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MONOTONICITY OF BISTABLE TRANSITION FRONTS IN RN

HONGJUN GUO AND FRANÇOIS HAMEL

Abstract. This paper is concerned with the monotonicity of transition fronts for bistable reaction-

diffusion equations. Transition fronts generalize the standard notions of traveling fronts. Known exam-

ples of standard traveling fronts are the planar fronts and the fronts with conical-shaped or pyramidal

level sets which are invariant in a moving frame. Other more general non-standard transition fronts

with more complex level sets were constructed recently. In this paper, we prove the time monotonicity

of all bistable transition fronts with non-zero global mean speed, whatever shape their level sets may

have.

Dedicated to Professor David Kinderlehrer

1. Introduction

This paper is concerned with the monotonicity of generalized fronts for the semilinear parabolic

equation

(1.1) ut = Δu + f (u), (t, x) ∈ R × RN ,

where ut =
∂u
∂t and Δ denotes the Laplace operator with respect to the space variables x ∈ RN . The

function f is assumed to be of the bistable type, namely the states u = 0 and u = 1 are assumed to

be both stable stationary states (more precise assumptions will be given later). A typical example is

the cubic nonlinearity fθ(s) = s(1 − s)(s − θ) with 0 < θ < 1.

It is well known that in one dimension, under some assumptions on f , (1.1) admits standard

traveling fronts, that is, solutions of the type

u(t, x) = φ(x − c f t)

where the front speed c f ∈ R and the front profile φ : R→ [0, 1] satisfy{
φ′′ + c fφ

′ + f (φ) = 0,

φ(−∞) = 1, φ(+∞) = 0.
(1.2)

For precise conditions for the existence and non-existence, we refer to Fife and McLeod [6]. It has

also been proved that if a front (c f , φ) solving (1.2) exists, it is uniquely determined up to shifts for
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φ and there holds φ′(ξ) < 0 for ξ ∈ R. In particular, for such a traveling front u(t, x) = φ(x − c f t),
observe that the time derivative ut(t, x) = −c fφ

′(x − c f t) has a constant sign for all (t, x) ∈ R × R.

For higher dimensions N ≥ 2, an immediate extension of one-dimensional traveling fronts con-

sists in planar traveling fronts

u(t, x) = φ(x · e − c f t)

for any given unit vector e of RN , where c f and φ are as above. The level sets of such traveling

fronts are parallel hyperplanes which are orthogonal to the direction of propagation e. These fronts

are invariant in the moving frame with speed c f in the direction e. The existence and uniqueness of

these fronts can be referred to the one-dimensional traveling fronts. Besides, in RN with N ≥ 2, more

general traveling fronts exist, which have non-planar level sets. For instance, conical-shaped axisym-

metric non-planar fronts are known to exist for some f , see [9, 18]. Fronts with non-axisymmetric

shapes, such as pyramidal fronts, are also known to exist, see [26, 28]. For qualitative properties of

these traveling fronts, we refer to [8, 9, 10, 18, 19, 22, 27, 28].

Even if the types of traveling fronts are various, they share some common properties. For all of

them, the solutions u converge to the stable states 0 or 1 far away from their moving or stationary

level sets, uniformly in time. This fact led to the introduction of a more general notion of traveling

fronts, that is, transition fronts, see [2, 3, 7] and see [23] in the one-dimensional setting. In order

to recall the notion of transition fronts, one needs to introduce a few notations. First, for any two

subsets A and B of RN and for x ∈ RN , we set

d(A, B) = inf
{|y − z|; (y, z) ∈ A × B

}
and d(x, A) = d({x}, A), where | · | is the Euclidean norm in RN . Consider now two families (Ω−t )t∈R
and (Ω+t )t∈R of open nonempty subsets of RN such that

∀t ∈ R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω−t ∩Ω+t = ∅,
∂Ω−t = ∂Ω

+
t =: Γt,

Ω−t ∪ Γt ∪Ω+t = RN ,

sup{d(x, Γt); x ∈ Ω+t } = sup{d(x, Γt); x ∈ Ω−t } = +∞

(1.3)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf
{

sup
{
d(y, Γt); y ∈ Ω+t , |y − x| ≤ r

}
; t ∈ R, x ∈ Γt

}
→ +∞

inf
{

sup
{
d(y, Γt); y ∈ Ω−t , |y − x| ≤ r

}
; t ∈ R, x ∈ Γt

}
→ +∞

as r → +∞.(1.4)

Notice that the condition (1.3) implies in particular that the interface Γt is not empty for every t ∈ R.

As far as (1.4) is concerned, it says that for any M > 0, there is rM > 0 such that for any t ∈ R and

x ∈ Γt, there are y± = y±t,x ∈ RN such that

y± ∈ Ω±t , |x − y±| ≤ rM and d(y±, Γt) ≥ M.(1.5)

that is, y± ∈ B(x, rM) and B(y±,M) ⊂ Ω±t , where B(y, r) denotes the open Euclidean ball of center y
and radius r > 0. In other words, not too far from any point x ∈ Γt, the sets Ω±t contain large balls.

Moreover, the sets Γt are assumed to be made of a finite number of graphs: there is an integer n ≥ 1

such that, for each t ∈ R, there are n open subsets ωi,t ⊂ RN−1(for 1 ≤ i ≤ n), n continuous maps

ψi,t : ωi,t → R and n rotations Ri,t of RN , such that

(1.6) Γt ⊂
⋃

1≤i≤n

Ri,t

(
{x ∈ RN ; x′ ∈ ωi,t, xN = ψi,t(x′)}

)
.
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Definition 1. [2, 3] For problem (1.1), a transition front connecting 0 and 1 is a classical solution

u : R × RN → (0, 1) for which there exist some sets (Ω±t )t∈R and (Γt)t∈R satisfying (1.3), (1.4)

and (1.6), and, for every ε > 0, there exists Mε > 0 such that⎧⎪⎪⎨⎪⎪⎩∀t ∈ R, ∀x ∈ Ω+t , (d(x, Γt) ≥ Mε)⇒ (u(t, x) ≥ 1 − ε),
∀t ∈ R, ∀x ∈ Ω−t , (d(x, Γt) ≥ Mε)⇒ (u(t, x) ≤ ε).(1.7)

Furthermore, u is said to have a global mean speed γ (≥ 0) if

d(Γt, Γs)

|t − s| → γ as |t − s| → +∞.

This definition has been shown in [2, 3, 7] to cover and unify all classical cases. Moreover, it

was proved in [7] that, under some assumptions on f , any almost-planar transition front (in the

sense that, for every t ∈ R, Γt is a hyperplane) connecting 0 and 1 is truly planar, and that any

transition front connecting 0 and 1 has a global mean speed γ, which is equal to |c f |. Non-standard

transition fronts which are not invariant in any moving frame were also constructed in [7]. For other

properties of bistable transition fronts, we refer to [2, 3, 7]. There is now a large literature devoted to

transition fronts in various homogeneous or heterogeneous settings or for other reaction terms, see

e.g. [11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 29, 30, 31].

Referring to many works devoted to traveling fronts, we can notice that the monotonicity is ac-

tually an important factor for proving further properties of the traveling fronts, but the monotonicity

also has its own interest. The aforementioned standard fronts, such as the planar fronts, the conical-

shaped fronts and the pyramidal fronts, possess some monotonicity properties, especially they are

all monotone in time and in their direction of propagation. Although in dimensions N ≥ 2 the spatial

monotonicity of a given transition front does not make sense in general, since the front may not have

a privileged direction of propagation, it still makes sense to ask whether transition fronts of (1.1) are

monotone in time. The main goal of this paper is actually to give a positive answer to this question

for all transition fronts, whatever shape their level sets may have.

Let us now make more precise the assumptions on the function f . Throughout the paper, we

assume the following conditions:

(F1) f ∈ C1([0, 1]) satisfies f (0) = f (1) = 0, f ′(0) < 0 and f ′(1) < 0.

(F2) There exist c f � 0 and φ ∈ C2(R, [0, 1]) that satisfy (1.2).

Without loss of generality, we can then assume that

c f > 0

even if it means replacing u by 1−u, f (u) by − f (1−u) and c f by −c f . For mathematical purposes, the

function f is extended in R as a C1(R) function such that f (s) = f ′(0)s > 0 for all s ∈ (−∞, 0) and

f (s) = f ′(1)(s − 1) < 0 for all s ∈ (0,+∞). From (F1), there exists then a real number σ ∈ (0, 1/2)

such that

(1.8) f is decreasing in (−∞, σ] and [1 − σ,+∞), f < 0 in (0, σ] and f > 0 in [1 − σ, 1).

Notice that, in addition to (F1), condition (F2) is fulfilled in particular if there is θ ∈ (0, 1) such that

f < 0 in (0, θ), f > 0 on (θ, 1) and
∫ 1

0
f (s)ds � 0, see [1, 6]. However, conditions (F1)-(F2) may

also cover other more general nonlinearities f with multiple zeroes in the interval (0, 1), see [6].

We always assume throughout the paper that

u is any transition front connecting 0 and 1
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in the sense of Definition 1, with sets (Ω±t )t∈R and (Γt)t∈R satisfying (1.3)-(1.6). We point out that u is

any transition front, which may or may not be a standard traveling front with planar, conical-shaped

or pyramidal level sets, or which may be of none of these types (examples of other fronts have been

constructed in [7]).

The main result of the paper is to establish the time monotonicity of the transition front u, under

these conditions (F1)-(F2).

Theorem 1. Under assumptions (F1)-(F2) and c f > 0, any transition front u connecting 0 and 1 is
such that ut(t, x) > 0 for all (t, x) ∈ R × RN.

Remark 1. When c f < 0, it follows immediately from Theorem 1 that any transition front u con-

necting 0 and 1 satisfies ut < 0 in R × RN . When c f = 0 in (F2) with f < 0 in (0, θ) and f > 0 in

(θ, 1) for some θ ∈ (0, 1), then time-increasing fronts, time-decreasing fronts and stationary fronts

are known to exist [1, 4, 6], as well as non-monotone fronts [5]. In other words, the condition (F2),

i.e. c f � 0, is optimal in order to get the time-monotonicity of all transition fronts connecting 0

and 1.

Outline of the paper. In the next section, we prove some auxiliary lemmas on estimates of some

particular radially symmetric functions. Section 3 is devoted to the proof of Theorem 1.

2. Some preliminary lemmas

We first introduce auxiliary notations for some radially symmetric functions and we show some

of their dynamical properties. We recall that f is assumed to satisfy (F1)-(F2). For any R > 0 and

β ∈ R, let vR,β denote the solution of the Cauchy problem

(2.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(vR,β)t = ΔvR,β + f (vR,β), t > 0, x ∈ RN ,

vR,β(0, x) =

{
β if |x| < R,

0 if |x| ≥ R.

Lemma 1. For any T > 0, δ > 0 and β ∈ [1 − σ, 1), where σ > 0 is given in (1.8), there exists
R = R(T, δ) > 0 such that

v2R,β(t, x) ≥ β − δ for all 0 ≤ t ≤ T and |x| ≤ R.

Proof. Let T , δ and β be fixed as in the statement. Let β : R→ (0, 1) denote the solution of{
′β(t) = f (β(t))

β(0) = β.

Since β ∈ [1 −σ, 1) and f (s) > 0 for s ∈ [1 −σ, 1), β(t) is increasing in t and β(t) ≥ β for all t ≥ 0.

From the maximum principle and (F1), one infers that, for any R > 0,

1 ≥ β(t) ≥ v2R,β(t, x) ≥ 0

for all t ≥ 0 and x ∈ RN . Then, the following differential inequality holds

(β − v2R,β)t − Δ(β − v2R,β) = f (β) − f (v2R,β) ≤ L(β − v2R,β),

where L = max[0,1] | f ′|. It follows from the maximum principle that

0 ≤ β(t) − v2R,β(t, x) ≤ eLt

(4πt)N/2

∫
|y|≥2R

e−
|x−y|2

4t dy for all t > 0 and x ∈ RN .
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For 0 < t ≤ T and |x| ≤ R, one has

0 ≤ β(t) − v2R,β(t, x) ≤ eLt

(4π)N/2

∫
|z|≥ R√

t

e−
|z|2
4 dz ≤ eLT

(4π)N/2

∫
|z|≥ R√

T

e−
|z|2
4 dz.

Thus, there exists R = R(T, δ) > 0 large enough such that

0 ≤ β(t) − v2R,β(t, x) ≤ δ
for all 0 < t ≤ T and |x| ≤ R. Then, it follows that

v2R,β(t, x) ≥ β(t) − δ ≥ β − δ for all 0 < t ≤ T and |x| ≤ R.

Notice also that the inequality v2R,β(0, x) ≥ β−δ for |x| ≤ R is satisfied immediately at time t = 0. �

Remark 2. Notice from the proof that the radius R(T, δ) can be chosen independently of β ∈ [1 −
σ, 1).

The proof of Lemma 1 only used the profile of the function f on the interval [1 − σ, 1]. The

conclusion was concerned with the behavior of the solution v2R,β locally in time. Let us now recall a

brief version of [7, Lemma 4.1] (see also [1, Theorem 6.2]), which deals with the large-time behavior

of the solutions vR,β and for which we recall that c f > 0.

Lemma 2. [7] Fix any β ∈ [1 − σ, 1), where σ > 0 is given in (1.8). There are some real numbers
R > 0 and T > 0 such that

vR,β(t, x) ≥ β for all t ≥ T and |x| ≤ R.

Let us roughly explain the above lemmas, since they are helpful to the understanding of the fol-

lowing proofs. On the one hand, Lemma 1 says that in a bounded time interval [0, T ], the function

v2R,β can not decrease too much in a ball B(0,R) by setting R large enough. On the other hand,

Lemma 2 says that vR,β stays larger than β in a ball B(0,R) at large time. For our transition front u,

Lemma 1 says that the region where u is close to 1 can not reduce too much as time runs. Further-

more, we recall from [7] that

(2.2)
d(Γt, Γs)

|t − s| → c f > 0 as |t − s| → +∞,
whence d(Γt, Γs) → +∞ as |t − s| → +∞. Finally, it can eventually only happen that the state 1

invades in some sense the state 0. These properties will be some essential steps in the proof of the

monotonicity of u with respect to t. We show the explicit proofs in the following section.

3. Monotonicity: proof of theorem 1

This section is devoted to the proof of Theorem 1 on the monotonicity in time of all transition

fronts. We recall that f satisfies (F1)-(F2) with c f > 0 and u is an arbitrary transition front connecting

0 and 1 in the sense of Definition 1, with sets (Ω±t )t∈R and (Γt)t∈R satisfying (1.3)-(1.6). One can easily

check that equation (1.1) and the function f satisfy all assumptions of [3, Theorem 1.11]. That means

that, in order to get the time monotonicity and the conclusion of Theorem 1, it is sufficient to show

that the transition front u is an invasion (of the state 0 by the state 1), in the sense that

(3.1) Ω+s ⊂ Ω+t for all s < t and d(Γt, Γs)→ +∞ as |t − s| → +∞.
Notice that, for the transition front u, the sets (Ω±t )t∈R and (Γt)t∈R satisfying (1.3)-(1.7) are not

uniquely determined, since bounded shifts of them still satisfy the same properties. It is therefore
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enough to show that, for our given transition front u, some families (Ω±t )t∈R and (Γt)t∈R satisfy con-

ditions (1.3)-(1.7), together with the invasion property (3.1), even if it means redefining the sets

(Ω±t )t∈R and (Γt)t∈R.

In the following lemmas, we prove some properties of the sets (Ω±t )t∈R of the transition front u.

The first key property shows that the interfaces (Γt)t∈R cannot move infinitely fast.

Lemma 3. For any T > 0, there holds

(3.2) sup
{
d(x, Γt−τ); t ∈ R, 0 ≤ τ ≤ T, x ∈ Γt

}
< +∞.

Proof. If the conclusion is not true, then, owing to (1.3), two cases may occur, that is, either

sup
{
d(x, Γt−τ); t ∈ R, 0 ≤ τ ≤ T, x ∈ Γt ∩Ω+t−τ

}
= +∞,

or

sup
{
d(x, Γt−τ); t ∈ R, 0 ≤ τ ≤ T, x ∈ Γt ∩Ω−t−τ

}
= +∞.

We only consider the first case, the second one can be handled similarly. Fix ε ∈ (0, σ) (remember

that σ > 0 is given in (1.8)), set β = 1 − ε ∈ [1 − σ, 1) and let R = R(T, σ − ε) > 0 be sufficiently

large such that the conclusion of Lemma 1 holds with T > 0 and δ = σ − ε > 0. Then, as the first

case above is here considered, there are t0 ∈ R, τ0 ∈ [0, T ] and a point

(3.3) x0 ∈ Γt0 ∩Ω+t0−τ0

such that

d(x0, Γt0−τ0
) ≥ rMε+2R + Mε + 2R,(3.4)

where Mε > 0 is given in (1.7) and rMε+2R > 0 is given in the property (1.5) with M = Mε + 2R.

From (1.5), there exists y0 ∈ RN such that

y0 ∈ Ω−t0 , |y0 − x0| ≤ rMε+2R and d(y0, Γt0 ) ≥ Mε + 2R,

which implies that

B(y0, 2R) ⊂ Ω−t0 and d(B(y0, 2R), Γt0 ) ≥ Mε.

Thus,

u(t0, y) ≤ ε < σ < 1 − σ for all y ∈ B(y0, 2R).(3.5)

From (3.3), (3.4) and |y0 − x0| ≤ rMε+2R, one also has

B(y0, 2R) ⊂ Ω+t0−τ0
and d(B(y0, 2R), Γt0−τ0

) ≥ Mε.

Thus,

u(t0 − τ0, y) ≥ 1 − ε for all y ∈ B(y0, 2R).

Let v2R,1−ε be as defined in (2.1) with 2R and β = 1 − ε ∈ [1 − σ, 1). Since

u(t0 − τ0, y) ≥ v2R,1−ε(0, y − y0) for all y ∈ RN ,

it follows from the comparison principle that

u(t0, y) ≥ v2R,1−ε(τ0, y − y0) for all y ∈ RN .

Furthermore, from Lemma 1 and the choice of R, we have

u(t0, y) ≥ v2R,1−ε(τ0, y − y0) ≥ 1 − ε − (σ − ε) = 1 − σ for all |y − y0| ≤ R.

This contradicts (3.5). The proof of Lemma 3 is thereby complete. �
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Remark 3. Similarly to Lemma 3, one can show that, for any T > 0, there holds

sup
{
d(x, Γt+τ); t ∈ R, 0 ≤ τ ≤ T, x ∈ Γt

}
< +∞.

This property, which is a priori not equivalent to (3.2), will actually not be used in the sequel. But

it is still stated since, together with Lemma 3, it implies that, for any T > 0, the Hausdorff distance

between Γt and Γs is bounded uniformly with respect to t ∈ R and s ∈ R such that |t − s| ≤ T .

From [3, Theorem 1.2] and Lemma 3, we can get the following lemma immediately.

Lemma 4. For any C ≥ 0, the transition front u satisfies

0 < inf
{
u(t, x); d(x, Γt) ≤ C, (t, x) ∈ R × RN}

≤ sup
{
u(t, x); d(x, Γt) ≤ C, (t, x) ∈ R × RN} < 1.

The second key property of the sets (Ω±t )t∈R is their τ-monotonicity for large τ > 0.

Lemma 5. There exists τ0 > 0 such that, for any t ∈ R and τ ≥ τ0,

Ω+t ⊂ Ω+t+τ.
Proof. First of all, property (1.7) and Lemma 4 yield the existence of ε > 0 such that

(3.6) u(t, x) < 1 − ε for all t ∈ R and x ∈ Ω−t ∪ Γt.

Without loss of generality, one can assume that ε ≤ σ, with σ ∈ (0, 1/2) given in (1.8). Let then

R > 0 and T > 0 be some real numbers such that Lemma 2 holds true with β = 1 − ε ∈ [1 − σ, 1).

Since d(Γt, Γs) → +∞ as |t − s| → +∞ by (2.2), there exists τ0 > 0 large enough such that τ0 ≥ T
and

d(Γt+τ, Γt) ≥ rMε+R + Mε + R (> 0) for all t ∈ R and τ ≥ τ0,(3.7)

where Mε > 0 and rMε+R > 0 are given in (1.7) and (1.5) respectively.

In this paragraph, we fix any real number τ such that τ ≥ τ0. We claim that Γt ⊂ Ω+t+τ for all

t ∈ R. Assume not. Then, remembering (1.3) and (3.7), there is (t0, x0) ∈ R × RN such that

x0 ∈ Γt0 and x0 ∈ Ω−t0+τ.(3.8)

Then there is y0 ∈ RN such that

y0 ∈ Ω+t0 , |y0 − x0| ≤ rMε+R and d(y0, Γt0 ) ≥ Mε + R,(3.9)

which implies that B(y0,R) ⊂ Ω+t0 and d(B(y0,R), Γt0 ) ≥ Mε. Therefore, u(t0, y) ≥ 1 − ε for any

y ∈ B(y0,R). Thus,

u(t0, y) ≥ vR,1−ε(0, y − y0) for all y ∈ RN ,

where vR,1−ε is defined in (2.1) with β = 1 − ε. From the comparison principle, one gets that

u(t0 + t, y) ≥ vR,1−ε(t, y − y0) for all t > 0 and y ∈ RN .

From Lemma 2 and the choice of R > 0 and T > 0, it follows that

u(t0 + t, y0) ≥ vR,1−ε(t, 0) ≥ 1 − ε for all t ≥ T.(3.10)

Meanwhile, from (3.7), (3.8) and (3.9), one has

y0 ∈ Ω−t0+τ and d(y0, Γt0+τ) ≥ Mε + R ≥ Mε.

This implies that u(t0 + τ, y0) ≤ ε. Since ε ≤ σ < 1/2 < 1 − ε, this contradicts (3.10) with

t = τ ≥ τ0 ≥ T . So, we conclude that

(3.11) Γt ⊂ Ω+t+τ for all t ∈ R and τ ≥ τ0.
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Finally, assume by contradiction that the conclusion of Lemma 5 does not hold with τ0 > 0 given

above. Then, there are t1 ∈ R, τ1 ≥ τ0 and x1 ∈ Ω+t1 such that x1 � Ω+t1+τ1
. Since x1 ∈ Γt1+τ1

∪ Ω−t1+τ1

and Γt1 ⊂ Ω+t1+τ1
by (3.11), one infers that

d(x1, Γt1 ) ≥ d(Γt1+τ1
, Γt1 ).

Hence, by (3.7),

d(x1, Γt1 ) ≥ rMε+R + Mε + R ≥ Mε + R.
Since x1 ∈ Ω+t1 , this also implies that

B(x1,R) ⊂ Ω+t1 and d(B(x1,R), Γt1 ) ≥ Mε.

Therefore, u(t1, x) ≥ 1 − ε for all x ∈ B(x1,R) and u(t1, x) ≥ vR,1−ε(0, x − x1) for all x ∈ RN . From

the comparison principle, one gets that

u(t1 + t, x) ≥ vR,1−ε(t, x − x1) for all t > 0 and x ∈ RN .

From Lemma 2 and the choice of R and T , it follows from τ1 ≥ τ0 ≥ T > 0 that

u(t1 + τ1, x1) ≥ vR,1−ε(τ1, 0) ≥ 1 − ε.
Since x1 ∈ Γt1+τ1

∪ Ω−t1+τ1
, the above inequality contradicts (3.6). The proof of Lemma 5 is thereby

complete. �

Now we are going to redefine the sets (Ω±t )t∈R and (Γt)t∈R so that the transition front u is an

invasion in the sense of (3.1). To do so, let τ0 > 0 be as in Lemma 5 and set

(3.12)

⎧⎪⎪⎨⎪⎪⎩ Ω̃
±
kτ0+t := Ω±kτ0

for any k ∈ Z and 0 ≤ t < τ0,

Γ̃t := ∂Ω̃+t = ∂Ω̃
−
t for any t ∈ R.

Proposition 1. The solution u is a transition front with the families (Ω̃±t )t∈R and (̃Γt)t∈R, and then it
is an invasion in the sense of (3.1) with (Ω̃±t )t∈R and (̃Γt)t∈R.

Proof. Observe first that, owing to the definitions of the sets Ω̃±t and Γ̃t, one has d(̃Γt, Γ̃s) → +∞ as

|t − s| → +∞, since d(Γt, Γs) → +∞ as |t − s| → +∞. Hence, from Lemma 5, we immediately get

that u is an invasion with the families (Ω̃±t )t∈R and (̃Γt)t∈R, that is, these sets satisfy (3.1).

It is obvious that, owing to their definition, the sets (Ω̃±t )t∈R and (̃Γt)t∈R satisfy the properties (1.3),

(1.4) and (1.6). Therefore, we only need to show that u satisfies (1.7) with (Ω̃±t )t∈R and (̃Γt)t∈R, at

least for all ε > 0 small enough.

First of all, we claim that there is ε0 ∈ (0, 1/2) such that

(3.13)

∀ ε ∈ (0, ε0), ∀ (t, x) ∈ R × RN , ∀ s ∈ [0, τ0],⎧⎪⎨⎪⎩
(
u(t, x) ≥ 1 − ε) =⇒ (

u(t + s, x) > ε
)
,(

u(t, x) ≤ ε) =⇒ (
u(t + s, x) < 1 − ε).

We only show the first property (the second one can be proved similarly). If it does not hold, there

exists a sequence (tn, xn, sn)n∈N in R × RN × [0, τ0] such that u(tn, xn) → 1 and u(tn + sn, xn) → 0 as

n→ +∞. From standard parabolic estimates, the functions

un(t, x) := u(t + tn, x + xn)

converge in C1,2
t,x;loc(R×RN), up to extraction of a subsequence, to a solution 0 ≤ u∞(t, x) ≤ 1 of (1.1)

such that u∞(0, 0) = 1 and u∞(s∞, 0) = 0 for some s∞ ∈ [0, τ0]. The strong maximum principle
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implies that u∞ = 1 in (−∞, 0] × RN and then in R × RN by uniqueness of the solutions of the

associated Cauchy problem. This is impossible, since u∞(s∞, 0) = 0. Thus, there is ε0 ∈ (0, 1/2)

satisfying (3.13).

Now, set

(3.14) D := sup
{
d(x, Γkτ0

); k ∈ Z, 0 ≤ t < τ0, x ∈ Γkτ0+t
}
,

which is a well-defined real number by Lemma 3. In the sequel, fix any real number ε such that

0 < ε < ε0 (< 1/2) and define

(3.15) M̃ε := Mε + D > 0,

where Mε > 0 is given in (1.7) for the families (Ω±t )t∈R and (Γt)t∈R. Since any t ∈ R can be written as

t = kτ0 + s for some k ∈ Z and 0 ≤ s < τ0, it follows from (1.7) that we only need to show that

(3.16) ∀ k ∈ Z, ∀ 0≤ t<τ0, ∀x ∈ Ω̃+kτ0+t, d(x, Γ̃kτ0+t)≥ M̃ε =⇒ (x ∈ Ω+kτ0+t and d(x, Γkτ0+t)≥Mε
)

and

(3.17) ∀ k ∈ Z, ∀ 0≤ t<τ0, ∀x∈ Ω̃−kτ0+t, d(x, Γ̃kτ0+t)≥ M̃ε =⇒ (x ∈ Ω−kτ0+t and d(x, Γkτ0+t)≥Mε
)
.

We only prove (3.16), the property (3.17) being proved similarly thanks to the second property

in (3.13). To show (3.16), we first claim that, for any given k ∈ Z and 0 ≤ t < τ0, there holds

Γkτ0+t ⊂ {x ∈ RN ; d(x, Γ̃kτ0+t) ≤ D
}
.(3.18)

Indeed, otherwise, there is a point x0 ∈ Γkτ0+t such that d(x0, Γ̃kτ0+t) > D. Since Γ̃kτ0+t = Γkτ0
by

definition, this yields d(x0, Γkτ0
) > D, which contradicts the definition of D in (3.14).

Then, we claim that, for any given k ∈ Z and 0 ≤ t < τ0, there holds{
x ∈ Ω̃+kτ0+t; d(x, Γ̃kτ0+t) ≥ M̃ε

} ⊂ Ω+kτ0+t.(3.19)

Indeed, let x ∈ Ω̃+kτ0+t be such that d(x, Γ̃kτ0+t) ≥ M̃ε. In other words, x ∈ Ω+kτ0
and

d(x, Γkτ0
) ≥ M̃ε = Mε + D.

Hence, d(x, Γkτ0
) ≥ Mε and

(3.20) u(kτ0, x) ≥ 1 − ε
by definition of Mε. Furthermore, d(x, Γkτ0

) ≥ M̃ε = Mε + D and (3.14) imply that

d(x, Γkτ0+t) ≥ Mε.

Therefore, either x ∈ Ω−kτ0+t and u(kτ0+ t, x) ≤ ε, or x ∈ Ω+kτ0+t (and u(kτ0+ t, x) ≥ 1−ε). The former

case is impossible due to (3.13) and (3.20). Thus, x ∈ Ω+kτ0+t and (3.19) is proved.

Finally, from (3.12), (3.15), (3.18), (3.19), we easily get (3.16). As already emphasized, the proof

of Proposition 1 is thereby complete. �

Proof of Theorem 1. From [3, Theorem 1.11] and the fact that, by Proposition 1, the transition front

u is an invasion in the sense of (3.1), with the sets (Ω̃±t )t∈R and (̃Γt)t∈R, we immediately get the desired

monotonicity property ut > 0 in R × RN . �
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