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Abstract

Laser-induced fluorescence studied with the help of a tunable dye laser is used to record the photoassociation
spectrum of equilibrium mercury atoms in the range of 34 700-37 300 cm™!. The so-called Franck-Condon
structure, which represents periodic variations of absorption intensity on a continuous background, is
observed. The structure makes it possible to determine spectroscopic parameters of the upper bound
potential and the lower repulsive potential, including the potential with a shallow Van der Waals well.
The Numerov-Cooley procedure is used to find the numerical solution of the boundary problem, namely,
eigenfunctions and eigenvalues of the Schrodinger equation for the one-dimensional motion in a potential
field, matrix elements of transitions and partial waves, and the absorption spectrum of collisional pairs
of atoms are calculated. The absorption spectrum of mercury dimers was simulated taking into account
100 vibrational and 200 rotational levels. The comparison of theoretical and experimental spectra according
to Tellinghuisen made it possible to determine the lower part of the potential curve for the dimer excited
state.

In the case where one of the energy levels of a molecule changing its electronic state belongs to the
continuum, this transition is termed the free-bound transition. The corresponding spectra are continuous
in contrast to the spectra with sharp rotational lines and sharp edges of vibrational bands (bound-bound
transitions). However, continuous spectra also have a noticeable structure in the form of intensity variations
on a continuous background. The structure is caused by variations of the Franck—-Condon factor, the square
of the overlap integral for the wave functions of molecular states involved in the process, with the change of
transition frequency.

Structure continuous spectra can be quantitatively analyzed by comparing with spectra obtained in a
calculation experiment. This gives data on energy eigenvalues, vibrational and rotational constants, and
molecular potentials. The potentials found by this analysis are rather reliable even in comparison with the
potentials found by the Rydberg-Klein—Rees method from band molecular spectra.

The fruitfulness of studying structure continuous spectra was analyzed in detail in [1]. It should be
noted that the analysis of the effect consisting in the spectral structure formation in the case of bound-free
transitions, which is now referred to as the internal Condon diffraction, can be found in the early paper [2],
which is cited as the pioneer work concerning the Franck—Condon principle.

Excimer molecules form a class of diatomic molecules having a repulsive ground state and a bound excited
electronic state. Bound-free radiative transitions in these molecules represent an example of continuous
molecular spectra.

It is common to produce excited excimer molecules either in chemical reactions of excited atoms or ions due
to excitation with electrons of a discharge or a beam or through photodissociation of polyatomic molecules. In
an experiment with excimer molecules, the fluorescence spectrum corresponding to transitions from excited
bound electronic states to the ground repulsive state is recorded. The experimental results are compared
with the calculated spectrum. The main problem is associated with the vibrational distribution of excited
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Fig. 1. Diagram of electronic states of the Hg, molecule.

molecules. If the rate of V-T relaxation is insufficiently large in comparison with the radiative process, one
should carry out a special study to determine the vibrational distribution. If the rate of V-T relaxation is
sufficiently large, the spectrum contains information only on vibrational levels with small vibrational numbers,
i.e., the levels that are thermally excited.

A new situation arises in the case where a frce-bound transition is excited with photons. Free pairs of
atoms with certain internuclear distances and kinetic energy can absorb photons and thus change to bound
states of corresponding molecules. This absorption, which is associated with a free-bound transition, is known
as pressure-induced absorption (see, e.g., [3] and the references therein) or absorption due to photoassociation.
It can be used as an alternative method of studying excimer molecules.

It is more convenient to measure the fluorescence excitation spectrum under conditions of photoassociation
and not the absorption spectrum. In this case, it is possible to observe free-bound transitions with photon
absorption and a change to virtually all vibrational levels, including very high levels. Carrying out an
experiment at a sufficiently high pressure, which is so high that molecules found in an excited bound state
undergo V-T relaxation before the emission event, and detecting fluorescence of molecules at a fixed frequency
from strongly emitting lower vibrational levels, one records the excitation spectrum. If the relaxation over
vibrational levels is identical for all excitation wavelengths, the fluorescence excitation spectrum is equivalent
to the absorption spectrum.
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Fig. 2. Photoassociation spectrum for Hg-Hg pairs of atoms.

The above method was developed and described in [4-8], in particular, for the Kr-F and Xe-I pairs of
atoms and the KrF and Xel molecules. These papers present references to the works that formed the basis
of the method.

The instruments and technique used in these experiments are the following [7]. Initially a pulse of an
auxiliary laser produces free halogen atoms through photodissociation of F; or I,. The main laser is switched
on with a time delay. This laser is frequency tunable and its radiation causes photoassociation of Kr-F or
Xe-1I collisional pairs of atoms, which produces molecules on a certain vibrational level of an excited electronic
state of a molecule, more specifically, the BZET , state. Subsequent collisional relaxation over vibrational
levels results in fluorescence from lower vibrational levels of the state B. The excitation spectra are obtained
by recording the fluorescence intensity in the course of laser frequency tuning. The results of observation and
analysis of photoassociation spectra for the Kr-F and Xe-I pairs of atoms, including the determination of
parameters of potential curves, are presented in [4-8].

Excimer molecules include Hg;, the mercury dimers, which have the repulsive ground state X0} with

a shallow Van der Waals well, with a internuclear distance of about 0.37 nm. The Hg, molecules are the
subject of our present study.

Figure 1 illustrates the diagram of electronic states of the Hg, molecule. Photoassociation of collisional
Hg-Hg pairs takes place under irradiation with wavelength of 268-288 nm and corresponds to the X 0;‘ - D1,
transition. The Hg,(D) molecules formed in the process undergo collisional relaxation to the nonradiative
A0/ state. Later on, these molecules are exposed to radiation with wavelength of 564 nm and make the
AO;’ — GO transition. Subsequently, the Hg,(G) molecules make a radiative transition to the ground state.
The intensity of laser-induced fluorescence corresponding to the GO} — X0} transition and observed in the
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range of 210-240 nm is measured as a function of radiation wavelength of the first laser. This gives the
photoassociation spectrum for collisional pairs of mercury atoms.

In the experiment, mercury vapors are heated to a temperature of 300-320 °C. The density of saturated
mercury vapors at this temperature is equal to (3.6-7.2)-10'® cm~3 (it is calculated using the data on pressure
from [9]). At this temperature, mercury vapors represent a monatomic gas. The depth of the Van der Waals
well is about 400 cm™1, and kT has approximately the same value. In view of this fact, the Van der Waals
molecules are almost totally dissociated because of the large statistical weight of a free atomic state.

Figure 2 presents the experimental photoassociation spectrum for Hg-Hg atoms, which is recorded in
the way described above. One can clearly see intensity oscillations on a continuous background whose level
increases with increasing wave number.

It is common to derive information from photoassociation spectra by the iteration method, which is based
on the comparison of calculated and experimental spectra. The values of parameters of potentials involved in
the problem are obtained by fitting the calculated spectrum to the experimental one. The procedure calls for
multiple calculations with a variable functional form of potentials and different values of variable parameters.
In actuality, one solves the inverse problem. The question of procedure uniqueness is a subject of a special
study, which is beyond the framework of our present work.

The contributions of different transitions in the continuum will be summed using the rule adopted in [7].
The photoassociation absorption coefficient k,, will be assumed to be proportional to the quantity

kon ~ VS(V)NI?Ig, (1)
where
S(w) =) Puylelh), (2)
v, J

where, in turn,
2

Pos(e) = @7+ 1)exp (— ) [ s iRy 3)

Here, P, ;(€’;) is the so-called partial wave. The first and second factors on the right-hand side are the
rotational statistical weight and the Boltzmann factor.

Strictly speaking, the energy distribution of pairs of mercury atoms in a closed space with a potential
maximum must be different from the distribution in a space without a potential maximum. This is caused
by the dependence of the degeneracy multiplicity for a state with a given energy on the energy value. By
analogy with the data for Xe; [10], we assume that this difference is small. Because of this, the Boltzmann
factor used in (3) has no corrections. Moreover, we do not discriminate between the rotational branches P,
Q, and G. In (3), the rotational number J is given without a subscript specifying the state, the upper or
the lower one. The rotational structure of the spectrum is taken into account with the help of one branch,
namely, the @ branch.

The calculation of the spectrum is reduced to the calculation of wave functions and squares of matrix

2
elements '(1/),,: le(R)h/)e:J: )I . The wave functions 1,+; and 1+ are found with the help of the functions ¢, /R
and @eu /R, which are eigenfunctions of the one-dimensional Schrédinger equation

CH(R) 8y
dR?z ' B2

2
[E-Uo(m + gz S+ D) 6B =0, @)

where energy is measured in energy units.
It is known that (4) is the equation to which the problem of particle motion in a centrally symmetric
field is reduced. In view of the restrictions imposed by symmetry, we must deal with the != —! ¥ transitions,
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mima
(m1 + ma)N4y
of a molecule, where m; and my are the masses of atoms comprising a molecule (in atomic units), and
N4 = 6.0221 - 10 mol~! is the Avogadro number, which is used to express the reduced mass in grams.

By analogy with [4-8], Eq. (4) will be numerically integrated using the Numerov—Cooley algorithm [11, 12].
Equation (4) with the boundary conditions

and these particular transitions will be considered below. In (4), p = is the reduced mass

¢(0) =0 with ¢(R) limited,
is replaced with the difference equation
Yip1 + Yioy — 2Yi = h3(U; — E)¢y, (5)

where

Y;

[1 — 13 W= E)] . (6)
Here

R; = Ro+ih, i=0,1,2,...,n+1,

¢i = ¢(R‘l)‘) (7)
Ui = U(Rt)a
v(r) = S E vy + 2D, ®)

In (6) and (7), h is the R step; in (8), ki is the Planck constant.

For E > U(o0), which corresponds to the motion of atoms in a molecule that is bounded from one side
only, the solution to Eq. (4) exists for all E. It can be found with the help of formula (5). Note that one
should begin with the following values:

¢0 =0, ¢ is an arbitrarily small number.

If E < U(o0), solutions to Eq. (4) exist only for discrete values of E.
The condition of limitedness of an eigenfunction of Eq. (4) for any R is equivalent to the conditions

¢dn+1 is an arbitrarily small number,
(9)
On = Pni1€Xp (Rn+1\/ i1 — E — Ro /Uy — )

The second condition in (9) is the result of the assumption that the potential U(R) for R, changes negligibly on
the de Broglie wavelength, which makes it possible to calculate the wave function in the WKB approximation
(the quasi-classical approximation).

To carry out numerical integration of Eq. (4), one should have preliminarily (approximate) values of
energy eigenvalues. If the preliminarily value of F is set with insufficient accuracy, the program omits
some eigenvalues, and the other eigenvalues are recalculated. Preliminary values are the subject of program
automation and will not be discussed here in greater detail. When plotting the dependence of E on n, the
number of energy eigenvalues, one usually sees from perturbations of monotonicity of the curve in what
direction the preliminary energy value should be changed in order to find the omitted value.

120



Volume 19, Number 2, 1998 Journal of Russian Laser Research

é

g

0.00

—200.00

[ W VR VNS VARG VAN YA WA TN NN AN U WY Y WL YUK S TEN WO N R SN MY WO SO WY S O |

-400.00 T T
2.00 4.00 6.00 8.00

Fig. 3. Wave functions for the potential with a well and the purely repulse potential. The abscissa is the internuclear
distance in angstroms, and the ordinate is the energy in cm™!.

For a certain preliminary value of E, the eigenfunction is calculated starting with Ry, which is found rea-
sonably far to the left of the repulsive branch of the potential curve. The first two values of the eigenfunction
should be chosen in the form

¢o =0, ¢ is an arbitrarily small number.

The integration is performed up to a certain point R, which is arbitrarily specified on the interval between
the repulsive and attractive branches of the potential curve U(R). In view of the fact that Eq. (4) is inho-
mogeneous with respect to ¢, the quantities ¢; may be replaced with ¢{* = ¢;/@y, where i = 1,2,3,...,m.
Further on, one uses (9) and (5) and performs integration from R,4; to R, < Ry, which gives the quan-
tities ¢i®, where i = n + 1,n,...,m. It is natural that the solutions calculated at the point Ry, are equal to
each other
¢t =dm=1

however, the derivatives do not coincide. The difference between the values of derivatives makes it possible
to determine the correction (see [11]) to the energy eigenvalue expectancy by the formula

(=Ym-1+2Y = Y1) "2+ (Upn — E) ¢y

D(E) = n
5

(10)

The procedure is repeated and it suffices, as a rule, to make five or six iterations in order that the correction
be smaller than a small value chosen in advance. According to [12], the program may show oscillations, but
we have not observed this effect.

The wave functions are normalized. The functions of the discrete energy spectrum are normalized in
such a way that the integral of the wave function squared taken over the coordinates is equal to unity. The
functions of the continuum are normalized so that the integral of the wave function squared over all possible
values of energy is equal to unity. In view of the absence of Van der Waals molecules, there is no need to
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Fig. 4. Illustration of the instability of the Numerov—Cooley algorithm.

calculate wave functions of the lower state in the discrete spectrum. It is natural that these calculations
should be performed for decreased temperatures of mercury vapors.

We shall use the procedure of derivation of intermediate results with the help of the program developed for
the calculation of photoassociation spectrum in order to illustrate the role of different effects. This seems to
be useful from the methodological point of view. In some case, we shall obtain illustrations to [13] concerning
the role of kinetic energy in the Franck—Condon principle.

The presence of a potential well in the potential curve of the lower state has a crucial effect on the wave
functions of the lower state. One can see this effect in Fig. 3, where two potential curves are presented on
a large scale. One potential curve has a potential well with depth of about 400 cm~!, and the other curve
has no potential well. The curves coincide for E > 0. At the point E = 0, the second curve changes to the
horizontal straight line.

Six wave functions shown above the level E = 0 were calculated in pairs for three approximately equal
energy values, but for different potentials. The plots of wave functions are placed on the corresponding energy
levels. Each upper wave function in a pair is calculated for the potential with a well, and the lower functions
are calculated for the potential without a well. One can see that the spatial period of the corresponding
wave functions above the potential well (it may be referred to as the de Broglie wavelength) is noticeably
decreased because of the kinetic-energy excess (momentum excess) in comparison with the case of motion in
the potential without a well. Thus, the potential well in the lower curve gives no contribution to the form of
the line spectrum, but changes wave functions and the corresponding overlap integrals (the Franck-Condon
factor). As a result, the photoassociation is changed, too.

Figure 4 illustrates the wave function for the vibrational number ' = 30. The right-hand side of this
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Fig. 5. The dependence of the vibrational-energy eigenvalue on the vibrational number.

picture illustrates the stability and the accuracy of the Numerov-Cooley algorithm. The point is that in
actuality the figure presents five wave functions, which are calculated by integration from a small Ry in the
direction of increasing R without the use of the corrector-predictor formula (10), but for the values of E that
are rather close to the eigenvalue E = E,_3. The corresponding values are presented in the figure. They
should be enumerated in the order of 1-5 from the top to the bottom. The energy (in cm™1) is measured from
the bottom of the potential well. The closer the value of E to the eigenvalue, the longer the wave function
remain limited (curves 1-5).

The curve in the upper fragment of Fig. 5 illustrates (in the form of bends of the curve) the aforementioned
effect of loss of some eigenvalues during the calculation. The preliminary energy values were specified with
insufficient accuracy. The curve in the lower part of the curve has no bends, i.e., we found all eigenvalues
and none of them was missed.

When formulated classically (we mean classical mechanics), the Franck—Condon principle means exact
conservation of coordinates and momenta of nuclei of atoms, which form a diatomic molecule, during an
electronic transition [13]. In quantum mechanics, the principle characterizes the transition probability. The
transition corresponding to the classical principle of conservation of nuclear coordinates and momenta has the
highest probability. The physical reason is that a finite change of coordinates and momenta would require an
infinitely high power and an infinitely large force, which are absent. Figure 6 illustrates the upper and lower
potentials of the Hg, molecule and two wave functions. One function corresponds to motion with energy from
the discrete spectrum, and the other function corresponds to atoms flying freely in opposite directions. One
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Fig. 6. The upper and lower potential curves of the Hg, dimer, the wave functions of the discrete and continuous
energy spectra, and the Mulliken difference potential [1, 13].

can see that the transition from the lower classical turning point to the right-hand upper turning point does
not correspond to the Franck—Condon principle. A higher probability is obtained for the vertical transition,
which takes place for a internuclear distance of about 0.3 nm (the coordinate is conserved), from the point

with a nonzero kinetic energy of the motion bounded on one side to a vibrational level, where the kinetic
energy is conserved (the momentum is conserved). The difference

X(R) = U"(R) + E., — U'(R) a1

forms the so-called Mulliken difference potential {1, 13] (its own for every v’) on which the most probable
transitions from the lower state to the upper state due to photon absorption start. The energy of an absorbed
quantum is equal to the difference

hv = E - X(R) (12)
at the point corresponding to the highest transition probability. If one makes the necessary changes, the
aforesaid relates to radiative bound-free transitions, as well.

Figure 7 once again illustrates the same functions as those presented in Fig. 6. The dashed line corresponds
to the continuous spectrum of energy eigenvalues (the lower state, £/ = 2200 cm™!), and the solid line
corresponds to the discrete spectrum (¢’ = 40). One can see from Fig. 7 that the functions have the same
spatial periods for a internuclear distance of about 0.3 nm, which gives the coordinate of the most probable
electronic transition. Moreover, Fig. 7 shows the product of wave functions (the integrand of the overlap
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Fig. 10. Calculated and experimental absorption spectra for collisional Hg-Hg pairs.
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integral, the thick solid curve). The curve oscillates near the coordinate of the most probable transition, but
it remains positive there. Beyond the boundaries of this region, the curve oscillates with a change of sign.
Note that the product vanishes outside the region where the functions overlap.

Figure 8 illustrates the same functions as those in Fig. 7, but together with a current value (the thick solid

R
curve) of the integral [ ¢,.;¢.» dR. For R — oo, the latter integral represents the Franck—-Condon overlap

integral. One can see t(ilat the overlap integral is accumulated for the values of R corresponding to the most
probable transition.

Figure 9 illustrates the partial waves calculated for several values of ¢/, €, and J by formula (3). The
amplitude of a partial wave is proportional to (2J + 1), which is seen from the comparison of the curves in
Fig. 9. The envelope of a partial wave decays in the direction of increasing translational energy ¢”, which is
caused by a decrease of the Boltzmann factor exp (—¢”/kT). Oscillations of a partial wave are caused by the
change of phases of wave functions of the lower and upper states. A partial wave has a minimum for a phase
difference of 7 /4. The phase difference of wave functions is not governed by the Franck—Condon principle. It
is determined by the form of the potentials between which the electronic transition is observed. Summing the
contributions of all partial waves, which are determined by formula (11), one obtains the absorption spectrum
for the photoassociation of collisional pairs of atoms.

Figure 10 illustrates the calculated spectrum (the smooth curve) giving the best agreement with the
experimental spectrum, which is shown by the noisy curve. The vertical lines in Fig. 10 mark the positions
of peaks in the experimental spectrum. The positions of these lines are corrected in such a way that the
difference of frequencies of the neighboring peaks monotonically decreases and forms a smooth frequency
dependence.

The photoassociation spectrum was calculated for potentials of the following form. The lower potential
was constructed according to the calculation data of [14], and the position of its minimum is shifted to the
point R specified in [15]. Note that the Morse-type potential that was constructed using the data of [15]
coincided on the right-hand side of R, with the shifted potential from [14]. With the help of the factor
{14 B” exp[—a"(R — 2.2)]}, the Morse-type potential with parameters from [15] was made exactly coincident
with the potential from [14]. The result of fitting is contained in the formula

U.,;(R) = Dg{l + B,,exp["a”(R - 2‘2)]}{[1 - expﬁ”(R - RZ)] - 1} + 81!’20[1. .10-16R2 J(J + 1)1
g = 10‘8\/81r2ywé'zeh" = 1.226827, (13)
D! = 380, wlz.=0.253, R!=363, o' =318"=3.803313, B=1.

In the calculations, the upper potential was used in the form of the Morse potential, and its parameters
are taken from [15]. The values of these parameters are close to the values found in [16], but are somewhat
different from them,

h
U.,I(R) = D;{[l - expﬂ'(R - R;)] - 1} + 2c“ .10-16R2 J(J + 1) + Eq, (14)
E, = 39424, pg' = 10-3,/81r2pcw;z.,h-1, D! = 8260, w!z.=045 R.=253.

U;, D, E,, and w,z. entering in (14) and (15) are measured in cm™!, R and R, are measured in angstroms
(this accounts for the factors 10~1¢ and 108 in the formulas), o’ and f are measured in reciprocal angstroms,
p is the reduced mass in g, c is the speed of light in cm/s, and B is a dimensionless number.

The calculated spectrum coincides with the experimental spectrum in the low-frequency region from
35000 to approximately 35750 cm™!. An attempt to obtain complete coincidence of the spectra by varying
parameters of the Morse potential has not met with success.
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The dependence p(R) should be derived by the method proposed in [7]. At the given stage of calculations,
p#(R) was assumed to be constant and, therefore, was not determined. Moreover, we assume that the wing of
the resonant absorption line with A = 253.7 nm is superimposed on the photoassociation spectrum for pairs
of atoms. In our opinion, it will be possible in the future to determine the nature of resonant-line broadening,
which represents the test of the theory of resonant-line broadening.
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