a
subset of the elements in the rational
field. In the simplest case, the symbol
may be a name or number; or it could
be a more dynamic structure, such as
a proposition, rule, or equation. Such
rational structures are also the class
name (or property or function) of
other empirical phenomena that are
similar to the target. Pointing to an
object and calling it a pig, a triangle,
or a Latin square grounds the sym-
bols in the rational realm in a
corresponding set of objects in the
empirical realm. Grounding in the
empirical realm is always eventually
ostensive: pointing. If asked for
meaning of a term, we often take
the shortcut of defining it, which
relates it to other terms, one of
which, at some time, the inquirer
has had pointed out to him or her.
The tension between real and ideal,

between things and the stories that
attempt to characterize them, is part
of an ancient drama. The prisoners in
Plato’s cave attempted to reconstruct
the ‘‘true’’ generating model, the
unseen puppets, from the shadows
on the wall of the cave. Plato’s cave
was a seminal model of representa-
tion. The ideal circle represents many
mundane exemplars. Do ideals, the
elements in the formal domain, exist?
The ideals are the simplest thing that
we can say about reals that captures a

major portion of our uncertainty
concerning them. The ideal is not
real, even though our discussion of it
must be conducted in real symbols
such as (x 2 h)2 + (y 2 k)2 5 r2, and
real pictures such as O. The ideal is
not real, but is typically all that we
can easily understand about the real.
The residuum is noise, or error
variance, and remains that until a
better model, one still parsimonious
enough to comprehend, is evolved.
Because we can understand the sim-
pler ideal more readily than the
multifarious real, we tend to reify it.
The left column of Table 1 repre-

sents simple models or approaches to
them. The right column is what we
experience. It may reflect the data
used to ground the symbols, or the
chaos of unfiltered reality, or the
residuum after our models have
spoken. Good models share much
of their information in mutuality
with the elements in their domain.
Because ideals are simple, they are
quickly learned; the residual may be
appreciated as variations on a theme,
or deprecated as rogue data or noise.
There is inevitable ambiguity in

both the signified and the signifier. In
the case of the former, we might be
understood to be pointing at a sow
rather than a generic member of the
litter, or come to believe that all
triangles must be right, or not see the
crucial pattern in the Latin square.
Conversely, we may use the signs for
other classes of objects: pigs for
sloppy or greedy humans, triangles
for mating arrangements, and Latin
squares for ancient forums. This
slippage, in both the set of objects
in the empirical domain that was
referred to and the set of referents in
the formal domain that was intended,
is both inevitable and sometimes
useful. Scientific progress involves a
continual process of refinement of
these maps by limiting or expanding
or redefining the range of empirical
phenomena to which a label or
proposition applies. Equally impor-
tant is the restriction, refinement, or
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creation of new symbolic structures
to improve or broaden the corre-
spondence.

Delimitation and Elaboration

Definitions may be couched as
material implications. If a closed
form has three sides consisting of
noncollinear straight lines, then it is a
triangle. If an individual manifests at
least five symptoms from Category A
and at least three from Category B,
then he or she is categorized as x.
Material implication identifies suffi-
cient conditions for placing a phe-
nomenon in a category. These are not
necessary conditions, because there
may be other events that elude the
operational definition that belong in
the category. If it has three legs and a
round top that you sit on, then it is a
stool. But bar stools have four legs. A
general treatment will be given below
for quantifying this slippage between
constraints and constrained, a slip-
page thatWittgenstein famously char-
acterized as ‘‘family resemblance.’’
This is important in delimitation,
because many events may seem at
first to lie outside the bourne of a
particular definition. Either these are
leftovers that the model doesn’t ad-
dress, or they are inconsistent with the

operational definitions. Not all trian-
gles are right, and neither squares nor
circles are triangles. No problem.
Rules can still be said to hold when
things are left out. Newton’s laws of
motion don’t predict color. It is the
job of theoretical statements in a
model to determine what is ‘‘on the
table’’ and what is ‘‘off the table.’’
This delimitation reduces the entropy
(the degrees of freedom) in the data
field under the purview of the model,
an important step in improving the
communication between model and
data.
The range and domain of models

coevolve. Through learning we are
able to assimilate new exemplars and
distinguish exceptions; at the same
time, we adapt the models to accom-
modate the idiosyncrasies of the new
family members.

[Association is] undergoing important evolu-
tionary changes. … The notion of an associ-
ation has adapted with changes in the
elements that it takes as its arguments, in the
conditions under which it is formed, and the
way in which it is exhibited in behavior.
Moreover, the association has survived by
increasingly constraining the range of psycho-
logical phenomena it claims to explain.
(Rescorla, 1998, p. 1)

After such constraints, a new expan-
sion may occur.
The ‘‘law of the hammer’’ states

that if a child is given a good
hammer, then he or she will discover
that everything needs its application.
the extended law of the hammer
states that if a scientist is given a
good tool, then he or she will
discover that everything needs its
application. This can often be a good
thing, because getting additional
mileage out of tools such as micro-
scopes and Skinner boxes and models
extends their range and thus power.
It amortizes the cost in learning to
use them. Seeing a square as com-
prising two triangles gives an imme-
diate formula for the area of the
constituent right triangles: the side
squared over two. Seeing a circle as
comprising a multitude of triangles

TABLE 1

The inhabitants of the two realms

Model Data

Ideal Real
Noumenon Phenomenon
Apollonian Dionysian
Linear Nonlinear/Chaotic
Yang Yin
Conceptual Empirical
Theoretical Factual
Logic Data
Prototype Exemplar
Type Token
Template Target
Signal Signal + Noise
Parameter Statistic
Rules Exceptions
Laws Anomalies
Nomothetic Ideographic
Naturwissenschaft Geisteswissenschaft
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gave Archimedes the best estimate of
p available to antiquity. Increasing
the purview of a model further
increases the information mutual to
model and data. Once a complicated
tool is mastered, however, it is often
used in preference to simpler or more
appropriate tools. Its use has ac-
quired behavioral momentum (Ne-
vin, 1996).
Formal systems also require de-

limitation. Their flexibility must be
abridged when the data are easily
overpredicted: A seven-parameter
model may tell us more about the
hiccups in the data than about the
beast that is making them. Metrics
such as the Akaike information
criterion help to address this poten-
tial for overpowering data. A classic
example of constraining formal sys-
tems occurred when S. S. Stevens
(1946) established the distinction
between scale types (nominal, ordi-
nal, interval, and ratio) and urged
that scientists use a type appropriate
for their data. If the data are the
numbers on football jerseys, it
makes little sense to average them.
They are nominal measurements,
and at best one can ensure that in
no case is the same number handed
out twice. Conversely, using only
nominal or ordinal analyses may
waste information when the data
can support interval or ratio scales,
as is the case for measures of elapsed
time. In effect, Stevens’s scale dis-
tinction is the formalists’ version of
Morgan’s canon (Newbury, 1954;
but see Thomas, 2006): ‘‘Do not
map to stronger scale types if your
measurements support only weaker
ones.’’
Formal systems evolve, raising

questions of which parts should be
carried over to analyses of empirical
domains. For millennia, Euclidean
geometry was seen as a truth about
the world. Non-Euclidean geometries
were viewed by many at the time of
their invention as aberrations, even
by mathematicians such as Charles
Dodgson, whose fables parodied

non-Euclidean geometries. Now the
preferred geometry of relativistic
physics is non-Euclidean, with Eu-
clidean models sufficing for mundane
geometry. Similarly, Newtonian me-
chanics was retained for ordinary
earth physics, special relativity was
required for particle physics, and
general relativity was required for
astrophysics.

Explanation

Phenomenon C is noticed, and it
begs explanation. Perhaps sheets of
green light are seen descending on the
tundra. One then casts about for a
formal model, a material implication
that has ‘‘sheets of light in the
northern sky’’ in its consequent.
Many may be found and many ruled
out. The best kind of potential
explanation was in place before the
question arose. Others, such as
‘‘Your ancestors did it to bless your
marriage,’’ fails in the face of the
many divorcees to have also witnessed
the phenomenon. After finding a
relevant rule, a search must be made
in the empirical world to determine
whether those antecedents were in fact
in place as necessary to cause the
phenomenon. One of these, an inter-
action of energetic particles from the
sun with the magnetosphere of the
earth, will work. It also permits further
predictions of correlations of aurora
with solar activity. Explanation, then,
means the identification of a model
that is consistent with both the
relevant facts that are observed to be
present and with other models that
are pertinent. The facts that are
deemed relevant are a matter of
negotiation. The more facts that are
consistent with a model, the better.
The current model of DNA conveys
deep understanding, even though
every model, including it, has its
limits. As Kuhn (1970) noted, most
new models not only incorporate
additional facts but also sacrifice
some explanations that their prede-
cessors were able to make.
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Sometimes no preexisting model
adequately maps the facts, or we do
not have access to such a model.
Then explanations either (a) elicit the
creation of testable hypotheses
(Peirce, 1903, Rescher, 1978, and
Upshur, 1997, called the creation
and testing of such hypotheses ab-
duction); (b) are held in abeyance
(Wittgenstein, 1965, understood the
universe of data not captured by
language models; of those he said,
‘‘What we cannot speak of, we must
pass over in silence’’ ); or (c) are
made up from a general, or ad hoc,
even if unpredictive, model: ‘‘God,’’
‘‘survival of the fittest,’’ ‘‘academic
freedom,’’ ‘‘men are just like that.’’
Subsequently dislodging these expla-
nations to see the phenomena with
fresh eyes is often difficult; this is why
advances in a field often occur to
those not yet habituated to anomalies
and to their ad hoc interpretations.
All explanations may be couched

in the form of material implications.
‘‘Why did all the buildings collapse
during the earthquake except these?’’
‘‘You see those triangular struts? If
triangles are placed under load, then
they can support greater forces than
the rectangles that were used in the
collapsed buildings.’’ Material impli-
cation identifies sufficient conditions
for having found a particular out-
come. These are not necessary con-
ditions, because there may be other
ways to explain the same results. If
underlying ground liquefies, then
structures built on it will be unstable.
Oftentimes, many converging factors
are jointly responsible for an out-
come. The drive for simplicity often
miscarries; many are the scientists
who are pleased to find just one
sufficient explanation for a phenom-
enon and reluctant to share credit
with the promulgator of another
sufficient explanation.

Prediction

Once a map has been constructed
between sign and significate, it may

be exploited to make predictions.
Now the explanations are tested,
and the representations and delimi-
tations begin to pay dividends. Con-
temporary scientists disliked some of
the assumptions of Newton’s system
of the world, such as his postulate of
gravity’s action at a distance (Cohen,
1990). His method triumphed thanks
to those who could suspend disbelief
long enough to see the strong predic-
tions that were possible with that
system. (Newton did not require his
audience to further suspend disbelief
over the calculus: All of the proofs in
the Principia were geometric.) Good
predictions can follow from peccable
models. Triangulation has been the
primary means of mensurating the
earth for hundreds of years, even if
plane geometry fails at large distances
on this sphere, whose great circle
routes are geodesics. But a surveyor
is not wrong on those counts. His or
her criteria for models is that they be
simple, reliable, and deliver the nec-
essary degree of accuracy. Modern
physicists generally accept relativity
theory while they use Newton’s
mathematics to calculate orbits for
satellites. Scientists forgo even face
validity (think quantum mechanics),
if the model can provide adequate
pragmatic return for their patience.
This was James’s case for pragma-
tism; judge statements by their fruits
as much as by their roots (James,
1907).
All predictions may be couched in

the form of material implications. If a
triangle is placed under load, then it
will support a greater force than any
other form placed under similar load.
If an individual has mental disorder x,
then he or she will be at substantially
greater risk for social maladjustment,
drug abuse, and incarceration. Mate-
rial implication identifies sufficient
conditions for expecting to find a
particular outcome. These are not
necessary conditions, as there may
be other ways to achieve the same
results. If a stimulus is a reinforcer,
then responses that precede it will
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increase in frequency. But they may
increase in frequency because of a
change in drive level, or because they
are correlated with other events that
are reinforced, or because other in-
compatible behaviors are punished.
Successful predictions strengthen the
rule inductively, but because the rules
state only sufficient conditions, they
cannot prove the rule: False or absent
antecedents are consistent with true
consequents. A failed prediction will
invalidate the rule (modus tollens), but
even this is typically amended to the
status of ‘‘an exception to the rule,’’
and mentioned, if at all, in a footnote.
In the social sciences, ability to
predict 80% of the variance in the
data is most impressive, even though
the other 20% constitutes a failure of
the rule.
Mathematical predictions. Even

mathematical models have the sem-
blance of material implication. The
equation for a sine wave is y(t) 5 A
sin(vt + Q). For Amplitude A 5 1,
angular frequency v 5 1 and phase Q
5 0, we may predict that if t 5 1,
then y(t) 5 0.841 …. If we set these
conditions (the antecedents, or initial
conditions, A, v, and Q) and find that
y(t) is some other number, that
particular sine function would not
hold as a rule for that phenomenon.
In vulgar parlance, ‘‘The theory
would be falsified.’’ In our way of
speaking, that model would not hold
for that datum.
Such mathematical models are

only sufficient conditions for their
predictions. We may find that y(t) 5
0.841 … at other values of t: In fact,
for all values of t 5 1 + 2p we would
find the same value. It is permissible
for different antecedents to have the
same consequent. It is not permissi-
ble, in logic or mathematics (statistics
is a different story), for the same
antecedent to have different conse-
quents.
Model tuning. An irksome use of

the term prediction is common in
scientific parlance. When the free
parameters of a model are adjusted

so as to make the model consonant
with observed data, as, say, in
adjusting v in the above paragraph
to get 0.841 out of the sine function,
the investigator may say ‘‘the model
predicts the data.’’ Retrodicts or
postdicts would be more accurate.
Just as there is an overvaluation of
the role of true prediction in science,
there is a correlated arrogation of
predictive ability to merely compliant
models. It is as though you claimed
that your watch can predict sunrise,
even though you have to keep ad-
justing the predictions as the seasons
evolve. Such adjustment of models in
light of data, in which information
flows from the empirical to the
rational, is better called tuning, or
aligning the model to the data. In this
case we can say, ‘‘the model con-
forms to the data.’’ Will the model
hold the tune, unmodified, from one
set of data to the next? If so, we
finally have license to say predicts.

Control

Skinner emphasized the role of
control in science, influenced perhaps
by William James’s pragmatism,
which took ability to control as a
test of the truth of a model. Certainly
the inability to use a model, such as
reinforcement theory, to control be-
havior should raise eyebrows; unruly
children are bad witness to a behav-
ioral creed of their parents. The
model for control is, again, material
implication. Find a rule that has the
desired result as the consequent, and
instantiate the antecedent. If you
want good behavior, catch them
being good and reinforce that. Or
arrange the antecedent (elicit good
behavior) and reinforce it. If that
doesn’t work, either we have mis-
identified the elements (what we used
wasn’t a reinforcer, or it was applied
in a way that was ineffective, or it
reinforced a different aspect of be-
havior than we had envisaged; exer-
cises in post hoc delimiting) or the
rule doesn’t hold. There is, of course,
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much art in the application of such
rules, because many rules govern
behavior, and they do so under
strong stimulus control. The same
response that is reinforced in a public
house is punished in a public school.
The same reinforcer that works in
each may become a punisher in each
if seen as a manifestation of unseemly
control.
Newton’s celestial mechanics is not

faulted because we are unable to use
it to move the earth. Ability to
control is not necessary to accept a
model as provisionally good; our
model of aurora borealis is counte-
nanced despite our inability to make
an aurora to bless every wedding.
Skinner should have argued for
‘‘prediction or control’’ as goals of
science. Representation, delimitation,
and validation then become instru-
ments of those goals. Others would
prefer to identify the generation of
good explanatory models as the goal
of science, equating that with scien-
tific understanding, and using predic-
tion or control as the means of their
test and validation. Because the
material implication establishes suffi-
cient but not necessary conditions,
there are potentially many ways to
control a phenomenon. Good tech-
nicians own many tools.

MORE LAYERS

The Layers of Inference

Two layers do not suffice for an
epistemological cake. Figure 3 ex-
pands the model. The top layer is
explanatory propensity or predilec-
tion. Some individuals prefer astro-
logical explanations to astronomical
ones; some prefer Christian ortho-
doxy to Darwinian biology. Many
scientists hold a mechanistic world-
view, some a contextualist worldview;
some psychologists are cognitivists,
others are behaviorists. A colleague
has dedicated his career to demon-
strating the error of all linear models
of psychological phenomena; this
motivates his theoretical undertak-

ings and choice of experiments and is
refractory to argument. Einstein’s
repugnance at quantum indetermina-
cy is legendary. This is the realm of
worldview, framework, or themata
(Killeen & Glenberg, 2010). It is an
instance of Bacon’s idols of the
theatre, some of which ‘‘immigrated
into men’s minds from the various
dogmas of philosophy’’ (1620, Aph-
orism XLIV).

Figure 3. The epistemological layer cake.
The kinds of theories that are invoked to
make sense of the world are determined by
worldviews or themata. Theories specify the
design principles for models and delimit the
data for which they are responsible. Models,
subsets of symbol systems, take antecedent
facts or values as input and entail consequent
facts. Facts are defined by experts based on
empirical analysis of specific sense data. At
all levels, material implication plays a central
role (based on conversations with David
Hestenes).
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Theory. Below frameworks or
worldviews lies the realm of theory.
The word theory is often mistakenly
used when hypothesis (a tentative
model) is meant. Theories dictate
what sort of data constitutes the
elements, what sorts of models are
appropriate, and what operations
with the models are valid. Newton’s
mechanics provides the classic exam-
ple of a theory. It defined the
elements to be point particles; his
three principles of motion gave rules
for defining forces in terms of motion
and rules for adding sets of forces
(Hestenes, 1992). Some general rules
for model construction concern co-
herence, comprehensibility, and par-
simony. In behavioral theory, some
of the key elements are stimulus,
response, and reinforcer; some of the
processes are conditioning and extinc-
tion. These may be studied in them-
selves or used to explain other ob-
served phenomena. Some processes,
such as induction and context and the
reflex reserve, are of ambiguous status
and should be invoked very cautious-
ly. Desires, interpretations, and inten-
tions are better not used at all, if a
place at the behaviorist table is
desired. Some of the rules for data
selection are clarity, consistency re-
producibility, and simplicity; ‘‘smooth
curves’’ in Skinner’s parlance.
Models. The modeling game cre-

ates and tests new models using rules
allowed by theory to represent and
explain facts. Friction is introduced
as a force opposing motion; air
resistance is introduced as a force
that can vary in nonlinear ways with
the speed of an object. Analysis into
constituents and the summation of
those constituents is a standard
technique of the Newtonian ap-
proach, one that is greatly facilitated
by use of the calculus (another model
system). Kin selection is a simple
extension of Darwinian selection,
sociobiology a more complicated
one. Low-level models, called laws,
can be found in this domain, settled
to the bottom of the layer close to

facts, or, when universally acknowl-
edged, at the top of the empirical
domain. Descartes’s laws of reflec-
tion and refraction are basic descrip-
tive models, as is Ohm’s law relating
voltage, current, and resistance. With-
in limits, they are valid independent of
theories that seek to derive them as
consequences. Such is also the case
for the matching law in operant
psychology.
Metamodels. Models are often

used to operate, not directly on facts,
but on other models. Maxwell’s
equations originally described the
operations of small vortices until
those were discarded as unnecessary.
One cannot write the equation for a
complex atom or molecule without
Bohr’s billiard-ball model of the
atom, because it is to the Bohr model,
not directly to nature, to which the
various terms in that equation refer
(Kuhn, 1979). Ohm’s law is derivable
from basic physics with suitable
assumptions. Any theory in physics
that has electrical conduction as its
domain would be severely embar-
rassed if it could not be tuned to
deliver Ohm’s law. This is the case for
other empirical laws, from the laws of
reflection and refraction to the
matching law. The simple regularities
of Ohm’s law (or Descartes’s law, or
Herrnstein’s law) were the first tar-
gets, not the facts on which the law
was based. Many of these deriva-
tions, like those of optimal foraging
theory, are simply exercises to see just
what assumptions have to be invoked
to get where you know you want to
go. Sometimes they establish values
for constants that become a part of
the structure of the model and no
longer count as free parameters. The
Avagadro constant NA, c, the fine
structure constant a, G, and so on,
provide examples.
Models may thus be stacked, much

in the manner that object-oriented
computer languages take as operands
other operators. The lower parts of
each layer blend with the upper parts
of the layer below. Given our limited
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working memories, this ability to
‘‘take for granted’’ the outputs of
lower level models is essential (if also
sometimes fatal: Conditioning to the
word can blind us to the thing).
Bacon’s ‘‘Truth arises more readily
from error than from confusion’’
may be glossed as ‘‘An accurate
model is more likely to arise from a
less accurate one than from raw sense
data.’’ Stacking models compresses
them, diminishing their apparent
complexity. This is what MacKay
(2003) meant by ‘‘I believe that one
of the main aims of learning is to end
up knowing less. … Brains are the
ultimate compression and communi-
cation systems’’ (p. v).
Definitions. Facts are not data.

They are consensually agreed-upon
labels for data. Some phenomena in
the empirical realm cohere as entities
with little coaxing; baseballs and hats
and sunny days may be taken as
given, with only umpires and haber-
dashers and weathermen reserving
opinion. In general, however, deci-
sions of what attributes are sufficient
for class inclusion comes about
through deliberations of committees
and through conditioning of individ-
uals. Whether a dive scores 9 or a
wine 90; whether a kiss is a sin, a
death a murder, or a manuscript a
dissertation; these all depend on the
deliberations of finders of fact ap-
propriate to each judgment. Our
parents stipulated our rules of eti-
quette; our clerics our morals. Grad-
uate students spend hours ‘‘cleaning
up their data.’’ In this process, some
data are dismissed as artifacts or
transcription errors or experimental
errors. They become nonfacts. Ab-
sent an ability to verbalize their
criteria, judges may rely on their
own emotional reactions to define
goods and evils. Such criteria are not
easily explained or exported, even
though feelings such as disgust that
may constitute them can be strongly
conditioned in the young.
Rules stipulate the way words are

used to nominate data to categories.

The rules of who may run for the
U.S. Congress, for instance, and the
criteria for electing him or her, are
well defined. Certain attributes are
required of the candidate, the elec-
tors, and the process. Occasionally,
courts intervene to change the pro-
cess, or to ‘‘clean up the data,’’ as in
recent presidential elections. Most
other nominations are more ambigu-
ous, and in many cases the finders of
fact have different theories concern-
ing the process itself. Three current
views about nature of nomination are
revealed by the dialogue of three
umpires after the game. The first, a
naive realist: ‘‘Some are balls, some
are strikes, and I call ‘em as they
are.’’ The second umpire, an idealistic
phenomenologist: ‘‘Some are balls,
some are strikes, and I call ‘em as I
see ‘em.’’ The third umpire, a con-
structivist: ‘‘There ain’t no balls or
strikes until I call ‘em.’’ The first
umpire would view instant replay
with potential embarrassment, the
second nonchalantly, and the third
with animosity.
When categorical decisions affect

the public good, police, lawyers,
judges, and juries of peers are called
on to elevate acts to facts. It is a
critical question of who has standing
on such panels. Many hours are spent
in voir dire, the process of question-
ing and often excluding potential
jurors from a trial. Many would
prefer to exclude congressmen from
committees that define the value of p
and fundamentalists from school
boards that approve biology text-
books. Reading the signatures of
muons is best left to physicists, lumps
to radiologists, and old bones to
archaeologists. When it comes to
the categories good and bad, the
experts are first parents and priests
and rabbis, later peers, and eventual-
ly ethical philosophers. Greek trage-
dies such as Antigone explore the
conflict between what is good in the
eyes of family, state, and gods;
different experts with different prior-
ities. Like Antigone, citizens and
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juries everywhere are immersed in the
conflict among various experts with
different priorities in evaluating the-
ories, models, and facts.

EVALUATING MODELS

Estimating the value of a model
(evaluating it) involves verification
and validation. Verification is the
processes of determining whether
the model is internally consistent
and well formulated. Validation re-
quires the specification of what phe-
nomena a model is responsible for
and how good it is at capturing them.

Verification

Model verification involves scrutiniz-
ing a model to see if it is what it is
claimed to be. This set of operations
exists primarily in the rational realm
and is often accomplished at the stage
of review before publication or product
release. Is the math correct? Does the
algorithm or analogue function consis-
tently? Is its output unambiguous? Are
there unacknowledged steps or assump-
tions in the model? Will it break down?
It may take a team of experts weeks or,
through sporadic efforts, even years to
verify a model (e.g., Yamaguchi, 2006);
complicated models are sometimes im-
possibly difficult to verify.

Validation

Model validation addresses wheth-
er the model succeeds in capturing
aspects of the empirical field it was
designed for (Krause, 2012). There
are two issues in model validation:
determining what the model sup-
posed to account for (the delimita-
tion of parts of the empirical domain)
and determining how well it does
account for those parts. If it is an
operational definition, does it leave
obvious members of the category
outside it? Does it include ringers?
How true to the data is it? Is it
possible for a model to be false?
Truth. Truth is not a property of

the world, of the empirical realm; nor

is it a property of the symbolic
representational realm. It is a prop-
erty of a map between those realms.
For Thomas Aquinas, truth was the
equation of thing and mind: A
judgment is said to be true when it
conforms to the external reality. For
Descartes, truth denoted the confor-
mity of thought with its object. For
Russell, a belief is true when there is a
corresponding fact and false when
there is no corresponding fact. For
James, it was a consilience of the
statement with both empirical conse-
quences and with other beliefs that
are held to be true. One of the best,
for its concreteness and thoroughness
in referring to all four cells of the
matrix that relates state of the world
to state of the model was one of the
earliest, Aristotle’s: ‘‘To say of what
is that it is not, or of what is not that
it is, is false, while to say of what is
that it is, and of what is not that it is
not, is true’’ (Glanzberg, 2009).
Most of these venerable philoso-

phers used a binary model of truth
and falsity. But not all did: Eight
centuries after Aristotle, Philoponus
argued that truth is neither in things
or events nor in the statements about
them, but rather in the relation
between the former and the latter.
He gave the simile of truth being like
the fit of a foot to a shoe (Wildeberg,
2008). We also treat truthfulness as
the fit of a model to data, because
binary models of truth shortchange
the rich continuum of truthfulness.
How many drops of rain must one
see to say ‘‘It is raining,’’ and be
called truthful? How warm the water
before saying ‘‘It is hot’’? How warm
the heart before saying ‘‘I love you’’?
There are always degrees of consis-
tency between description and the
thing described. This is why judges
are given discretion on sentencing:
Not all thefts, nor all murders, are
created equal. Nor are all fits of feet
to shoes, nor of models to data.
An additional problem with the

binary truth model is the asymmetry
it imposes on model evaluation. A
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single false prediction, it is said, will
invalidate a model, whereas a thou-
sand true predictions will not make it
true. A problem with this standard
treatment is that, as Philoponus
noted 1,500 years ago, models should
never be considered true or false; it is
the relation of their consequents to
the things in the empirical realm that
may prove true or false, and that to
varying degrees. Models are tools; a
hammer is not false because it cannot
turn a screw. It is ill chosen for the
task. The relation of a model’s
antecedents to things in the empirical
domain makes it well applied or
inappropriate. The relation of a
model’s consequents to things in the
empirical domain makes it accurate,
or inaccurate, or even misleading. A
model may be inaccurate and yet still
quite useful. I do not discard my
bathroom scales because they tell me
that I need no stamps on my letter, as
it apparently weighs nothing (bad
application), nor do I because they
weigh me heavier than my doctor’s
scales (imperfect accuracy). We do
not discard Newton’s laws of motion
because they make false predictions
for objects at subluminal speeds or
are incapable of predicting the tra-
jectories of chaotic systems. They are
still used to plan astronautical mis-
sions. Exceptions proof the rules;
they test them. To pass the test, we
must rethink and improve the model,
or we must treat the exceptions as
anomalies or blemishes; footnote
them and hope that no more show
up. When the list of anomalies gets
too long, the model should be aban-
doned.
Our model for truth, then, is a

graph with accuracy as the abscissa
and the probability of saying ‘‘true’’
as the ordinate, with an ogive relating
them. Executives must set a threshold
for their binary actions, but scientists
should deal with the abscissae, not
ordinate, because it is always more
informative to report the accuracy of
a model over a particular domain of
data than to assign a truth value.

Communication

Models speak to us about the
world. They are stories about a set
of things in need of a name or
explanation or prediction. Just how
much they communicate about those
things may be calculated as informa-
tion mutual to model and data. A
model may be perfectly accurate
about a local fact, one with little
complexity. We can increase the
amount of information communicat-
ed by a model by increasing the
domain of the model, the things
about which it makes predictions, as
long as the prediction error does not
increase proportionately. This is why
scientists always push models to
attempt to account for more data: It
is the justification of the extended law
of the hammer.
Some facts are equally well cap-

tured by different models. A circle is
an ellipse with both foci at the same
point. An ellipse is a conic section,
and so on. Why do we find it more
natural to say that that stain on the
tablecloth is a circle rather than an
ellipse or conic section? Because the
latter accurate descriptions also de-
scribe infinities of other curves that
are irrelevant. The more complicated
descriptions of the stain made it
possible (indeed, encouraged the lis-
tener) to infer things that weren’t
true. (‘‘Why would he bother to say
‘ellipse’ if it were simply a circle? It
must be elongated.’’) The default
assumption in communication is
minimization of complexity: infer-
ence to the simplest explanation.
The proportion of variance in the
model that was controlled by the data
was much greater for the circle model
than for the conic section model,
even though both were equally true.
The circle was a more parsimonious
model for that datum than any other
description of conic sections.
As models get more flexible, they

become increasingly able to say
things that are not true. Model
selection requires stringent taming
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by data. To say that an object will
continue in motion unless opposed
by other forces is simple. To specify
those forces, such as friction, and
how they change with velocity makes
the model more powerful and at the
same time more complicated. To say
that animals match the allocation of
their behavior in patches to equal the
allocation of reinforcers in those
patches is an extremely simple (i.e.,
parsimonious) model: matching. To
say that they do so with bias adds
both flexibility and a parameter, and
thus the need for constraint by data
increases. To say that they do so as a
biased power function of the alloca-
tion of reinforcers (generalized match-
ing) increases complexity once again.
For that increase to be worthwhile,
the prediction error must be very low;
the data must unambiguously tell us
whether the power is really different
from 1 and the bias different from 0.
A model that is very flexible in
relation to the data it confronts is
not parsimonious: Simpler ones
would do well enough. The injunc-
tion to ‘‘Keep models as simple as
possible, but no simpler’’ is an
injunction to keep model flexibility
as minimal as possible, until predic-
tive accuracy becomes too compro-
mised by the parsimony. Occam’s
razor should cut whiskers, not skin.
Parsimony is relative. A skeptic

might dismiss a model with ‘‘Give me
enough parameters and I’ll draw an
elephant.’’ Give him a pencil. He will
require at least 80 parameters (coor-
dinates for cartoon ellipses). Any
fewer might draw a cow or an egg.
The question is how few you can use
until enough people start calling your
Dumbo ‘‘Bessie.’’ This is a key
comparison in the evaluation of
models: All evaluation is, or should
be, against competing models, that is,
the model comparison approach. Even
the coefficient of determination (the
proportion of variance accounted for
by a model) is a comparison of the
candidate model against the mean of
the data, a simple statistical model of

central tendency. Comparison de-
pends on the range of models on the
table and the domain of data under
consideration. Your critic’s 18-param-
eter model elephant might be ade-
quate if the only data under consider-
ation were cartoons of elephants and
trees but not if the data included cows.
A central thesis of this paper is that

the goal of science is to maximize the
information mutual to theory and
data. One may do this by increasing
the accuracy of the model or by
increasing the parsimony of the
model. Corresponding operations in
the empirical realm are to increase
the amount of data it can emulate
and to reduce the anomalous data.
This is why scientists often give
parsimony a standing tantamount to
that of accuracy. A model that
parsimoniously accounts for a small
data set may elicit words such as
‘‘neat,’’ ‘‘nifty,’’ or ‘‘sweet.’’ A model
that parsimoniously accounts for a
large data set—that shares large
mutual information with data—may
elicit a deep sense of beauty.

SCIENCE AS COMMUNICATION

The goals of science are best
couched in the language of informa-
tion theory, the language of commu-
nication. It is the goal of science to
create models of events that report
them both accurately and parsimoni-
ously; that maximizes their shared
information. How does one measure
the information mutual to theory and
data? The Kullback-Leibler measure
called divergence gives the informa-
tion lost when a model is used to
approximate data. A problem with
the estimation of divergence is that it
requires knowledge of the actual
model, the actual data-generation
machine. This problem was brilliant-
ly solved by Akaike when he showed
that divergence may be estimated as a
linear function of AIC 5 2k 2
2ln(L), where k is the number of
parameters in the model, and L is the
maximized value of the likelihood
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function for the model (Bozdogan,
2000). The model that minimizes AIC
minimizes prediction error. Burnham
and Anderson (2001, 2002) provide
an accessible introduction to AIC, its
extension to small samples, and to
the model-comparison philosophy of
scientific inference. AIC is sometimes
thought of as a correction for model
nonparsimony because of two models
that deliver comparable values of L,
the one with the fewer parameters k
gives the smaller AIC, and is thus
preferred. The purpose of the AIC is
not to enforce parsimony, however,
but to provide an unbiased measure
of divergence.
Inaccuracy may be measured as the

uncertainty in the data given the
model. It is best computed with
AIC and best interpreted as how
much more is left to be said about
the data once the model has spoken.
Unparsimony is the uncertainty in
the model given the data. Its mea-
surement is not yet perfected. It can
be interpreted as how much the
model can say that is not relevant to
the data in its domain. The most
promising approach is in the measure
of computational complexity called
minimum description length (Grün-
wald, 2005; Grünwald, Myung, &
Pitt, 2005; Su, Myung, & Pitt, 2005;
Wagenmakers & Waldorp, 2006).
The evolution of science is a record

of speciation of models and data sets,
each in closer accord with the other,
under the competitive pressure to
better account for more of the
entropy in the fields of model and
data. The evolutionary fitness of
models involves not only accuracy
(i.e., goodness of fit) but also parsi-
mony and power. Power is measured
by the information mutual to theory
and data. Theories, like organisms,
are subject to diverse selection pres-
sures: Comparison against data is
like natural selection; the prose,
power, and novelty with which a
model is presented are like sexual
selection. Fitness, in this struggle,
means more than goodness of fit.

SUMMARY

To comprehend a phenomenon we
must understand how to define it,
what triggers it, its components, and
what makes it endure (Figure 1). The
focus of this paper has been on the
formal structures central to science
(Figure 2), by which we represent,
explain, predict, and control events.
The formal structures coevolve with
the facts that they address. At the
lowest levels, they elevate data to the
status of facts; at higher levels they
constitute theories that give design
principles for models and marshal the
domain of data (Figure 3). These
central activities of scientists and
engineers may be represented as
implementations of the logical struc-
ture called material implication. The
source of most models is metaphor
and analogy; verbal or physical
structures that are noticed to have
things in common with one another.
Just as organic evolution is driven by
two kinds of pressures (natural selec-
tion and sexual selection), the evolu-
tion of formal structures is driven by
two kinds of pressures (rational
selection and emotional selection).
The former selects based on goodness
of fit of model to data and parsimony
of model. These are always best
treated in a model–comparison frame-
work, because only relative measures
are interpretable. Emotional selection
is driven by the worldviews, condi-
tioning history, and political and
ideological milieu of the scientists
and by the clarity and cogency of the
proposed model.
It is not the scientists’ job to find

truth (that binary function on the
accuracy of a proposition) but to
create representational structures
that maximize the information mutu-
al to propositions and the data that
they represent. This is accomplished
by maximizing the accuracy of a
model while minimizing its complex-
ity. Models with greater mutual
information are more powerful than
those with less, even though they may
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be equally accurate in their respective
domains of data. Science is an exer-
cise in communication both between
model and data and between the
model–data system and an audience.
Different audiences require different
degrees of parsimony, complementa-
ry degrees of accuracy. The structure
of science evolves by erecting more
powerful theories on the shoulders of
lesser precedents. Ability to commu-
nicate scientific constructs is a key
selective pressure in that evolution.
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