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GRAIN BOUNDARY MIGRATION WITH THERMAL GROOVING

EFFECTS: A NUMERICAL APPROACH

VADIM DERKACH, AMY NOVICK-COHEN, AND ARKADY VILENKIN

Abstract. Grain boundary migration in the presence of thermal grooving effects play
a critical role in the stability of the thin polycrystalline films used in numerous techno-
logical applications. We present a computational framework for simulating this motion
which relies on a physical model due to Mullins [33, 26], according to which the grain
boundaries and the external surfaces are governed by mean curvature motion and sur-
face diffusion, respectively, and along the thermal grooves where the grain boundaries
and the exterior surfaces couple, balance of mechanical forces, continuity of the chemical
potential, and balance of mass flux dictate the boundary conditions. By adopting an
equi-spaced parametric description for the evolving surfaces [40, 13], the physical model
can be formulated as a coupled systems of ODEs and PDEs.

We propose a finite difference algorithm based on staggered grids for solving the re-
sultant system, which we implement on a polycrystalline layer with columnar structure
containing three grains, assuming isotropy. Our algorithm, which is second order ac-
curate in space and first order accurate in time, conserves mass, dissipates energy, and
satisfies the predictions of Mullins[33], von Neumann-Mullins [32, 51] and Génin, Mullins,
Wynblatt [22], in appropriate limits. Effects such as pitting, hole formation, grain anni-
hilation, wetting, and dewetting can be analyzed using our approach [15, 14, 17, 16].

1. Introduction

We report on a numerical algorithm designed to study simultaneous grain boundary
migration and surface topography evolution in polycrystalline films with columnar structure,
which is particularly relevant for studying thin polycrystalline films. Simultaneous grain
boundary migration and surface topography evolution often strongly affect the thermal
stability of thin polycrystalline films, which are of high technological importance, since at
temperatures which enable some surface diffusion, grooves form on the exterior surface where
grain boundaries emerge, and these grooves can penetrate down to the substrate, leading to
hole formation and sometimes eventually to full agglomeration [48].
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Over recent years, there has been a plentitude of studies devoted to modeling microstruc-
tural evolution in polycrystalline materials, taking into account a large spectrum of ef-
fects. The majority have focused on the microstructural evolution within the interior of
the specimen, with recent emphasis on their statistical properties [32, 23, 44, 5, 4, 49].
Microstructural evolution of the exterior surface topology has also been studied, though
to a lesser extent; there have been studies focusing on facetting, anisotropy, and stability,
with some emphasis on grooving, traveling wave solutions, stagnation, and self-similarity
[34, 22, 11, 28, 1, 42]. The number of studies focusing on the coupled motion of the two
effects is markedly less abundant. While the analytic framework for the coupled motion has
yet to become fully developed, numerical methods have been proposed and implemented,
certain bicrystalline geometries, with special initial and boundaries conditions, have been
treated in depth, and various phenomena, such as grooving, migration, and pitting, have
received attention [34, 50, 26, 28, 38, 31, 52]. Recent experiments have reported on the
possibility of accompanying phenomena such as mazing [43], which for simplicity we do not
attempt to model.

In the present paper we outline and test an algorithm which was developed to follow
the evolution of coupled surface and grain boundary phenomena in realistic polycrystalline
microstructures. In earlier papers, we used this algorithm to describe simultaneous grain
boundary migration and grooving in a triangular bamboo three grain geometry in a thin
polycrystalline specimen, which can exhibit hole formation and grain annihilation [15] as
well as stabilization of hexagonal arrays [17]. Here, we present a detailed discussion of our
numerical algorithm, which is based on a parametric description of the evolving surfaces,
with equidistributed grid points on a staggered grid. Our approach generalizes the primarily
2D algorithm proposed by Pan and Wetton [40, 39, 10, 41]. Numerical methods, such as
level set methods, thresholding dynamics, and MBO methods [45, 3, 19, 29], which have
been widely utilized in simulating microstructural evolution, are not directly applicable for
the coupled motions considered here. Potentially phase field methods based on [37], could
be implemented here, but this is also not straightforward. While finite element algorithms
have been proposed and analysed, and could be potentially useful for geometries such as we
consider [47, 8, 7, 6]; however realistic multi-grain geometries in R3 governed by the coupled
motions have so far received only very limited attention.

The outline of the paper is as follows. In Section 2, we present the physical model, the
geometry to be considered, and the governing laws of motion. In Section 3, we explain the
parametric descriptions with equi-spacing which we adopt to describe the various evolving
surfaces, and outline the resultant parametric problem formulation. Section 4 contains a
detailed account of our algorithm. Section 5 provides some results pertaining to pitting and
grain annihilation, energy dissipation and mass conservation. Our results are compared with
the small slope approximation predictions of von Neumann-Mullins [32, 51], Mullins [33],
and Génin, Mullins, Wynblatt [22]. Conclusions are given in Section 6.

2. The physical model: geometry and laws of motion

We focus on an idealized three grain system, which can be extended by reflection to yield a
five grain system, see Fig. 1. The grains in the system are assumed to be of the same material,
but to have different crystalline lattice orientations. For simplicity, we assume isotropy and
neglect the possible effects of elasticity, evaporation, defects, and volume diffusion. Our
three grain system contains three grain boundaries, three exterior surfaces and five bounding
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(a) (b)

Figure 1. Sketch of (a) the three grain system, and (b) the resultant five
grain system geometry.

planes. The three grain boundaries are assumed to evolve by mean curvature motion [32, 33],

(2.1) Vn = AH,

and the three exterior surfaces are assumed to evolve by surface diffusion motion [33, 34],

(2.2) Vn = −B�sH.

In (2.1)–(2.2), Vn denotes the normal velocity of the evolving surface, H denotes its mean
curvature, and �s is the Laplace–Beltrami operator, known also as the “surface Laplacian.”
In (2.1), A is a kinetic coefficient known as the reduced mobility, and in (2.2), B is a kinetic
coefficient known as the surface diffusion coefficient. Mirror symmetry is assumed with
respect to the five bounding planes, which are assumed to be stationary.

Boundary conditions need to be prescribed where an evolving surface intersects another
evolving surface or a bounding plane. The intersection of a grain boundary with two exterior
surfaces defines a “triple junction line,” known also as a “thermal groove” or a “groove
root,” and the intersection of three grain boundaries will be referred to as an “internal triple
junction line.” The intersection of a grain boundary or an exterior surface with a bounding
plane will be referred to as an “exterior free boundary.” The intersection of three groove
roots with an internal triple junction line defines a “quadruple point,” and the intersections
of two exterior free boundaries define “corner points.”

Along groove roots, we impose i) “persistence;” namely that the grain boundary and the
exterior surfaces remain attached, ii) balance of mechanical forces known also as Young’s
law, which is an isotropic version of Herring’s law [24, 25], namely that

(2.3) 	τ i · 	τ j = cos(θ), 	τ i · 	τk = 	τ j · 	τk = − cos(θ/2),

where 	τ i, 	τ j , and 	τk are orthogonal to the groove root and correspond to the unit tangents
to two exterior surfaces and to a grain boundary surface, respectively, which intersect along
the groove root, and θ, the “dihedral angle,” is defined as

(2.4) θ = π − 2 arcsin(m/2), m = γgb/γext,

where γgb and γext are the energy/area of the grain boundary and of the exterior surfaces,
respectively. iii) continuity of the chemical potential, and iv) balance of mass flux. We shall
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be assuming that the chemical potential is proportional to the mean curvature and that
mass flux is proportional to the gradient of the chemical potential, see [34, 26, 27]. Along
the internal triple junction line, which we shall assume to be unique we impose “persistence”
as well as

(2.5) 	τ i · 	τ j = cos(2π/3),

where 	τ i, 	τ j are unit vectors which are orthogonal to the internal triple junction line and
which are tangent to one of the two intersecting grain boundary surfaces. We refer also to
(2.5) as Young’s law, since takingm = 1 in (2.4) because the energy/area of the various grain
boundaries are equal, we obtain that 2π/3 = π−2 arcsin(1/2); then cos(2π/3) = − cos(π/3),
so that (2.3) is satisfied

Along the exterior free boundaries, where an exterior surface intersects a bounding plane,
we impose “persistence,” mirror symmetry, and zero mass flux. Along the free boundaries
where a grain boundary intersects a bounding plane, we impose a “persistence” and mirror
symmetry. The boundary conditions at the quadruple junction and the corner points will
be described in detail in Section 3.5. Initial conditions are prescribed in accordance with
Fig. 2.

Since (2.1)–(2.2) prescribe only the normal velocities of the surfaces, the governing equa-
tions may be formulated as an evolutionary problem via various equivalent descriptions
[21]. We adopt an approach based on equi-spaced parametric representations of the various
surfaces, which yield equi-distributed grid points when solved using finite differences and
ghost points. While alternatively we might prescribe the tangential velocities, at least in
R2 equi-distribution of the grid points was noted to have an overall stabilizing effect on the
resultant algorithms [40, 9]. Our method generalizes the methodology proposed by Pan &
Wetton [40, 39], which was implemented primarily for simple geometries in R2, and was
influenced also by earlier works such as [3].

3. The parametric problem formulation

3.1. Parametric representations with equi-spacing. The evolving surfaces, which we
denote by Si, i ∈ {1, . . . , 6}, will be assumed to be representable by parametric hypersur-
faces, Xi : [0, 1]2 × [0, T ]→ R3, namely

(3.1) Xi(α, β, t) =
(
xi(α, β, t), yi(α, β, t), zi(α, β, t)

)
, 0 ≤ α, β ≤ 1, 0 ≤ t ≤ T,

for some T > 0, where the Cartesian coordinates (x, y, z) are indicated in Fig. 1. Rather
than specifying somewhat arbitrary tangential velocities, we impose equi-spacing of the
(α, β) parametrization, namely that ‖Xα‖α = ‖Xβ‖β = 0, which implies that

(3.2) 〈Xα, Xαα〉 = 〈Xβ , Xββ〉 = 0,

where X represents one of the six surfaces, Xi. We shall be implicitly assuming sufficiently
regular and non-degeneracy, ‖Xα‖, ‖Xβ‖ > 0, of the surfaces Xi up to some time T .

The orientation of parameterizations for the various surfaces are indicated in Fig. 2,
where Si, i ∈ Ψext := {1, 2, 3}, refer to exterior surfaces and Si, i ∈ Ψgb := {4, 5, 6},
refer to grain boundaries. The vectors −→τ iα , −→τ iβ denote tangent vectors to the surface Si,

are given in (3.6) and (3.7), respectively, and satisfy −→τ iα ⊥ Xi
α and −→τ iβ ⊥ Xi

β . From
Fig 2, one can see the 3 triple junction lines where two exterior surfaces, Sp, Sq, intersect
with the grain boundary surface S�, for {p, q, �} ∈ Ψthermal :=

{{1, 2, 4}; {2, 3, 5}; {3, 1, 6}};
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(a) (b)

Figure 2. The system of 3 grains. The exterior surfaces, Si, i ∈ Ψext :=
{1, 2, 3} as well as the grain boundary surfaces, Si, i ∈ Ψgb := {4, 5, 6}
are indicated in (a), as are the bounding planes IIi, i = 1, . . . , 5,

and the respective unit normals to these bounding planes, 	N i, i =
1, . . . , 5. The quadruple junction (QJ) is indicated as It, and Ψcorner :=
{IIt, IIIt, IV t, Ib, IIb, IIIb, IV b, CI , CII , CIII} refer to the remaining cor-
ner points. In (b), on each surface Si, i ∈ Ψext ∪Ψgb, the orientation of the
α–β parameterization is indicated, as are the various tangents to these sur-

faces, 	τ i
α

, 	τ i
β

, i = 1, . . . , 6; here 	τ i
α

and 	τ i
β

correspond to the tangents to
Si in the direction of the α−parameterization and the β-parameterization,
respectively, see text.

along these triple junction lines, thermal grooves will form in our system when m > 0.
There is also one internal triple junction line where the 3 grain boundary surfaces S4, S5,
S6 intersect. Moreover, there are 5 bounding planes of symmetry, indicated by Πi, i =
1, . . . 5 in Fig 2, where Π5 refers to the “midplane” or base plane of the system located

at z = 0; the unit normal vectors
−→
N i to Πi are also indicated. In Fig 2, the location

of the quadruple junction (QJ) is indicated by It, and the other corner points ΨI, C :={
IIt, IIIt, IV t, Ib, IIb, IIIb, IV b, CI , CII , CIII

}
are also indicated.

3.2. Equations governing the grain boundaries and exterior surfaces. In order to
express (2.1)–(2.2) in terms of the parametric surfaces, Xi, let S denote one of the evolving
surfaces whose parametrization is given by X. Then its normal velocity can be expressed as

(3.3)
−→
Vn = 〈Xt,

−→n 〉 .
where −→n =

Xα×Xβ

‖Xα×Xβ‖ is a unit normal to S. Its mean curvature H can be expressed as [20]

(3.4) H =
1

2

〈
〈Xβ , Xβ〉 Xαα − 2 〈Xα, Xβ〉 Xαβ + 〈Xα, Xα〉 Xββ

〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2
,−→n
〉
,

The Laplace–Beltrami operator �s may be defined as �s = ∇s · ∇s where ∇s = ∇ −−→n ∂−→n , [20]. If P (α, β) is a smooth field is defined on the parametric surface X = X(α, β),
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then (see [20])

∇sP =
〈Xβ , Xβ〉 Xα − 〈Xα, Xβ〉 Xβ

〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2
Pα +

〈Xα, Xα〉 Xβ − 〈Xα, Xβ〉 Xα

〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2
Pβ ,

and straightforward technical calculations yield that

�sH =
〈Xβ , Xβ〉 Hαα − 2 〈Xα, Xβ〉 Hαβ + 〈Xα, Xα〉 Hββ

〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2
+〈

〈Xα, Xα〉 Xββ − 2 〈Xα, Xβ〉 Xαβ + 〈Xβ , Xβ〉 Xαα, | 〈Xβ , Xβ〉 |1/2−→τ β
〉

(
〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2

)3/2 Hα+

〈
〈Xα, Xα〉 Xββ − 2 〈Xα, Xβ〉 Xαβ + 〈Xβ , Xβ〉 Xαα, | 〈Xα, Xα〉 |1/2−→τ α

〉
(
〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2

)3/2 Hβ ,

(3.5)

where

−→τ α =
Xα 〈Xα, Xβ〉 −Xβ 〈Xα, Xα〉

| 〈Xα, Xα〉 |1/2 · | 〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2 |1/2
,(3.6)

−→τ β =
Xβ 〈Xα, Xβ〉 −Xα 〈Xβ , Xβ〉

| 〈Xβ , Xβ〉 |1/2 · | 〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉2 |1/2
.(3.7)

Since the exterior surfaces Si, i ∈ Ψext evolve by surface diffusion (2.2) and the grain
boundaries Si, i ∈ Ψgb evolve by mean curvature motion (2.1), we get that

(3.8)
〈
Xi

t ,
−→n i
〉
= −�sH

i, i ∈ Ψext := {1, 2, 3},

(3.9)
〈
Xi

t ,
−→n i
〉
= Hi, i ∈ Ψgb := {4, 5, 6},

where explicit expressions for−→n , H, and �sH were prescribed in (3.4)–(3.5).

3.3. Conditions along triple junctions lines. As noted our system contains three ther-
mal grooves where two exterior surfaces, Sp, Sq, intersect a grain boundary S�, for {p, q, �} ∈
Ψthermal := {{1, 2, 4}; {2, 3, 5}; {3, 1, 6}}. From Fig 2, we see that each thermal groove pos-
sesses natural parametrizations with respect to α along Sp and S� and with respect to β
along Sq. Recalling that the conditions to be imposed include persistence, Young’s law,
continuity of the chemical potential, continuity of mass flux as well as equi-spacing of the
parametrization, we obtain that

Xp = Xq = X�, (persistence)(3.10) 〈−→τ �α,−→τ pα
〉
=
〈−→τ �α,−→τ qβ

〉
= cos (π − θ/2), (Young’s law)(3.11)

〈Xp
α, X

p
αα〉 = 0, (equi-spacing)(3.12)

Hp = Hq, (continuity)(3.13) 〈∇sH
1,−→τ pα

〉
+
〈
∇sH

q,−→τ qβ
〉
= 0, (balance of mass flux),(3.14)

where θ is the dihedral angle, see (2.4). Expressions for H, ∇sH,
−→τ α, −→τ β were given

in (3.4)-(3.7).
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Along the internal triple junction line, where the grain boundaries S4, S5, S6 intersect,
there is a natural parametrization with respect to β. Here persistence, Young’s law, and
equi-spacing imply that

X4 = X5 = X6, (persistence)(3.15) 〈−→τ 4β ,−→τ 5β
〉
=
〈−→τ 4β ,−→τ 6β

〉
= cos (2π/3), (Young’s law)(3.16) 〈
X4

β , X
4
ββ

〉
= 0, (equi-spacing).(3.17)

3.4. Conditions along the exterior free boundaries. Along the intersections of the
exterior surface Sp with the bounding planes Πq and Π�, for {p, q, �} ∈ Ψfb where Ψfb :={{1, 4, 1}; {2, 2, 3}; {3, 3, 4}}, we impose the conditions〈

Xp − rq0,
−→
N q
〉
=
〈
Xp − r�0,

−→
N �
〉
= 0, (attachment)(3.18) 〈−→n p,

−→
N q
〉
=
〈−→n p,

−→
N �
〉
= 0, (symmetry)(3.19)

〈Xp
α, X

p
αα〉 =

〈
Xp

β , X
p
ββ

〉
= 0, (equi-spacing)(3.20) 〈

∇sH
p,
−→
N q
〉
=
〈
∇sH

p,
−→
N �
〉
= 0, (zero mass flux).(3.21)

Note that

(3.22)
〈
r − ri0,

−→
N i
〉
= 0,

prescribes the bounding planes Πi, i = 1, . . . 5, where
−→
N i is a unit normal vector to Πi and

ri0 is a point on Πi, which in our numerics will be chosen to be bounded away from the
evolving surfaces.

Along the intersection of grain boundary Sp, for p = Ψgb, with Π5, we impose〈
Xp − r50,

−→
N 5
〉
= 0, (attachment)(3.23) 〈−→n p,

−→
N 5
〉
= 0, (symmetry)(3.24)

〈Xp
α, X

p
αα〉 = 0, (equi-spacing).(3.25)

Similarly along the intersections of S4 with Π1 and Π2, we set〈
X4 − r10,

−→
N 1
〉
=
〈
X4 − r20,

−→
N 2
〉
= 0, (attachment)(3.26) 〈

	n4, 	N1
〉
=
〈
	n4, 	N2

〉
= 0, (symmetry)(3.27) 〈

X4
β , X

4
ββ

〉
= 0, (equi-spacing).(3.28)

and along the intersections of Sp with Π� for {p, �} ∈
{
{5, 3}; {6, 4}

}
,〈

Xp − r�0,
−→
N �
〉
= 0, (attachment)(3.29) 〈−→n p,

−→
N �
〉
= 0, (symmetry)(3.30) 〈

Xp
β , X

p
ββ

〉
= 0, (equi-spacing).(3.31)
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Although the conditions of the form
〈−→n ,−→N〉 = 0 could have been replaced by conditions of

the form
〈−→τ ,−→N〉 = 1, the former turned out to be easier to handle numerically.

3.5. Conditions at the quadruple junction and at the corner points. In this subsec-
tion, we describe the conditions imposed at the quadruple junction and at the other corner
points, ΨI C :=

{
It, IIt, IIIt, IV t, Ib, IIb, IIIb, IV b, CI , CII , CIII

}
, see in Fig 2. The bal-

ance of mass flux conditions will be discussed in detail in Section 3.6.

Conditions at It, the quadruple junction (QJ). At It we set

X1 = X2 = X3 = X4 = X5 = X6, (persistence)(3.32) 〈
X4

β

‖X4
β‖
,
Xj

α

‖Xj
α‖

〉
= cos(φ), j = 1, 2, 3, (angle condition)(3.33)

H1 = H2 = H3, (continuity)(3.34)
3∑

i=1

∫
Γi

−→n Γi · ∇sH
i dsi = 0, (balance of mass flux).(3.35)

The angle condition at the quadruple junction follows from assuming that the angle con-
ditions prescribed by Young’s law hold smoothly up to the quadruple junction; this in
particular implies that cos(φ) = − 1√

3
m√

4−m2
, see [14]. The curve Γi which appears above as

well as in the balance of mass flux conditions which follow, corresponds to a smooth curve
which normally intersects the bounding thermal grooves, see Section 3.6, and si corresponds
to an arc-length parametrization of Γi.

Conditions at Ib. At Ib, where S4, S5, S6 and Π5 meet, we set

X4 = X5 = X6 (persistence)(3.36) 〈
X4 − r50,

−→
N 5
〉
= 0, (attachment)(3.37) 〈

X4
α

‖X4
α‖

,
X5

α

‖X5
α‖
〉

=

〈
X4

α

‖X4
α‖

,
X6

α

‖X6
α‖
〉

= cos

(
2

3
π

)
, (Young’s law).(3.38)

Conditions at IIb. The point IIb, where S4, Π1, Π2, and Π5 meet, is stationary, hence

(3.39)
〈
X4 − r10,

−→
N 1
〉
=
〈
X4 − r20,

−→
N 2
〉
=
〈
X4 − r50,

−→
N 5
〉
= 0, (attachment).

Conditions at IIIb and IV b. At IIIb, where S5, Π3, Π5, intersect, we impose〈−→n 5,
−→
N 3 +

−→
N 5
〉
= 0, (symmetry)(3.40) 〈

X5 − r30, N
3
〉
=
〈
X5 − r50,

−→
N 5
〉
= 0. (attachment).(3.41)

We should have liked to require that
〈−→n 5,

−→
N 3
〉

=
〈−→n 5,

−→
N 5
〉

= 0; however looking at

the conditions imposed along the intersection of Sp with Π5 for p = Ψgb, and along the
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intersections of Sp with Π� for {p, �} ∈
{
{5, 3}; {6, 4}

}
, this appears to be overly restrictive.

The conditions at IV b are analogous.

Conditions at IIt. At IIt, where S1, S2, S4 and Π1, Π2 intersect, we impose

X1 = X2 = X4, (persistence)(3.42) 〈
X4

α

‖X4
α‖

,
−→
N 1 ×−→

N 2

〉
= 0, ( symmetry)(3.43) 〈

X4 − r10,
−→
N 1
〉
=
〈
X4 − r20,

−→
N 2
〉
= 0, (attachment)(3.44)

H1 = H2, (continuity)(3.45)
2∑

i=1

∫
Γi

−→n Γi · ∇sH
i dsi = 0, (balance of mass flux).(3.46)

Condition (3.43) constitutes a seemingly ”minimal” mirror symmetry condition.

Conditions at CI , CII and CIII . At CI , where S1, Π1, and Π4 intersect, we set〈−→n 1,
−→
N 1 +

−→
N 4
〉
= 0, (symmetry)(3.47) 〈

X1 − r10,
−→
N 1
〉
=
〈
X1 − r40,

−→
N 4
〉
= 0, (attachment)(3.48) ∫

Γ1

−→n Γ1 · ∇sH
1 ds1 = 0, (zero mass flux)(3.49)

where (3.47) has been prescribed in analogy with (3.40). At CII and at CIII , where S2,
Π2, Π3, and S3, Π3, Π4, respectively, intersect, analogous conditions are prescribed.

Conditions at IIIt and IV t. At IIIt where S2, S3, S5 and Π3 intersect, we set

X2 = X3 = X5, (persistence)(3.50) 〈−→n 5,
−→
N 3
〉
=
〈
X5

α, X
5
β

〉
= 0, (symmetry)(3.51) 〈

X5 − r30,
−→
N 3
〉
= 0, (attachment)(3.52)

H2 = H3, (continuity)(3.53) ∑
i∈{2,3}

∫
Γi

−→n Γi · ∇sH
i dsi = 0. (balance of mass flux)(3.54)

At IV t, where S1, S3, S6 and Π4 intersect, analogous conditions are imposed.

3.6. Approximation of the integral in the mass flux conditions. In Section 3.5,
balance of mass flux at the quadruple junction and at the top corner points was prescribed
in terms of a condition which included integrals of the form

(3.55)

∫
Γ

−→n Γ · ∇sH ds,
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where Γ is a curve lying on the exterior surface S which is bounded on either end by bounding
planes or by thermal grooves. We now prescribe more precisely the curve Γ, as well as our

Figure 3. A sketch of relationship between Γαβ , Γ and X (α, β, t).

approximation of the integral (3.55), near the point X (0, 0, t). See Fig. 3. The treatment
at the other corner points is analogously, though some care must be taken in defining the
directions of the various normals and tangents when summing such integrals.

We take Γ = Γ(s), where s is an arc-length parametrization, to be a smooth curve
which lies on the exterior surface X(α, β, t) near X (0, 0, t), with preimage Γαβ , so that

Γαβ
X(α, β, t)−−−−−−→ Γ. We require Γ to be pinned at either end at distance 1

2hα,
1
2hβ , respectively,

from the corner in its preimage. Hence

(3.56) Γ (0) = X

(
hα
2
, 0, t

)
, Γ (LΓ) = X

(
0,

hβ
2
, t

)
,

where LΓ denotes the length of Γ. Moreover Γ is taken to orthogonally intersect the bounding
plane or thermal groove which lies at each end. For fixed t, let Γαβ be described in terms
of polar coordinates, see Fig. 3, so that

(3.57) Γαβ (θ) =
(
α (θ) , β (θ)

)
=
(
r(θ) cos θ, r(θ) sin θ

)
, θ ∈

[
0,

π

2

]
.

Then from (3.56)–(3.57), (α(0), β(0)) = (r(0), 0),
(
α
(
π
2

)
, β
(
π
2

))
=
(
0, r
(
π
2

))
, and

(3.58) r(0) =
hα
2
, r
(π
2

)
=
hβ
2
.

From (3.57), we get that (αθ(0), βθ(0)) = (rθ(0), r(0)),
(
αθ

(
π
2

)
, βθ
(
π
2

))
=
(−r (π2 ) , rθ (π2 )).

Though it is a bit technical, the perpendicular intersection requirement implies that

(3.59) rθ(0) = −r(0)F
(
hα

2 , 0
)

E
(
hα

2 , 0
) , rθ

(π
2

)
= r
(π
2

) F(0, hβ

2

)
G

(
0,

hβ

2

) ,
where E = 〈Xα, Xα〉 , F = 〈Xα, Xβ〉, G = 〈Xβ , Xβ〉 . To be explicit, we take r (θ) to
be Hermit polynomial interpolant of the data (0, r (0)), (0, rθ (0)),

(
0, r
(
π
2

))
,
(
0, rθ

(
π
2

))
,
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namely that r(θ) = a + b θ + c θ2 + d θ2
(
θ − π

2

)
, where a = hα

2 , b = −hα

2

F(hα
2 , 0)

E(hα
2 , 0)

, c =

2
π2

[
hβ − hα

(
1− π

2

F(hα
2 , 0)

E(hα
2 , 0)

)]
, d = 2

π2

[
hβ

(
F

(
0,

hβ
2

)

G

(
0,

hβ
2

) − 4
π

)
− hα

(
F(hα

2 , 0)
E(hα

2 , 0)
− 4

π

)]
.

Based on the above prescription, we get if ∇sH = O(1) that by the trapezoidal rule

(3.60)

∫
Γ

−→n Γ · ∇sH ds =
(−→n Γ · ∇sH

∣∣
s=0

+ −→n Γ · ∇sH
∣∣
s=LΓ

) LΓ

2
+O
(
L3
Γ

)
=

=

⎛⎝ Xα

‖Xα‖ · ∇sH

∣∣∣∣
(hα

2 , 0)
+

Xβ

‖Xβ‖ · ∇sH

∣∣∣∣(
0,

hβ
2

)

⎞⎠ LΓ

2
+O
(
L3
Γ

)
,

.

By [18], LΓ =

π
2∫
0

√
E r2θ + 2F rθ r +G r2θ, and again by the trapezoidal rule,

(3.61)

LΓ ≈ π

4

(√
E r2θ + 2F rθ r +G r2

∣∣∣∣
θ=0

+
√
E r2θ + 2F rθ r +G r2

∣∣∣∣
θ=π

2

)
=

=
π

6

⎛⎜⎝hα √EG− F2

E

∣∣∣∣∣
(hα

2 , 0)

+ hβ

√
EG− F2

G

∣∣∣∣∣(
0,

hβ
2

)

⎞⎟⎠ .

From the definition of r (θ) and assuming that
F(hα

2 , 0, t)
E(hα

2 , 0, t)
,

F

(
0,

hβ
2 , t

)

G

(
0,

hβ
2 , t

) are bounded, we

may conclude that r (θ) = O(max (hα, hβ)). Assuming moreover that rθ
r , E, F, G, are

bounded for all θ ∈ [0, π
2

]
, we get that LΓ = O(max (hα, hβ)) and that the approximations

appearing in (3.60)–(3.61) are O
(
[max (hα, hβ)]

3
)
. While the algorithm was implemented in

accordance with the discussion above, by applying the trapezoid rule once directly to (3.55),
we could have mildly improved the approximation.

3.7. The governing equations. Combining the equations and conditions outlined in Sec-
tions 3.1–3.6, we obtain the following problem formulation for the evolving equi-spaced
parametric surfaces

(3.62)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Xp
t ,
−→n p〉 =�sH

p

〈Xp
α, X

p
αα〉 =

〈
Xp

β , X
p
ββ

〉
=0

⎫⎬⎭ , p ∈ Ψext = {1, 2, 3}

〈Xq
t ,
−→n q〉 =Hq

〈Xq
α, X

q
αα〉 =

〈
Xq

β , X
q
ββ

〉
=0

⎫⎬⎭ , q ∈ Ψgb := {4, 5, 6}

Boundary Conditions

Initial Conditions
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where for Hp for p ∈ Ψext,

H =
1

2

〈〈
Xp

β , X
p
β

〉
Xp

αα − 2
〈
Xp

α, X
p
β

〉
Xp

αβ + 〈Xp
α, X

p
α〉 Xp

ββ

〈Xp
α, X

p
α〉
〈
Xp

β , X
p
β

〉
−
〈
Xp

α, X
p
β

〉2 ,−→n p

〉

and Hq is similarly defined for q ∈ Ψgb. In our simulations, the initial conditions were chosen
in accordance with Fig. 2.

4. Numerical algorithm

In this section, we present our numerical algorithm for solving the problem formulated
in (3.62). The algorithm uses staggered grids and finite difference approximations, which
reduce the system to a DAE (differential and algebraic equation) system in time, which is
then solved implicitly using Newton iterations.

4.1. The staggered grids. Let X : [0, 1]2 × [0, T ] → R2 represent one of the evolving
surfaces, Xi = Xi(α, β, t), i ∈ {1, . . . , 6}. Each surface X is spatially approximated on a
staggered grid, containing “interior points,” “ghost points,” and “groove points,” see Fig. 4.
Let Xk

i,j = X(αi, βj , tk) denote the approximation of X at staggered grid point (i, j) at time

tk ∈ [0, T ], where αi = (i − 1/2)hα, βj = (j − 1/2)hβ , i ∈ {0, 12 , 1, . . . , N,N + 1
2 , N + 1},

j ∈ {0, 12 , 1, . . . ,M,M + 1
2 ,M + 1}, where hα = N−1, hβ = M−1 reflect the respective

interior grid spacings. The indices (i, j) ∈ {1, N} × {1, . . . ,M} refer to interior points, and
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Figure 4. The staggered grid mesh. The interior points (•) and ghost
points(◦) are indicated. The groove points are indicted (♦,�,∗), and the
corner points (�) and ghost-groove points (∗) are marked.

the indices (i, j) ∈ {0, N +1}×{0, 1, . . . ,M,M +1}∪{0, 1, . . . , N,N +1}×{0,M +1} refer
to ghost points. The indices with (i, j) ∈ { 1

2 , N + 1
2}×{0, 12 , . . . ,M,M + 1

2 ,M +1}∪ (i, j) ∈
{1
2 , N + 1

2}×{0, 12 , 1, . . . ,M,M + 1
2 ,M +1} refer to groove points. Within the set of groove

points, we refer to (i, j) ∈ { 1
2 , N + 1

2} × { 1
2 ,M + 1

2} as “corner points,” and we refer to
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(i, j) ∈ { 1
2 , N + 1

2} × {0,M} ∪ {0, N} × { 1
2 ,M + 1

2} “ghost-groove points.” The physical
boundaries of X, which correspond either to triple junction lines or to free boundary lines,
are approximated using the groove points. This approach allows us to use centered finite
differences at the interior points as well as at the groove points.

At each time step tk, the variables Xk
i,j at the interior and ghost points are updated, as

are Hk
i,j for k ∈ Ψext, the mean curvatures on the exterior surfaces.

4.2. Approximation of derivatives. Let
(
∂ X
∂ t

)k
i,j

denote the standard forward approxi-

mation of Xt at (αi, βj , tk) which has O(�tk) accuracy with �tk = tk − tk−1, let
(
∂X
∂α

)k
i,j
,(

∂X
∂β

)k
i,j
, denote the standard centered difference approximations which have O

(
(hα)

2
)
and

O
(
(hβ)

2
)
accuracy, respectively, and let

(
∂2X
∂α2

)k
i,j
,
(

∂2X
∂β2

)k
i,j
, denote the standard centered

difference approximations of the second order partial derivatives, whose respective accu-

racy is given by O
(
(hα)

2
)
and O

(
(hβ)

2
)
. Centered difference approximations of the sec-

ond mixed derivatives, which have O
(
(hα)

2
+ (hβ)

2
)
accuracy, are indicated by

(
∂2X
∂α∂β

)k
i,j
.

Analogous notation is used to indicate the derivatives of H on the exterior surfaces.

4.3. Approximations along the triple junction lines and free boundary lines.
Triple junction lines and exterior free boundary lines are approximated along groove points
of the grids, see Fig. 4. Suppose Xk

i,j is known at the interior and ghost points, and we
wish to approximate X at the groove points. Using the neighboring ghost point and three
”collinear” interior points (or ghost points), and Taylor expanding

(4.1) Xk
i, 12

=
5Xk

i,0 + 15Xk
i,1 − 5Xk

i,2 +Xk
i,3

16
+O
(
(hβ)

4
)
, i ∈ {0, 1, . . . , N,N + 1}.

Similarly, X may be estimated at the other groove points which are not corner points. Using
the above estimates, X can be estimated at the corner points. For example,

(4.2) Xk
1
2 ,

1
2
≈

5
(
Xk

1
2 ,0

+Xk
0, 12

)
+ 15

(
Xk

1
2 ,1

+Xk
1, 12

)
− 5
(
Xk

1
2 ,2

+Xk
2, 12

)
+
(
Xk

1
2 ,3

+Xk
3, 12

)
32

,

to O
(
(hα)

4
+ (hβ)

4
)
accuracy. Obtaining order fourth accuracy in (4.1)-(4.2) allows us to

maintain overall second order spatial accuracy in approximating the system (3.7).
The derivatives ∂X

∂α , ∂X
∂β along the groove can be approximated using second order centered

difference approximations with functional evaluations at the ghost points,(
∂X

∂α

)k

i,j

=
Xk

i+ 1
2 ,j

−Xk
i− 1

2 ,j

hα
+O
(
(hα)

2
)
,

(
∂X

∂β

)k

i,j

=
Xk

i,j+ 1
2

−Xk
i,j− 1

2

hβ
+O
(
(hβ)

2
)
.

Similar approximations are used to estimate the mean curvature H and its derivatives along
the triple junction lines and external free boundary lines on the exterior surfaces.
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4.4. Numerical solution of the DAE system. Let n ∈ N and T > 0 be given, and let
us consider the solution of the following general system of n DAE

(4.3) F (Y ′, Y, t) = 0, t ∈ (0, T ], Y (0) = Y0,

where Y (t) = (y1(t), . . . yn(t)), Y : [0, T ]→ Rn, and Y0 ∈ Rn is prescribed. Let Y k = Y (tk)
denote an approximation of Y at time 0 ≤ tk ∈ [0, T ], for k = 0, 1, . . . , NTmax

, NTmax
∈ N,

with t0 = 0, and set �tk = tk−tk−1. Applying the backward Euler method [2] to the system
given in (4.3), we obtain the following n× n system of nonlinear equations for Y k,

(4.4) F

(
Y k − Y k−1

�tk , Y k, tk

)
= 0, k = 1, . . . , NTmax , Y 0 = Y0.

Noting that F : Rn → Rn has n components, fi = fi

(
Y k−Y k−1

�tk
, Y k, tk

)
, i = 1, . . . , n, its

Jacobian with respect to Y k can be expressed as

(4.5)

⎛⎜⎜⎝
∂f1
∂yk

1
· · · ∂f1

∂yk
n

...
. . .

...
∂fn
∂yk

1
· · · ∂fn

∂yk
n

⎞⎟⎟⎠ .

For k = 1, . . . , NTmax , we use Newton’s iteration method to find successively better approxi-
mations to the zeroes (roots) of F (Y ) until an estimate of the local error is not greater than
some prescribed tolerance, 0 < ε̃� 1. We chose ε̃ = 10−11 to achieve accuracy comparable
to the estimated accuracy in the approximation of the Jacobian matrix. Additionally, we
set a tolerance bound of ε̂ = 10−6 on F (Y ). See Algorithm 1 in Appendix.

4.5. Approximation of the Jacobian matrix. We approximate the Jacobian matrix
(4.5) numerically, based on the central difference approximations

(4.6)
∂Fi

∂yj
=
Fi (y + ε ej)− Fi (y − ε ej)

2 ε
+O
(
ε2
)
,

where ej = (0, . . . ,

element j︷︸︸︷
1 , . . . , 0) and ε is a small positive parameter. In [35] the suggestion

is made to chose ε = ε
1/3
M , where εM is the machine epsilon. Adopting this approach in our

double precision setting yields ε
2/3
M ≈ 10−11 accuracy in (4.6). See Algorithm 2 in Appendix.

4.6. A numerical algorithm. We outline below our numerical algorithm for solving the
system (3.62). We consider Hp, the mean curvature of the exterior surfaces Sp, p ∈ Ψext as
additional variables. Accordingly we do not need to calculate the third and fourth derivatives
of X with respect to α, β. We discretize each exterior surface using staggered grids, as
indicated above, with N×N interior grid points. Similarly we discretize each grain boundary
surface using staggered grids with N ×M interior grid points.

We choose initial conditions in accordance with the configuration portrayed in Fig. 2. At
time tk, let (X

k
i,j)

p and (Hk
i,j)

p, p ∈ Ψext, denote the value of X
p and Hp at grid point (i, j),

and let (Xk
i,j)

q, q ∈ Ψgb, denote the value of Xq at grid point (i, j). Discretization of the
governing equations requires approximation of the time derivatives of Xp, Xq, as well as of
the first and second derivatives of Xp, Hp and Xq with respect to α and β at the interior
grid points. Discretization of the boundary conditions requires approximations for Xp, Hp
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and Xq and their first derivatives with respect to α and β along the groove points of the
grid.

The discretization of the governing equations and boundary conditions yields an ODAE
system, which we indicate for simplicity by

(4.7) F (U ′, U, t) = 0, t ∈ (0, T ], U(0) = U0.

In (4.7), U = (u1, u2, . . . , u�, . . .) is taken to reflect a fairly natural ordering of the elements

(Xi,j)
p =
(
(xi,j)

q, (yi,j)
q, (zi,j)

q
)
, (Hk

i,j)
p, (Xi,j)

q =
(
(xi,j)

q, (yi,j)
q, (zi,j)

q
)
,

which are defined at the interior and ghost points of the various grids used in approximating
Sp and Sq respectively. The vector U contains 3 (N +2) (4N + M + 14) elements and does
not include evaluations along the groove points, since the variables and equations at the
groove points are prescribed with the help of the interior and ghost points using (4.1)-(4.2).

We solve (4.7) in accordance with the discussion in Sections 4.4 and 4.5. See Algorithms 1

and 2 in the Appendix. The overall accuracy of our discretization is O
(
(hα)

2
+ (hβ)

2
)

in space and O(�t) in time. Although we do not prove convergence, we tested for self-
consistency of our method by taking smaller time steps and grid partitions.

By considering the governing equations and boundary conditions, it can be seen that
changes in the entries at some grid point (i, j) influence the values of the entries only in
some small neighborhood of grid points around the grid point. By defining a neighborhood
for each grid point and undertaking functional evaluations only in this neighborhood, the
running time for the algorithm could be reduced by partial parallelization.

Figure 5. Visualization of the nz = 163188 nonzero entries in the Jacobian
matrix for our system where m = 0.1, Lx = 30, Ly = 30, Lz = 0.25, with
�t = 0.25, N = 20, M = 10.
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The resultant Jacobian matrix, which we denote as A, is sparse and not symmetric, see
Fig 5. We used the MATLAB UMFPACK [12] solver for solving Ax = b. With regard
to software, the algorithm was implemented in ”C”, together with various extension and
packages, and the postprocessing was undertaken in MATLAB. The calculations of the
function F and its Jacobian J were done in parallel using the MPI or ”Message Passing
Interface” [30] library of extensions to ”C”. The simulations were run on the RBNI high-
performance ”NANCO” computer of Technion Center for Computational Nanoscience and
Nanotechnology.

5. Numerical results and tests

5.1. Some numerical results. Simulations were undertaken for the initial conditions por-
trayed in Fig 2, with Lx = Ly = 30, Lz = 0.25,m ∈M, whereM = {0.0, 0.001, 0.01, 0.05, 0.01},
for 0 ≤ t ≤ 100 with N = 50, M = 25, �t = 0.5. Note that the values Lx = Ly = 30,
Lz = 0.25 are appropriate for modeling thin films, since the height to width ratio is
Lz/Lx = Lz/Ly = 1/120. We also tested our program with other values of Lx, Ly, Lz,
such as Lx = Ly = Lz = 1, and with other values for N , M , �t.

Results from a numerical simulation with m = 0.1 and Lx = Ly = 30, Lz = 0.25 can be
seen in Fig. 6. As expected, formation of thermal grooves can be observed. It is not clear
whether annihilation of the corner grain will eventually occur here prior to break up of the
thin film. Considerable pitting seems to be occurring at the quadruple point as well as at
the corner point, IIt, which is located above (x, y) = (0, 0).

In Fig. 7, the heights at the quadruple junction and at corner points from simulations
with m ∈M where M = {0.0, 0.001, 0.01, 0.05, 0.01}, and Lx = Ly = 30, Lz = 0.25, can be
seen. Due to symmetry, the behavior at the corner points IV t, CII , is the same as at IIIt,
CI , respectively, and has not been portrayed. Note the monotone decrease in the height at
the quadruple point and at the corner points IIt, IV t, whereas the behavior of the height
at the corner points CI , CIII is nonmonotone.

5.2. Comparison with the von Neumann-Mullins law. Von Neumann and Mullins
developed a formula [32, 51] for the evolution of the surface area, S(t), of a grain, which is
embedded in R2 with n trijunctions along its perimeter, within a planar network of grains
with grain boundaries that evolve by mean curvature motion, Vn = Aκ, namely,

(5.1)
dS
dt

=
Aπ

3
(n− 6).

The “corner grain” in our system, whose exterior surface, S3, contains the corner point CIII ,
may be viewed, by extending our three grain system by mirror symmetry, as one quarter of
an embedded grain with four trijunctions along its perimeter.

In our system, when m = 0 the exterior surfaces remain flat and the grain boundaries
evolve by mean curvature motion, Vn = AH, where H is the average of the principle curva-
tures, see (2.1),(3.4); under these circumstances, writing (5.1) in terms of our dimensionless
variables, we find for the surface area of the corner grain, |S3|, that

(5.2)
d|S3|
dt

= −Aπ/12.
Integrating (5.2) yields that |S3|(t) = |S3|(0) − π t/12, which implies that the corner grain
should annihilate at time Ta = 12|S3|(0)/π. If 0 < m� 1 and if the specimen is sufficiently
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(a) (b)

(c) (d)

Figure 6. Simulation results for m = 0.1, Lx = Ly = 30, Lz = 0.25, at
times (a) t = 10, (b) t = 40, (c) t = 70, (d) t = 100. Pitting can be seen at
the quadruple junction as well as at the corner point, IIt.

thick, then (5.2) should still be roughly accurate. However break up may occur before
the grain annihilates if the specimen is too thin, and (5.2), as an approximation, becomes
inaccurate as m is increased.

In Fig. 8, the area of S3 is portrayed for m ∈M, whereM = {0.0, 0.001, 0.01, 0.05, 0.01},
as a function of time. When m = 0.0, the surface area evolves in accordance with (5.2),
and decreases linearly. Monotone decrease is seen for all values of m ∈ M; however, as m
increases, the decrease rate slows, implying that grain annihilation should take longer. This
corroborates the predictions in [26] that for relatively small thin specimens, groove formation
should slow grain boundary migration. It follows from the formula Ta = 12|S3|(0)/π that
when m = 0, annihilation of the corner grain in our simulation should occur at time Ta ≈
859.4, and the results portrayed in Fig. 8 indicate that Ta > 859.4 when m > 0. Since the
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Figure 7. The heights at (a) the quadruple junction, at the corner points
(b) IIt, (c) IIIt, and at the corner points (d) CI , (e) CIII , as functions
of time for m ∈ M where M = {0.0, 0.001, 0.01, 0.05, 0.01}. Here Lx =
Ly = 30, Lz = 0.25. In accordance with Fig. 6, the height at the quadruple
junction and at IIt, IIIt exhibit monotone decrease, whereas the heights
at CI , CIII appears to oscillate.

simulations reflected in Fig. 6 were undertaken for m = 0.1 with 0 ≤ t ≤ 100, it is not
surprising that annihilation was not seen.
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Figure 8. Comparison with the von Neumann-Mullins law. For m ∈ M
where M = {0.0, 0.001, 0.01, 0.05, 0.01}, the area of S3, |S3|, decreases
monotonically. When m = 0.0, the area of S3 decreases linearly in accor-
dance with the von Neumann-Mullins law. Here surface diffusion appears
to slow the rate at which the smallest grain shrinks.

5.3. Verifying mass conservation and energy dissipation. Assuming sufficient regu-
larity, our problem formulation can be shown to satisfy [14, 36]

(5.3)
∑

i∈Ψext

∫
Si

Vn dS = 0,

where
∫
Si Vn dS is the integral of the normal velocity over the surface Si, which implies

conservation of the total volume of our three grain system. Assuming that the density of
our 3 grain system, composed of 3 grains of the same (isotropic) material, is constant, (5.3)
also implies mass conservation.

Our problem formulation can also be shown to satisfy [14, 36]

(5.4)
d

dt

{ ∑
i∈Ψext

|Si|+m
∑

i∈Ψgb

|Si|
}
= −B

∑
i∈Ψext

∫
Si

|∇sH
i|2 dS −mA

∑
i∈Ψgb

∫
|Hi|2 dS.

where |Si| is the surface area of surface Si. Equation (5.4) is an energy dissipation equality,
prescribing the rate of dissipation of the (dimensionless) total energy in the system,

Esystem :=
{ ∑
i∈Ψext

|Si|+m
∑

i∈Ψgb

|Si|
}
=

1

γext

{
γext

∑
i∈Ψext

|Si|+ γgb
∑

i∈Ψgb

|Si|
}
,

where γext and γgb are the surface free energies of the exterior surfaces and the grain bound-
aries, respectively, and m = γgb/γext.

In Fig. 9a, mass conservation of our algorithm is verified in that the relative variation
in the total volume of the system, [V (t) − V (0)]/V (0) is ≈ 10−4, in accordance with the
accuracy of our numerical scheme. In Fig. 9b, we see that Esystem decreases in accordance
with (5.4) after a short initial transient. The initial transient is apparently due to the lack
of compatibility of the initial conditions with the boundary conditions (Young’s law) along
the thermal grooves.
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Figure 9. For Lx = Ly = 30, Lz = 0.25, m ∈ M, where
M = {0.0, 0.001, 0.01, 0.05, 0.01}, (a) the relative total volume of the
system, [V (t) − V (0)]/V (0), and (b) the (dimensionless) weighted sur-
face area, Esystem, as functions of time, see (5.3)–(5.4). Note that
|V (t) − V (0)|/|V (0)| < 10−4, and Esystem exhibits monotone decrease fol-
lowing a short initial transient. After the initial transient, the variation in
|V (t)− V (0)|/|V (0)| is also smaller.

5.4. Comparison with Mullins (1957) and Génin, Mullins, Wynblatt (1992).
Mullins (1957) [33] and Génin, Mullins & Wynblatt (1992) [22] studied grooving and pitting
phenomena based on a small slope linearized approximation of surface diffusion, which is
valid in the limit m → 0. More specifically, Mullins [33] considered the thermal groove
resulting from an initially flat grain boundary which perpendicularly intersected an initially
flat exterior surface of infinite extent. Based on the small slope approximation, he estimated
the height of the thermal groove to be given by

(5.5) hM (t) = h0 − m

23/4 Γ(5/4)
√
4−m2

t1/4.

where Γ(·) is the Gamma function. Génin, Mullins & Wynblatt [22] considered the pitting
which occurs where two thermal grooves develop on an initially flat exterior surface of infinite
extent, which is bounded by two planar grain boundaries which are constrained to remain
planar, to perpendicularly intersect the exterior surface, and to intersect each other at a
prescribed angle ψ. Based on the small slope approximation, they numerically showed the
height at the point of intersection to be given by

(5.6) hGMW (t, ψ) = h0 − mf(ψ)

23/4 Γ(5/4)
√
4−m2

t1/4.

where Γ(·) is the Gamma function and f(ψ) is a monotonically decreasing function of the
angle ψ. They estimated f(ψ) for various values of ψ, and found that f(72◦) ≈ 2.5,
f(108◦) ≈ 1.66, f(126◦) ≈ 1.4. Moreover they demonstrated analytically that f(90◦) = 2,
and it follows from (5.5) that f(180◦) = 1. Using cubic spline interpolation based on their
data, we estimated that f(120◦) ≈ 1.479.
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Figure 10. From simulations with m = 0.1. (a) The height at the various
corner points, and (b) the natural logarithm of the normalized height at
the various corner points, as functions of time.

In Fig. 10a, we compare the evolution of the height at the quadruple junction, QJ, and the
height of the various corner points with the predictions of Mullins [33] and Génin, Mullins &
Wynblatt [22]. One can clearly see that the height at IIt behaves roughly like hGMW (t, 90◦),
the height at the quadruple junction QJ behaves roughly like hGMW (t, 120◦), and the height
at IIIt(IV t) behaves roughly like hM (t), see (5.5), (5.6). Taking into account the geometry
of the system (see Fig. 2), these similarities are to be expected if nonlinear effects and finite
system effects can be neglected. In Fig. 10b, we can see that the behavior of the heights
of all of the corner points is approximately proportional to t1/4; this behavior is reasonable
since m = 0.1 here, though at later times nonlinear effects and finite system effects should
become more apparent.

6. Conclusions

We have developed a robust algorithm designed to follow the coupled evolution by surface
diffusion of the exterior surfaces with internal grain boundary migration by motion by mean
curvature in systems containing a small number of grains. Our algorithm has been verified
in several ways. We have shown that it conserves mass and dissipates energy to within
the accuracy of the algorithm. It reproduces the predictions of the von Neumann-Mullins
law [32, 51] in the limit m → 0. Moreover for 0 < m � 1, it reproduces Mullins’ [33]
classical grooving predictions at the grooves which form along the exterior boundaries of
the domain, and at appropriately constrained trijunctions, it reproduces the predictions of
Génin, Mullins, Wynblatt [22] for ψ = 120◦.

The geometry treated in this paper is portrayed in Fig. 11a. Our numerical approach can
be readily adapted to treat other geometries, such as the geometries portrayed in Fig. 11.
More specifically, the geometries in Figs. 11b, 11c were studied in [7], that in 11d was studied
in [14, 15, 17], and the geometries portrayed in Figs. 11e, 11f are reminiscent of geometries
discussed in [46]. The geometries in Fig. 11d, 11f are relevant in particular to the study of
pitting.
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Figure 11. Our algorithm can be adapted to follow the evolution of the
grain systems portrayed above.

It should be possible to incorporate additional effects, such as elastic stresses or various
types of defects, by coupling our system of equations with additional fields. It should be
rather straightforward, though a bit technical, to include anisotropy. While these effects may
also be incorporated within the framework of finite element methods [8], we emphasize that
even within the isotropic framework treated here, it appears that we are the first to be able
to undertake realistic 3D simulations of phenomena such as pitting, grain annihilation, hole
formation, and more recently dewetting phenomena and stabilization of hexagonal arrays
[15, 17, 16].

An eventual goal is to treat many grain systems, starting perhaps by considering nano-
crystalline specimens which are several grains deep. In this context it may be possible to
use our approach to describe the evolution of the exterior surfaces, coupled with a level set
approach to follow the evolution of the grain boundaries within the interior. If, using hybrid
methods as suggested above or some other methods, we find new phenomena of interest, we
may adjust our algorithm to focus in locally on the details of the dynamics.
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Appendix: Algorithms

Algorithm 1 Calculating an approximate solution to the discretized system

Input: U0, ε̃, NTmax , {�tk}NTmax
1 , Nmax

Output: Uk for k = 1, ..., NTmax

Set ε̂ = 10−6

Set t = 0
for k = 1, . . . , NTmax

do
V = Uk−1

Set t = t+�tk
Set i = 1
repeat

Calculate F
(

V−Uk−1

�tk
, V, t
)

Calculate the Jacobian J(V ), see Algorithm 2
Solve J(V ) δ = −F (V ) (a linear system, Ax = b)
Update V = V + δ
Set i = i+ 1

until ||F (V )|| ≤ ε̃ or ||δ|| ≤ ε̃ or i > Nmax

if ||F (V )|| > ε̂ then

stop the algorithm ! the desired tolerance cannot be achieved
end if
Set Uk = V

end for

Algorithm 2 Approximating the Jacobian

Input: V , F , N , M
Output: Jacobian J

Set Length = 3N (4N + 3M)
Set ε = 10−6

for i = 1, . . . , Length do

Set e = (0, . . . ,

element i︷︸︸︷
1 , . . . , 0)

Calculate F (V + ε e)
Calculate F (V − ε e)

Set column i in matrix J to be F (V+ε e)−F (V−ε e)
2 ε

end for
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