
Journal of Russian Laser Research, Volume 19, Number 2, 1998 

COMPLEX FERMI-PASTA-ULAM RECURRENCE AND THE 
PROBLEM OF INFORMATION STORAGE IN A NEURON 

A. A. Berezin,l M. Garber,l and V. A. Shcheglov2 

lOil and Gas Research Institute, Leninskii Pro 65, Moscow 117924, Russia 
2 P. N. Lebede'IJ Physical Institute, Russian Academy of Sciences, Leninskii Pro 53, Moscow 117924, Russia 

Abstract 

A qualitative model of a neuron was studied theoretically and experimentally. A coupled system of nonlinear 
SchrOdinger (NLS) and sine-Gordon equations was used for mathematical description of the complex Fermi
Pasta-Ulam recurrence interpreted as a principal information carrier in the model. Computer and analog 
experiments were devised to verify the proposed concept. 

1. Introduction 

Traditionally, electrical activity of a single neuron is described within the framework of the Hodgkin
Huxley model [1]. In this case, in accordance with the Hartley formula, the memory capacity of a single 
spike amounts to log2 2 = 1. In other words, a neuron is treated as a system with two states, and all the 
complexity of the brain's ability to process information is explained by the presence of numerous parallel 
processing paths. However, correlations between learning and variations in concentrations of ribonucleic acid 
(RNA) and certain proteins in neurons were reported [2]. These data confirmed a hypothesis [3] that a single 
neuron, depending on the number of triplets in its RNA molecule, can have a memory capacity of up to 
10 bit. 

The purpose of this paper is to develop a neuron model based on the complex Fermi-Pasta-Ulam (FPU) 
recurrence spectrum, which is treated as an information carrier. The FPU recurrence phenomenon was first 
observed in 1955 [4] as a result of computer simulation of the oscillatory dynamics in a chain of nonlinearly 
coupled vibrators with fixed ends. In contrast to expectations, this system did not exhibit a tendency 
toward equipartition of energy among its degrees of freedom. Instead, a periodic recurrence of the initial 
perturbation energy spectrum was observed. Later [5], it was ascertained that the FPU phenomenon has two 
types of recurrence: simple and complex~ In the case of the simple recurrence, an almost perfect periodic 
return of energy spectra is observed in the system, whereas, in a complex version, the periods are not stable 
and the Fourier modes exhibit complex sharing and regrouping of energy. This interesting behavior of the 
FPU chain. stimulated a number of investigations of the system [6-9]. The first theoretical description of the 
problem was suggested by Zabusky and Kruskal [10] who showed that FPU recurrence can be defined by 
the Korteweg-de Vries (KdV) equation with periodic initial conditions. Another team of researchers, Yuen 
and Lake, were able to describe FPU recurrence within the framework of the nonlinear Schrodinger equation 
(NLS) with periodic boundary conditions [11]. The same authors reported a very interesting property of 
FPU recurrence, Le., the ability to "memorize" the initial conditions for the active modes of its spectrum, 
reproducing them periodically in the FPU spectrum. In another study of the FPU problem [12], it was 
proposed that the exchange of energy between modes of the system is related to a transition to pronounced 
stochastisity. In discussing early investigations of FPU recurrence, it is necessary to emphasize that the 
original vibrator's chain had fixed ends [4]. However, even with open ends, the chain can also constitute 
a theoretically interesting autonomous distributed system, responsive to initial perturbations. Our attempt 
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to investigate the FPU dynamics in a chain with open ends brought us to the conclusion that a simple 
FPU recurrence [13] could be observed only in a chain of three equimass particles having both vertical and 
horizontal oscillatory degrees of freedom. An increase in the number of particles resulted in transition to 
complex FPU recurrence. The dynamics of the open-ended vibrator chain can be related to the behavior 
of a bouncing ball on a vibrating platform [14]. It can be demonstrated that this is not a chaotic system 
as some researchers suggested; rather, to a certain extent, it can be treated as a complex FPU recurrence 
phenomenon. 

As the first step of our study, we attempted to consider neural activity using a plasma approach. 

2. A Model for Electrical Activity of a Neuron 

We will treat a neuron as a volume containing a strong electrolyte solution of intracellular fluid in which the 
RNA molecule acts as a neural information carrier. We also assume that all potassium ions in the solution are 
neutralized by forming ionic couples with hydroxyl groups K+OH- , which provides an overbalance of protons 
in the electrolyte solution. These assumptions allow us to analyze the proton-concentration dynamics in terms 
of the simplified cluster model of the seawater electrolyte as suggested by Frank and Wen [15]. According 
to this model, every sodium ion is surrounded by an ionic atmosphere consisting of four H20 molecules and 
every chlorine ion has two H20 molecules in its atmosphere (Fig. 1). In a spherical volume of a neuron, 
let us identify a one-dimensional chain of Na+ and CI- ions near the inner layer of neuron membrane as 
illustrated in Fig. 1. Depolarization of the membrane gives rise to a proton-concentration wave due to the 
nonlinear mechanism of proton transport between H20 molecules, as suggested by Bernal [16]. The electric 
potential 'PH generated by the combined sodium ion and the chlorine ion atmosphere can be defined within 
the framework of the Debye-Hiickel theory as a sum of repelling and attracting components [16]: 

'PH = i (e-brn - 1) + arn • (1) 

H b J 81rno e2 J 81rno • h I ch . h d·· .. h ere, = ekT' a = ero ekT' e 18 tee ementary arge, n IS t e so lUm Ion concentration, e IS t e 

permittivity of water, ro is the distance between sodium and chlorine ions in the chain, and rn = Zn - Zn-l, 

where Zn is the nth proton shift in the chain. 
In view of (1), we can write an equation describing the dynamics of the proton motion in the chain (Fig. 1) 

in the form of Toda's chain [17] as 

(2) 

where m H is the proton rest mass. 
Toda demonstrated [17] that Eq. (2) can be reduced to the KdV equation; as a result, we have 

(3) 

where uH = 2brnt e = Z -':Ht, ht = ~ , cH = htJ ~:, and T = ;:~ . 
The spherical shape of a neuron results in periodic boundary conditions for the proton concentration 

wave, as given by 
(4) 
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Fig. 1. Formation of a proton concentration wave in a neuron. The RNA triplet. 

where Ln = 21r Rn with Rn being the inner radius of a neuron. Zabusky and Kruskal demonstrated [10) that 
Eq. (3) combined with Eq. (4) yields a solution in the form of the FPU recurrence. In the proposed model, 
the periodic boundary conditions for the proton wave can be modulated in accordance with the nucleotide 
sequence of the RNA molecule (Fig. 1). 

We can now evaluate numerically the neuron memory capacity with allowance for strong-electrolyte prop
erties of the intracellular fluid. Assuming that the distance of proton hop between the neighboring H20 
molecules is equal to 0.86 J... and the temperature of the intracellular fluid is T = 310 K, we can use the 
analogy with a plasma to define the rate of collisions of protons with H20 molecules as 

Vc = ~: = A~ J !: ' (5) 

where AH is the proton free path length and VH is the proton velocity. 
Since the duration of a nerve impulse amounts to several milliseconds [18), we can formally evaluate the 

single spike memory capacity with the use of Kotel'nikov's theorem [19) as follows: 

Nsc = 2VcTi = 3.72.1010 bit/spike. (6) 

The next step is to show how this high-frequency signal can be embedded into the structure of the action 
potential. With this in mind, we consider a neuron membrane as a liquid crystal containing a lipid bilayer [20) 
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(Fig. 1). Taking into account that the distance between the lipid molecules in the membrane layer and the 
distance between sodium ions in the chain (Fig. 1) are about 4.7 A [16, 21], we may suggest the following 
mechanism of interaction between high-frequency proton-concentration wave and the low-frequency ionic 
wave of the action potential. 

We consider the sodium chain shifted by a distance Un relative to the equilibrium positions of the lipid 
molecules of the membrane inner layer (Fig. 1). In this case, we can use the approach developed by Frenkel 
and Kontorova [22] for the analysis of the dynamics of dislocations in crystals. 

We define the potential affecting the nth sodium ion from the immovable chain of lipid molecules in the 
neuron membrane layer (Fig. 1) as 

U(Un) = Uo (1- cos 2:~n), (7) 

where aL is the distance between neighboring lipid molecules in the membrane layer and Uo is the relative 
position of the lipid molecule. 

In this case, the dynamics of the sodium-ion shift can be defined by the following equation [23]: 

tPUn ( ) 1fUo • (21fUn) ~. -d 2 + p 2Un - Un- 1 - Un+l + -- sm -- = o. 
t ~ ~ 

(8) 

Here, p is the elastic constant for the relative shift of the sodium ions. 
Using the continuum approximation in the limit of Un(z, t) -t U(z, t) and introducing the function 

(proportional to the modulation of sodium ion density) 

( ) 21fU(z, t) 
rp z,t = , 

aL 
(9) 

we arrive at the sine-Gordon equation 

(10) 

Here, c. = aL J ~. is the velocity of longitudinal sound wave in the sodium-ion chain and .\0 = :; Iti is 

the relative length of the chain. 
Taking into account that the length of the sodium-ion chain is limited by the size of the neuron, we can 

derive a soliton solution to Eq. (10) as [24] 

rp.(z,t) = 4 arctan (.~a sechkz sinwt) , (11) 

where w2 + c!k2 = C!/A~ is the dispersion relation. 
The dimension of a neuron LN defines the boundary conditions for Eq. (10) by analogy with a long 

transmission line open on both ends, which was used for simulation of the Josephson junction dynamics [25] j 
thus we have 

(12) 

As shown by Fulton [25] for chains with limited length described by the sine-Gordon equation, there 
exists an energy exchange between the soliton solution and the plasma solution. Thus, in the limiting case of 
sin rp -t rp, a solution to Eq. (10) defines the standing waves which are similar to the conoidal waves following 
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from the KdV equation [26]. These properties of Eq. (10) make it possible to resort to the experimentally 
observed plasma phenomenon consisting in locking of the high-frequency electric field by the low-density 
plasma regions [27]. Within the framework of this approach, we may suggest that a spike locks the high
frequency proton-concentration waves within the body of the low-frequency sodium-ion-concentration waves 
because the strong electrolyte solution of the neuron intracellular fluid can be treated as a dense plasma. 
Thus, the formation of a nervous spike can be described by the following system of coupled sine-Gordon and 
KdV equations: 

(13) 

Here, f31 < 1 and f32 < 1 are the parameters of interaction between sodium ion concentration waves and 
proton waves. 

In accordance with the results obtained by Ikezi [27], who studied a similar couple of equations, a solution 
to system (13) defines a soliton with internal oscillatory structure. Taking also into account the results 
reported by Zabusky and Kruskal [10], we may conclude that the solution to Eq. (13) includes the FPU 
recurrence spectrum confined in the soliton defined by the sine-Gordon equation: 

'PB = 4 arctan L/-~ sech(kz + ei )] . (14) 

In Eq. (14), the two functions accounting for the dynamics of the FPU recurrence in a neuron have the 
following form: 

(15) 

Here, lTpu and wFPU are the spatial and temporal frequencies of the FPU recurrence. The structure of 
the FPU spectrum is defined by the properties of the nonlinear oscillatory processes occurring in the RNA 
molecule. The early stages reflect the arrangement of nucleotides in the RNA molecule. 

3. Possible Role of RNA in the Storage of Neural Information 

We now clarify in what form neural information can be represented within the framework of the proposed 
model. 

In a series of papers [28-30], Hyden reported a correlation between learning on the one hand and RNA 
and protein changes in nerve cells on the other hand; he inferred that "brain protein and RNA synthesis are 
required for the establishment of long-term memory and that they occur during or shortly after learning." 
According to his hypothesis, the long-term memory capacity of a single neuron may be far in excess of that 
generally adopted in current neural network models and neural-science theories. In this section, we suggest a 
possible realization of postulates put forth by Hyden regarding the participation of RN A in neural information 
processing. 

Formal numerical evaluation of memory capacity of the RNA molecule is based on the following assump
tions: The memory capacity of the genetic code can be evaluated as log2 20 ~ 4.3 bit per triplet. If we accept 
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Hyden's estimate of the cytoplasmic RNA content in a neuron [2], which is about 4.1013 dalton, information 
stored in a single neuron can amount to over lOll bit. 

On the other hand, the RNA molecule may be interpreted as a network of interacting quantum oscillators. 
Each link of this chain includes one furanose ring coupled with one nitrogen base. Let us consider a simplified 
model of such a link, in which a nitrogen base is replaced by a benzene ring. According to [31], the quasi
local vibrational-mode frequency in the furanose ring is adiabatically dependent on the ring conformation, 
which has two stable states. Assuming both states to be equiprobable, we can define potential energy for a 
delocalized electron in the furanose ring as a double symmetric potential well with two minima: 

Ue(Une ) = Eo (1- ~i) . (16) 

Here, Eo is the potential barrier height, Ue is the electron displacement from the peak of the barrier, and 
±Uae are the locations of the potential well minima. 

Taking into account (16) and the expression for the one-dimensional chain sine-Gordon equation [32], we 
can deduce the equation defining the acoustic-wave dynamics in the furanose ring as 

{J2tpe 282tpe 2. ( ) 
8t2 - CO 8z2 + Wo sm tpe = 0, 17 

where tpe is the magnitude of electron displacement in the furanose ring, Co is the velocity of sound, and Wo 

is the frequency defined by Eo. 
Since the furanose ring constitutes a discrete closed chain, the sine-Gordon equation (17) can be discretized 

and its solution will demonstrate energy distribution among many modes exhibiting the FPU recurrence [33]. 
In this particular case, we are dealing with quantum FPU dynamics for the energy of phonons of the acoustic 
waves in the ring. 

The quantum dynamics of the benzene ring is formally related to a system with two states [34]. However, 
the actual pattern of the electric field in this molecule is more complex. One of the possible approaches to 
its analysis can be based on the wave packet dynamics. Wave functions with the least uncertainty ll.pll.q 
correspond to Gaussian distributions both in coordinate and momentum representations. Such functions are 
convenient as a basis for constructing many-particle complicated wave functions for atoms and molecules 
because overlap integrals and interaction matrix elements can be derived algebraically. In 1975, Heller [35] 
suggested a new application of the Gaussian curve to constructing the wave functions. He assumed that a 
classical trajectory in the phase space where the Hamiltonian in the immediate neighborhood of a moving 
point Ptqt at a given instant of time t can be expanded in powers of (P - Pt) and (q - qt) to the second order 
as in the case of a harmonic oscillator. Then the wave function is given by 

(18) 

where a is a complex symmetric matrix with the number of rows and columns equal to the number of degrees 
of freedom and 'Y is a complex phase. The expectation values for the position and momentum are simply 

(P) = Pt and 

The matrix a defines the spread of the wave packet, which is related to the approximate shape of the 
Hamiltonian near (Ptqt). The complex phase 'Y provides the necessary normalization as well as the critical 
phase angle. The time dependences of a, Ph qt, and 'Y are deduced by inserting (18) into the Schrodinger 
equation. The potential energy is expanded to second order in q - qti thus, we have 

(19) 
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where the first and the second derivatives Vq and Vqq are to be taken at the point qt and at the time instant t. 
The original idea of spreading a Gaussian wave packet (18) along a classical trajectory was implemented by 
Davis and Heller [36] in the Henon-Heiles model [37], but this time in the integrable domain. The main 
conclusion following from this approach is the distinction between the spectra of the Gaussian wave packets 
located in the integrable and the ergodic domains [38]. Apparently, we deal with such a situation in the 
benzene molecule. It is evident that the linear SchrOdinger equation cannot describe this nonlinear dynamics. 
Taking into account the results obtained with the above-mentioned model and the fact that the kinetic energy 
is much lower as compared to the rest energy of electrons in the benzene ring, we can derive the nonlinear 
SchrOdinger equation for interacting electron wave packets in the benzene molecule [39]: 

(20) 

Here, V(q) = """". is a nonlinear potential. 
The nitrogen base also constitutes a discrete structure and this allows us to use the FPU approximation 

by means of the NLS equation [40]. Thus, the quantum FPU recurrence can exist in the nitrogen base as 
well. 

Now, for the simulated elementary RNA molecule cell consisting ofthe coupled furanose ring and nitrogen 
base, the dynamics of interaction of the acoustic waves in the furanose ring with the electric waves in the 
benzene ring can be described by coupled sine-Gordon and nonlinear SchrOdinger equations: 

(21) 

etc < 1, f3c < 1, d= const. 

The system (21) appears as a nonlinear generalization of the Zakharov couple [41] aimed at describing 
the electroacoustic waves in a plasma. In the general case, the solution to the coupled system (21) represents 
a stable energy cluster of a soliton type with a internal oscillatory structure that can be interpreted as 
quantum FPU recurrence. Linking the elementary model cells (21) into the complete chain of the simulated 
RNA molecule, we can form a macro FPU chain for the energy distribution along the spatial coordinate: 

82Wn 
8z2 - (Wn+1 - Wn) - (Wn - Wn- 1) + a[(Wn+1 - Wn)3 - (Wn - Wn_1)3], 

(22) 
a - const. 

Here, Wn is the energy of the n(c)th elementary cell defined by the sum of the squared amplitudes of a finite 
number of FPU spectrum harmonics. 

The resulting quasi-periodic energy exchange between different modes of the RNA FPU recurrence spec
trum is primarily defined by the structure of the molecules. In other words, changes in the benzene ring in
duced by the actual nitrogen base give rise to individual power density distributions of a particular molecule. 
Any new changes in the RNA molecule introduce new boundary conditions for the RNA FPU recurrence 
and thus provide the possibility of additional data recording into the vibrational dynamics of the molecule. 
It is evident that there is no limit for the body of information being recorded. All new information only 
complicates the existing FPU spectrum. The nonlinear character of the RNA model results in the interaction 
between micro (or quantum) and macro FPU recurrences in the RNA molecule. Later we will estimate the 
frequencies in both recurrences. 
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x, t 

Fig. 2. Computer solution to the coupled NLS and sine-Gordon equations. Vertical axis: amplitude (in arbitrary 
units). Horizontal axis: spatial size of a soliton (in arbitrary units). 

The information recorded in the RN A should next be transferred into the structure of a nervous spike. 
As was shown in the previous section, a circular ionic wave of action potential formed inside a neuron also 
represents FPU recurrence. The information contained in the FPU spectrum of a neural RNA molecule 
(Fig. 1) can be transferred through the electrolyte of neuron intracellular fluid to the internal spectrum 
structure of the spike. In other words, any activation of a neuron will result in transmission of the portion of 
information stored at the moment in vibrational form in the RNA molecule to the spike structure. 

Facing evident difficulties in formalization of this mechanism, we resort to computer and analog simulation 
of the problem. 

4. Computer Simulation 

We performed a numerical simulation of a solution to system (21). The existing results of the Zakharov's 
couple study [41] allowed us to assume that the solution to (21) represents a low-frequency acoustic soliton, 
in which a high-frequency electric field is trapped. This form of solution has been experimentally verified by 
some researchers [27] for solitons in a plasma. We expected that the solution to (21) can involve the complex 
FPU recurrence. 

System (21) was studied numerically with code written in Pascal. The choice of coefficients of couple (21) 
was governed by the desire to get a stable solution. As a result, the following values of the parameters were 
selected: 

Co = 0.31, Wo = 0.1, Q e = 0.01, d = 1.6, V(g) = 18.2, f3e = 5 .10-7 • 

The resulting solution is shown in Fig. 2, where the amplitudes «Je > 1/J are plotted on the vertical axis 
and the spatial coordinate is plotted on the horizontal axis. 

As is evident from Fig. 2, the solution consists of the double soliton or breather solution of the sine-Gordon 
equation, which incorporates the high-frequency wave of NLS. The numerical analysis is also indicative of 
the existence of quasi-periodic recurrence in the internal structure of the breather. 

The obvious incompleteness of the obtained numerical solution and the necessity to evaluate the effect of 
discretizing the equations of system (21) prompted us to resort to the corresponding analog simulation. 
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5. Analog Simulation 

This experiment was aimed at the analog simulation of the RNA molecule model and also at the study 
of the interaction between RNA molecular vibrations and the action potential of a single neuron. For this 
purpose, we developed an electronic model of the RNA chain in the form of two coupled nonlinear distributed 
oscillatory systems consisting of two pairs of coupled transmission lines regenerated by two transistors. Every 
furanose ring was simulated by two turns of wires wound on a plastic toroidal core. Every benzene ring was 
also simulated by two turns in the other transformer wound on the same core. Four transmission lines of 
both transformers involved 36 turns each of I-mm insulated wire quadded wound on the same toroidal plastic 
ring 60 mm in diameter and of thickness 12 mm with a common axis of 55 mm in length to form a strongly 
coupled pair of distributed resonators, which simulated the whole chain of the RNA molecule. Both lines of 
the first transformer were accessed from opposite ends and were connected to emitter and collector circuits 
of a transistor, which operated in the avalanche mode as a switch. 

A second pair of lines was connected to the emitter and collector circuits in a corresponding way. In this 
case, both transistor junctions served as active distributed elements having a transfer function of the form 

L" ( .) _ Asin(1rwj/wjo) 
.ct w, - / ' 'trWj WjO 

(23) 

where WjO = 2'trILpEo/lj is the resonance frequency, ILp is the mobility of injected carriers, Eo is the intensity 
of electric field applied to the junction, and lj is the length of the junction. 

In the suggested electronic model, every first pair of turns simulated the dynamics of acoustic vibrations 
in the furanose ring. Let us consider the function of electronic conductivity in both turns. Since the currents 
in these turns are almost equal but opposite, we can assume that all electrons providing conductivity in the 
crystal lattice of the conductor of each turn are free electrons. The motion of electrons in both turns can be 
described by two additively coupled linear SchrOdinger equations [34]: 

11,2 02tP 
___ 1 + V(r)tP1(r) EtP1(r) - KtP2(r), 

2me or2 
1i,2 02tP 

___ 2 + V(r)tP2(r) _ EtP2(r) - KtP1(r), 
2me or2 

r = z±z. 

(24) 

Here, tP1 and tP2 are the wave functions of electrons in the crystal lattice of the first and the second turn, 
V(r) is the potential energy in the electric field of the lattice, E is the total energy of electrons, KtP1(r) and 
K tP2 (r) account for mutual interactions of both wave functions because of the Hall effect, and z is the lattice 
constant. 

Due to opposite flow of electrons in both turns, the solutions to (24) have the following form [42]: 

tPl Ukl(r)eir (k1-k2 ), 

(25) 

Here, Ukl(r) and Uk2(r) are the Bloch functions, and kl and k2 are the average wave numbers of electron 
waves in both turns. 

Spatial beats occurring between electronic waves in both turns result in the following dynamics of electron 
density in every turn: 

(26) 

202 



Volume 19, Number 2, 1998 Journal of Russian Laser Research 

The resulting magnetic field generated by the beating waves is given by 

oe 
oz - H, 

(27) 

Such an approach allows us to draw the analogy with the Josephson junction [43] for the description of 
the electron density wave dynamics in every turn and to use the sine-Gordon equation as 

(28) 

where Ce is the electron-related sound velocity in the crystal lattice of the conductors and We = E In is the 
electron frequency. 

Thus, the quantum-mechanical processes in the furanose ring are simulated by the dynamics of electron 
waves in every pair of turns of two distributed coupled oscillators. 

Another pair of turns belonging to the second transmission line transformer simulated the dynamics of 
the electric field in the benzene ring. As distinct from the previous case, this time both lines were switched 
accordingly into the collector and emitter circuits of the transistor, forming a classical two-line coupled system 
with split frequencies and doubling of the number of resonance positions [44]. Based on the fact that the 
energies of these vibrations are equal and both waves are standing, we can consider the dynamics of wave 
processes in every turn in the following way: The resonance characteristics of p-n junctions (23) in both 
transistors give rise to electron wave packets in every turn. Splitting of energy levels induces modulation of 
the wave numbers near their average values. 

It is necessary to emphasize that the system under consideration is similar, to a certain extent, to a 
couple of classical interacting quantum oscillators, in which the joint probability density periodically changes 
in time. However, in the model, the interaction of two wave packets results in mutual modulation of their 
wave numbers, which allows us to use the nonlinear SchrOdinger equation for describing the electron wave 
function dynamics 1/J3 and 1/J4 of each turn of wires: 

i 01/J3,4 + J 021/J3,4 + LI_I. 12_1• = 0 
ot ""P oz2 "'m Y'3,4 '1'3,4 , d= const. (29) 

The interaction between the first and the second pairs of turns simulating the interaction between acoustic 
waves in the furanose ring and electric waves in the benzene ring can be written as 

202e 02e 
Ce oz2 - ot2 - w! (1 + Qel1/Js,41 2 ) sine, 

i 01/JS,4 + J (j21/JS,4 + k (1 + f.l e) I_I. 12_1• ot ""P oz2 m JJe 'I'S,4 'I'S,4 - 0, (30) 

Q e < I, f3e < 1. 

In order to derive the general resonance solution for both equations of the system (30), we can make use 
of the equality of energy in both pairs of turns and the dispersion relations for acoustic and electric waves; 
thus, we have 

(31) 
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-+--+---!.~X, t 

l.8 m, 0.05 J1S 

Fig. 3. The oscillogram of the voltage wave train illustrating the interaction between two pairs of lines wound on a 
plastic toroidal core. Vertical axis: 5 V per division. Horizontal axis: 0.05 p.8 per division. 

where It is the length of the turn, Xe is the degree of collectivization of neighboring electrons, m; is the effective 
electron mass, and ae is the neighboring-atom distance in the crystal lattice of the conductor material. 

Typical values of spatial km and temporal We frequencies in the electronic model on the scale defined by 
the crystal-lattice parameters are km = 16 rad/m and we /27r = 1016 Hz and, on the macroscale defined by 
the length of the turn, they are kw = 4.3 rad/m and W /27r = 2 . 106 Hz. 

With allowance for the entire chain offuranose and benzene rings forming the RNA molecule, it is necessary 
to use Eq. (22) which describes the quasi-periodic redistribution of energy or complex FPU recurrence. In 
the experimental electronic model, we obtained an instantaneous pattern of such a recurrence in the form 
of a breather solution to the sine-Gordon equation with embedded high-frequency signal as can be seen in 
Fig. 3. Qualitatively, the computer solution (Fig. 2) and experimental picture (Fig. 3) are similar. 

Thus, within the framework of the proposed electronic model, the RNA molecule can be treated as a carrier 
of the complex FPU recurrence. However, as distinct from the classical picture of the FPU recurrence [4], 
in the RNA model chain, the FPU spectral dynamics has a kind of fractal substructure due to the existence 
of microrecurrence in two interacting pairs of turns simulating interaction between the fields of furanose and 
benzene rings, whereas macrorecurrence occurs in the entire chain. 

The next step in simulation consists in transferring the FPU spectrum of the RNA molecule to the nerve 
spike. For this purpose, we have to simulate the process of interaction between the ion-acoustic dynamics 
in the electrolyte of the neuron intracellular fluid and the electroacoustic FPU spectrum emerging in the 
neuron RNA molecule. By definition [16], a strong electrolyte represents an intermediate state between 
a crystal lattice of ions and random motion of ions in the solution. Strong electrolytes exhibit nonlinear 
dependence of conductivity on applied electric field [45]. To simulate this property, we chose a ferromagnetic 
material (a ferrite) to play the role of the strong electrolyte of the neuron intracellular fluid. Ferrite possesses 
ferroelectric, ferromagnetic, and semiconductor properties. The structure of ferrite consists of chaotically 
oriented inclusions (islands) of the FeO and Fe203 crystals in which some Fe atoms are replaced by atoms 
of Mn, Zn, Ni, and Co. The property of spontaneous polarization existing in ferrites provides the possibility 
for simulating the electric field dynamics in ferrite core as described by the NLS equation [46]. In the second 
stage of the experiment, therefore, we replaced the plastic toroidal core by the standard Mn-Zn ferrite core 
having the same size and p. = 3000. To investigate the redistribution of energy in the lines, we analyzed the 
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Fig. 4. The oscillogram of the voltage wave train illustrating the interaction between two pairs of lines wound on a 
ferrite toroidal core. Vertical axis: 10 V per division. Horizontal axis: 2 p.s per division. 

output waveforms with a DP2406 fast-Fourier real-time spectrum analyzer within the range of 0-70 000 Hz. 
The FPU dynamics was experimentally observed in the resulting electromagnetic field of the two long 

transmission lines wound on the ferrite toroidal cores; one of the lines was tuned to the range of ferroacoustic 
resonance and the other, in the range of ferromagnetic resonance. Figure 4 shows the resulting oscillogram of 
interacting fields and Fig~ 5 illustrates quasi-periodic Fourier image variations of the complex FPU recurrence. 
In the electronic model, the memory effect in this system is accounted for by the formation of an identifiable 
repeating pattern in the Fourier harmonic frequency distribution over a number of recurrences. Similar effects 
may be observed in strong electrolytes, dense plasmas, and in materials with mobile structure [47]. 

Mechanism of energy exchange between electromagnetic and acoustic waves in ferrite can be considered 
in the following way: Due to the island structure of the ferrite, the corresponding energy balance for the 
photons and phonons in the islands at the frequencies of ferroacoustic and ferromagnetic resonances can be 
defined as 

(32) 

where WI' wu' kl' and kU are the transverse and longitudinal temporal and spatial frequencies, respectively. 
Equation (32) shows that the exchange of energy between electromagnetic field and acoustic field in the 

islands is realized via spin waves [48]. Furthermore, every island acts as a diffraction hole (of diameter d) for 
electromagnetic waves with the dispersion relation written as 

(33) 

Equating the electromagnetic- and acoustic-field energies and using the expression P = lik, we arrive at 

2V21rc 1 sin(Pld/21i) 1_ Ix. IPUa I 
d PI/Ii - 2liV ;;; sm 21i . (34) 

where a is the distance between neighboring atoms in the island, m is their mass, and X is the corresponding 
coupling constant. 

For d ~ a, Eq. (34) for has many solutions and, with allowance for the uncertainty relation JNJ'Y > 1 for 
electromagnetic waves having phase 'Y and consisting of N quanta, we may infer that the energy spectra of 
interacting fields in an ensemble of islands in the ferrite toroidal core will exhibit low-frequency quasi-periodic 
broadening and narrowing, i.e., a complex FPU recurrence. 
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Fig. 5. Instantaneous Fourier images of the complex Fermi-Pasta-Ulam recurrence spectrum formed as a result of 
interaction between two transmission lines wound on a ferrite toroidal core. Vertical axis: power density spectrum (in 
arbitrary units). Horizontal axis: frequency (7.1 kHz per division). Exposure time is 100 J1.s, total number of scans is 
equal to 50, after one scan (a), after 14 scans (b), and after 29 scans (c). 

In the model under consideration, the ferrite core plays the role of the intracellular strong electrolyte. As 
a result, according to (31), "in both pairs of transmission lines tuned to the frequencies of ferroacoustic and 
ferromagnetic resonances, the micro FPU recurrence is incorporated into the macro FPU spectrum simulating 
the transfer of fractal substructure of the RNA FPU recurrence spectrum to the internal structure of the 
nervous spike. It is evident that every stimulation of a neuron results in incorporation of only a fraction 
of this spectrum into a spike. The most likely parts of the FPU spectrum to be incorporated in a spike 
are those related to memorization of the most habitual events and actions, such as mother tongue patterns, 
circumstances at home, and so on. 

Thus, a neuron can be treated as a complex FPU electroacoustic resonator where the property of memory 
is simulated via a quasi-periodic redistribution of energy among the modes of electric and acoustic fields in 
the RNA molecule. Such a memory system does not have any limit in the body of information recorded. 
New information is merely incorporated into existing ones. 

6. Discussion 

Based on the model proposed, we may state that the existing Hodgkin-Huxley paradigm can be expanded 
by using (i) Hyden's idea about the role of the RNA molecule in neural information processing and (ii) a 
nonlinear approach which includes FPU recurrence as a key phenomenon for possible interpretation of the 
dynamic memory in a neuron. The process of modeling included the following steps: 

(I) Deduction of equations which simulate the dynamics of Na, CI, H, and OH ion concentration in the 
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intracellular neuron fluid; 
(II) Simulation of the mechanism of short- and long-term memory as the FPU spectrum recurrence 

dynamics in the neural RNA molecule coupled with ionic fluxes in the intracellular fluid; 
(III) Combination of all mechanisms into a single model, which makes it possible to describe the action 

potential as a soliton exhibiting an internal structure in the form of the FPU recurrence; 
(IV) Numerical and experimental study of the model. 
Description of the action-potential formation in a neuron as a sodium-concentration soliton which traps 

high-frequency oscillations of the proton concentration is similar to that of the plasma phenomenon of trapping 
Langmuir oscillations in the regions of low ion density as experimentally demonstrated by Ikezi [27]. Coupling 
the sine-Gordon to the KdV equations for the simulation of this mechanism is also within the framework of 
the mentioned approach [27]. 

We next considered a neuron RNA molecule as a main carrier of information and simulated by a chain of 
nonlinearly coupled oscillators: furanose ring generating acoustic waves and benzene ring producing electric 
waves. Replacement of nitrogen base by benzene ring represents an evident simplification of the problem. 
However, for the phenomenon of the FPU recurrence, it does not make much difference because the allowance 
for concrete nucleotide sequences in the RNA molecule model brings about only individual characteristics for 
a certain molecule without changing the concept of the FPU recurrence as an information carrier. 

Quantum-mechanical description of the dynamics in the coupled furanose and benzene rings was necessary 
to demonstrate two levels of data storage in the RNA molecule: the micro and macro ones. Coupling the 
sine-Gordon with the NLS equations for simulation of this mechanism is based on the classical quantum
mechanical approach and nonlinear generalization of the Zakharov couple. 

Numerical and analog experiments were aimed at the verification of the proposed model and proved the 
existence of realistic solutions of the mentioned couple of equations in both numerical and analog forms. 
During the analog experiment a new property of the FPU recurrence has been observed: the presence of 
fractal substructure in the FPU spectrum, which may extend to the quantum scales of spatial and temporal 
frequencies of the recurrence spectrum. But this requires further consideration. 

Summing up, we can state that the model proposed may be useful for developing artificial neurons. As a 
concluding remark, we express our believe that, if such a mechanism does exist, it is of artificial origin. 
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