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EXISTENCE OF WEAK SOLUTIONS OF AN UNSTEADY

THERMISTOR SYSTEM WITH p-LAPLACIAN TYPE EQUATION

JOACHIM NAUMANN

Abstract. In this paper, we consider an unsteady thermistor system, where the usual
Ohm law is replaced by a non-linear monotone constitutive relation between current and
electric field. This relation is modeled by a p-Laplacian type equation for the electrostatic
potential ϕ. We prove the existence of weak solutions of this system of PDEs under mixed
boundary conditions for ϕ, and a Robin boundary condition and an initial condition for
the temperature u.

1. Introduction

Let Ω ⊂ Rn (n = 2 or n = 3) be a bounded domain with Lipschitz boundary ∂Ω, and set
QT = Ω× ] 0, T [ (0 < T < +∞).

Let J and q denote the electric current field density and the heat flux, respectively, of a
thermistor occupying the domain Ω under unsteady operating conditions. Then the balance
equations for the electric current and the heat flow within the thermistor material are the
following two PDEs

∇ · J = 0,
∂u

∂t
+∇ · q = f(x, t, u,∇ϕ) in QT ,

where ϕ = ϕ(x, t) and u = u(x, t) represent the electrostatic potential and the temperature,
respectively (see, e.g., [29, Chap. 8]).

We make the following constitutive assumptions on J and q

J = σ
(
u, |E|)E Ohm’s law, q = −κ(u)∇u Fourier’s law,

where

E = −∇ϕ density of the electric field,

σ = σ
(
u, |E|) electrical conductivity,

κ = κ(u) thermal conductivity.
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With these notations the above system of PDEs takes the form

−∇ · (σ(u, |∇ϕ|)∇ϕ) = 0 in QT ,(1.1)

∂u

∂t
−∇ · (κ(u)∇u) = f(x, t, u,∇ϕ) in QT .(1.2)

The function f = f(x, t, u,∇ϕ) represents a heat source that will be specified below (see
(1.13) and (H3), Section 2).

We supplement system (1.1)–(1.2) by boundary conditions for ϕ and u, and an initial
condition for u. Without any further reference, throughout the paper we assume

∂Ω = ΓD ∪ ΓN disjoint, ΓD non-empty, open.

Define

ΣD = ΓD× ]0, T [ , ΣN = ΓN× ] 0, T [ .

We then consider the conditions

ϕ = ϕD on ΣD, J · n = 0 on ΣN ,(1.3)

q · n = g(u− h) on ∂Ω× ] 0, T [ ,(1.4)

u = u0 in Ω× {0}(1.5)

(n = unit outward normal to ∂Ω). The first condition in (1.3) means that there is an applied
voltage ϕD along ΣD, whereas the second condition characterizes electrical insulation of the
thermistor along ΣN . The Robin boundary condition (1.4)1) means that the flux of heat
through ∂Ω× ] 0, T [ is proportional to the temperature difference u − h, where g denotes
the thermal conductivity of the surface ∂Ω of the thermistor, and h represents the ambient
temperature (cf. [10], [15], [22], [29, Chap. 8] and [32] (nonlinear boundary conditions)).

�
We present two prototypes for the electrical conductivity σ. To this end, let σ0 : R →

R+
2) be a continuous function such that

0 < σ∗ ≤ σ(u) ≤ σ∗ <∞ ∀ u ∈ R (σ∗, σ∗ = const).

We then consider the following functions

(1.6) σ(u, τ) = σ0(u)(δ + τ2)(p−2)/2, (u, τ) ∈ R× R+ (δ = const > 0, 1 < p < +∞)

and

(1.7) σ(u, τ) = σ0(u)τ
p−2, (u, τ) ∈ R× R+ (2 ≤ p < +∞).

The electrical conductivities which correspond to these functions σ = σ(u, τ) read

(1.8) σ
(
u, |E|) = σ0(u)

(
δ + |E|2)(p−2)/2

and

(1.9) σ
(
u, |E|) = σ0(u)|E|p−2,

1) This boundary condition is also called “Newton’s cooling law” or “third boundary condition”.
2) R+ = [0,+∞ [ .
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respectively (E = electrical field density). Here, the factor σ0(u) characterizes the thermal
dependence of the electrical conductivity of the thermistor material. Observing that E =
−∇ϕ, equ. (1.1) takes the form of p-Laplacian equations

−∇ · (σ0(u)(δ + |∇ϕ|2)(p−2)/2∇ϕ) = 0,

resp.
−∇ · (σ0(u)|∇ϕ|p−2∇ϕ) = 0.

Let p = 2. Then both (1.8) and (1.9) lead to J = σ0(u)E. If the right hand side in (1.2)
is of the form f = σ0(u)|∇ϕ|2 = J · E (Joule heat), (cf. (1.13) below), then (1.1)–(1.2)
represents the “classical” thermistor system (see [1], [9], [15], [33]). This system has been
studied in [18]–[20] with a degeneration of the coefficients σ0(u) and κ(u) (cf. also [10] for
a similar degeneration of σ0(u)). �
Remark 1. (The case 1 < p ≤ 2.) Let be σ = σ(u, τ) as in (1.6). Then Ohm’s law reads

(1.10) J = σ0(u)
(
δ + |E|2)(p−2)/2

E

(cf. (1.8)). To make things clearer, let I = |J | and V = |E| denote the current and
voltage, respectively, in an electrical conductor. Equ. (1.10) then gives the current-voltage
characteristic

(1.11) I = σ0(u)(δ + V 2)(p−2)/2V.

If p = 2, then this current-voltage characteristic turns into the well-known linear (i.e.,
Ohmic) characteristic I = σ0(u)V . If p is “sufficiently near to 1”, then (1.11) can be used as
an approximation of current-voltage characteristics for transistors (see, e.g., [23], [31, Chap.
6.2.2]).

The characteristic (1.11) continues to make sense if p = 1, i.e.,

(1.12) I =
σ0(u)

(δ + V 2)1/2
V.

This current-voltage characteristic is widely used to describe the effect of saturation of
current in certain transistors under high electric fields (see, e.g., [27, Chap. 2.5] for details).
The following figure gives an illustration of the relationship between the limit case p = 1
and the effect of saturation of current.
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Fig. Current-voltage characteristic I vs. V (I0 = σ0(u))
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Broken line: I = I0
(δ+V 2)(2−p)/2 V , 1 < p < 2 (cf. (1.11));

dotted line: I = I0
(δ+V 2)1/2

V (cf. (1.12), i.e., asymptotic saturation of current I ↗ I0

when V increases;

bold-faced line: experimental data I vs. V of MOSFETs, i.e., linear slope I = σ0(u)V for

voltages V << VS (cf. (1.11) with p = 2), and saturation of current I = I0 for voltages

V ≥ VS (see, e.g., [23], [31, p. 304, fig 9]).

Finally, we notice that for the case δ = 0 and p = 1, Ohm’s law (1.10) and the current-
voltage characteristic (1.11) have to be replaced by

J ∈ Br0(0) if E = 0, J =
r0
|E| E if E �= 0,

0 ≤ I ≤ r0 if V = 0, I = r0 if V > 0,

respectively, where Br0(0) = {ξ ∈ Rn; |ξ| ≤ r0}, r0 = r0(u) (cf. [21]).

Remark 2. (The case 2 ≤ p < +∞.) In [11], the author considers the steady case of (1.1)
with σ = σ

(|∇ϕ|), where
lim

τ→+∞
σ(τ)

τp−2
= a > 0, p ≥ 2

(cf. (1.7)). Electrical conductors obeying the constitutive law J = −σ(|∇ϕ|)∇ϕ are called
varistors (= varying resistors).

Equ. (1.1) with this constitutive law is then studied under the boundary conditions

ϕ = 0 on Γ′
D, ϕ = Φ on Γ′′

D,
∂ϕ

∂n
= 0 on ΓN (ΓD = Γ′

D ∪ Γ′′
D disjoint),

where Φ is an unknown constant (cf. (1.3)). The constant Φ is related to ∇ϕ by a nonlocal
boundary condition on Γ′′

D which models a current limiting device (see, e.g., [15] for more
details).

A second topic of [11] concerns the steady case of (1.1)–(1.2) with J = −σ(u)∇ϕ and
f = σ(u)|∇ϕ|2 under analogous boundary conditions as above.

Similar studies of the steady case of (1.1)–(1.2) with J = −σ(u, ϕ)∇ϕ and f = σ(u, ϕ)|∇ϕ|2
can be found in [12]. �

Another type of non-Ohmic current-voltage characteristics is

I =
(
σ0(x, u)V

p(x)−2
)
V, 2 ≤ p(x) < +∞ (x ∈ Ω),

where p = p(x) is a jump function (cf. (1.7) and (1.9)). The experimental findings which
lead to this characteristic, are presented in [14]. This characteristic is used to model both
Ohmic and non-Ohmic behavior of the device material (i.e., {x ∈ Ω; p(x) = 2} and {x ∈
Ω; 2 < pi(x) < +∞}, respectively, (i = 1, . . . ,m)) (see also [24] for more details). �

We present a prototype for the heat source term f in (1.2) which motivates hypotheses
(H3) in Section 2.

Let be σ = σ(u, τ) as in (1.6) or (1.7). For (x, u, ξ) ∈ Ω× R× Rn we consider functions
f such that

(1.13)

⎧⎪⎨⎪⎩
f(x, u, ξ) = α(x, u, ξ)σ

(
u, |ξ|)|ξ|2,

α : Ω× R× Rn −→ R+ is Carathéodory,

0 ≤ α(x, u, ξ) ≤ α0 = const ∀ (x, u, ξ) ∈ Ω× R× Rn (α0 = const).
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If α ≡ 1, then

f(x, u,∇ϕ) = σ
(
u, |∇ϕ|)(−∇ϕ) · (−∇ϕ) = J ·E.

Let be α of the form

α(x, u, ξ) = α̂(x, u,−ξ)
or

α(x, u, ξ) = α̂
(
x, u,−σ(u, |ξ|)ξ),

where α̂ : Ω × R × Rn is a Carathéodory function such that 0 ≤ α̂ ≤ 1 everywhere. Then
(1.2) models a self-heating process with source term

f = αJ ·E,

where the factor

α = α̂(x, u,E) or α = α̂(x, u,J)

characterizes a loss of Joule heat (cf. [24] for more details).

The existence of weak solutions to the steady case of (1.1)–(1.4) has been proved for the
first time in [24] for 2 < p < +∞ and in [17] for 2 ≤ p(x) < +∞ (n = 2 in both papers).
Extensions of these results for measurable exponents p = p(x) such that 1 < p1 ≤ p(x) ≤
p2 < +∞ (p1, p2 = const), and any dimension n have been recently presented in [7], [8]. �

In [28], we proved the existence of a weak solution of (1.1)–(1.5) when the function
τ �→ σ(u, τ) is strictly monotone and f satisfies hypothesis (H3) below (see Section 2) which
includes (1.13) as a special case. The aim of the present paper is to prove an analogous
existence result when τ �→ σ(u, τ) is merely monotone whereas the function f , however, has
to satisfy a structure condition of type (1.13).

2. Weak formulation of (1.1)–(1.5)

We introduce the notations which will be used in what follows.
By W 1,p(Ω) (1 ≤ p < +∞) we denote the usual Sobolev space. Define

W 1,p
ΓD

(Ω) =
{
v ∈W 1,p(Ω); v = 0 a.e. on ΓD

}
.

This space is a closed subspace of W 1,p(Ω). Throughout the paper, we consider W 1,p
ΓD

(Ω)
equipped with the norm

|v|W 1,p =

⎛⎝∫
Ω

|∇v|pdx
⎞⎠1/p

.

Let X denote a real normed space with norm | · |X and let X∗ be its dual space. By
〈x∗, x〉X we denote the dual pairing between x∗ ∈ X∗ and x ∈ X. The symbol Lp(0, T,X)
(1 ≤ p ≤ +∞) stands for the vector space of all strongly measurable mappings u : ] 0, T [→ X
such that the function t �→ ∣∣u(t)∣∣

X
is in Lp(0, T ) (cf. [4, Chap. III, §3; Chap. IV, §3], [5,

App.], [13, Chap. 1]). For 1 ≤ p < +∞, the spaces Lp
(
0, T ;Lp(Ω)

)
and Lp(QT ) are linearly

isometric. Therefore, in what follows we identify these spaces.
Let H be a real Hilbert space with scalar product (·, ·)H such that X ⊂ H densely and

continuously. Identifying H with its dual space H∗ via Riesz’ Representation Theorem, we
obtain the continuous embedding H ⊂ X∗ and

(2.1) 〈h, x〉X = (h, x)H ∀ h ∈ H, ∀ x ∈ X.
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Given any u ∈ L1(0, T ;X) we identify this function with a function in L1(0, T ;X∗) and
denote it again by u. If there exists U ∈ L1(0, T ;X∗) such that

T∫
0

u(t)α′(t)dt inX
∗

= −
T∫

0

U(t)α(t)dt ∀ α ∈ C∞
c ( ] 0, T [ ),

then U will be called derivative of u in the sense of distributions from ] 0, T [ into X∗ and
denoted by u′ (see [5, App.], [13, Chap. 21]). �

Let 1 < p < +∞ be fixed. We make the following assumptions on the coefficients σ, κ
and the right hand side f in (1.1)–(1.2):

(H1)

⎧⎪⎨⎪⎩
σ : R× R+ → R+ is continuous,

c1τ
p − c2 ≤ σ(u, τ)τ2, 0 ≤ σ(u, τ) ≤ c3(1 + τ2)(p−2)/2

∀ (u, τ) ∈ R× R+, where c1, c3 = const > 0 and c2 = const ≥ 0;

(H2)

{
κ : R→ R+ is continuous,

0 < κ0 ≤ κ(u) ≤ κ1 ∀ u ∈ R, where κ0, κ1 = const,

and

(H3)

⎧⎪⎨⎪⎩
f : QT × R× Rn → R+ is Carathéodory,

0 ≤ f(x, t, u, ξ) ≤ c4
(
1 + |ξ|p)

∀ (x, t, u, ξ) ∈ QT × R× Rn, where c4 = const > 0.

It is readily seen that (H1) and (H3) are satisfied by the prototypes for σ and f we have
considered in Section 1. �

Definition. Assume (H1)–(H3) and suppose that the data in (1.3)–(1.5) satisfy

ϕD ∈ Lp
(
0, T ;W 1,p(Ω)

)
;(2.2)

g = const, h = const;(2.3)

u0 ∈ L1(Ω).(2.4)

The pair

(ϕ, u) ∈ Lp
(
0, T ;W 1,p(Ω)

)× Lq
(
0, T ;W 1,q(Ω)

) (
1 < q <

n+ 2

n+ 1

)



THERMISTOR SYSTEM WITH p-LAPLACIAN 93

is called weak solution of (1.1)–(1.5) if∫
QT

σ
(
u, |∇ϕ|)∇ϕ · ∇ζ dxdt = 0 ∀ ζ ∈ Lp

(
0, T ;W 1,p

ΓD
(Ω)
)
;(2.5)

ϕ = ϕD a.e. on ΣD;(2.6)

∃ u′ ∈ L1
(
0, T ;

(
W 1,q′(Ω)

)∗)
;(2.7) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T∫
0

〈
u′(t), v(t)

〉
W 1,q′dt+

∫
QT

κ(u)∇u · ∇v dxdt+ g

T∫
0

∫
∂Ω

(u− h)v dxSdt

=

∫
QT

f(x, t, u,∇ϕ)v dxdt ∀ v ∈ L∞(0, T ;W 1,q′(Ω)
)
;

(2.8)

u(0) = u0 in
(
W 1,q′(Ω)

)∗
.(2.9)

From (H1) and (H3) it follows that f(·, ·, u,∇ϕ)∈L1(QT ). Therefore, u∈Lq
(
0, T ;W 1,q(Ω)

)(
1 < q < n+2

n+1

)
is standard for weak solutions of parabolic equations with right hand side in

L1 (see, e.g., the papers cited in [28]).

We notice that v ∈ L∞(0, T,W 1,q′(Ω)
)
can be identified with a function in L∞(QT )

(cf. [28]). Hence, the integral on the right hand side of the variational identity in (2.8) is
well-defined.

To make precise the meaning of (2.9), let 2n
n+2 < q < n+2

n+1 . Then
nq
n−q > 2 and q′ > n+2.

Identifying L2(Ω) with its dual, we obtain

W 1,q′(Ω) ⊂ W 1,q(Ω) ⊂ L2(Ω) ⊂ (W 1,q′(Ω))∗.(2.10)

continuously compactly continuously

Therefore, u can be identified with an element in Lq
(
0, T ;

(
W 1,q′(Ω)

)∗)
. Together with (2.7)

this implies the existence of a function ũ ∈ C
(
[0, T ];

(
W 1,q′(Ω)

)∗)
such that

ũ(t) = u(t) for a.e. t ∈ [0, T ]

(see, e.g., [13, p. 45, Th. 2.2.1]).

On the other hand, there exists a uniquely determined ũ0 ∈
(
W 1,q′(Ω)

)∗
such that

(2.11) 〈ũ0, z〉W 1,q′ =

∫
Ω

u0z dx ∀ z ∈W 1,q′(Ω).

Thus, (2.9) has to be understood in the sense

ũ(0) = ũ0 in
(
W 1,q′(Ω)

)∗
.

Remark 3. Let (ϕ, u) be a sufficiently regular solution of (1.1)–(1.5). We multiply (1.1)
and (1.2) by smooth test functions ζ and v, respectively, satisfying the conditions

ζ = 0 on ΣD, v(·, T ) = 0 in Ω.
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Then we integrate the div-terms by parts over Ω and the term ∂u
∂t v by parts over the interval

[0, T ]. It follows

−
∫
QT

u
∂v

∂t
dxdt+

∫
QT

κ(u)∇u · ∇v dxdt+ g

T∫
0

∫
∂Ω

(u− h)v dxSdt

=

∫
Ω

u0v(·, 0)dx+

∫
QT

f(x, t, u,∇ϕ)v dxdt.(2.12)

This variational formulation of initial/boundary-value problems for parabolic equations is
frequently used in the literature.

We notice that from a variational identity of type (2.12) it follows the existence of a
distributional time derivative of u (see the arguments concerning (4.25) and (4.26) below).

Remark 4. Let (ϕ, u) be a weak solution of (1.1)–(1.5). From (2.8) it follows that, for any

z ∈W 1,q′(Ω),〈
u′(t), z

〉
W 1,q′ +

∫
Ω

κ
(
u(x, t)

)∇u(x, t) · ∇z(x)dx+ g

∫
∂Ω

(
u(x, t)− h

)
z(x)dxS

=

∫
Ω

f
(
x, t, u(x, t),∇ϕ(x, t))z(x)dx(2.13)

for a.e. t ∈ [0, T ], where the null set in [0, T ] of those t for which (2.13) fails, does not
depend on z. We integrate (2.13) (with s in place of t) over the interval [0, t] (0 ≤ t ≤ T )
and integrate the first term on the left hand side by parts. Using the above notation ũ and
(2.11), we obtain

〈
ũ(t), z

〉
W 1,q′ +

t∫
0

∫
Ω

κ
(
u(x, s)

)∇u(x, s) · ∇z(x)dxds+ g

t∫
0

∫
∂Ω

(
u(x, s)−h)z(x)dxSds

=

∫
Ω

u0(x)z(x)dx+

t∫
0

∫
Ω

f
(
x, s, u(x, s),∇ϕ(x, s))z(x)dxds.(2.14)

Let be p = 2 and let be f(x, t, u, ξ) = σ0(u)|ξ|2
((
(x, t), u, ξ

) ∈ QT ×R×Rn; cf. (1.13)
)
.

Taking z ≡ 1 in (2.14), we obtain

〈
ũ(t), 1

〉
W 1,q′ + g

t∫
0

∫
∂Ω

(
u(x, s)− h

)
dxSds =

∫
Ω

u0(x)dx+

t∫
0

∫
Ω

J ·E dxds, t ∈ ]0, T ].

3. Existence of weak solutions

Our existence result for weak solutions of (1.1)–(1.5) is the following

Theorem. Assume (H1) and (H2). Suppose further that

(3.1)
(
σ
(
u, |ξ|)ξ − σ

(
u, |η|)η) · (ξ − η) ≥ 0 ∀ u ∈ R, ∀ ξ, η ∈ Rn,
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and

(3.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(x, t, u, ξ) = α(x, t, u)σ

(
u, |ξ|)|ξ|2 ∀ ((x, t), u, ξ) ∈ QT × R× Rn,

where α : QT × R→ R+ is Carathéodory,

0 ≤ α(x, t, u) ≤ α0 = const ∀ ((x, t), u) ∈ QT × R,

σ = σ(u, τ) as in (H1).

Let ϕD and u0 satisfy (2.2) and (2.4), respectively, and suppose that

(3.3) g = const > 0, h = const.

Then there exists a pair

(ϕ, u) ∈ Lp
(
0, T ;W 1,p(Ω)

)× ( ⋂
1<q<(n+2)/(n+1)

Lp
(
0, T ;W 1,q(Ω)

))
such that

(2.5) and (2.6) are satisfied,

∃ u′ ∈
⋂

n+2<r<+∞
L1
(
0, T ;

(
W 1,r(Ω)

)∗)
,(3.4)

and for any n+ 2 < s < +∞ there holds⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T∫
0

〈u′, v〉W 1,sdt+

∫
QT

κ(u)∇u · ∇v dxdt+ g

T∫
0

∫
∂Ω

(u− h)v dxSdt

=

∫
QT

f(x, t, u,∇ϕ)v dxdt ∀ v ∈ L∞(0, T ;W 1,s(Ω)
)
,

(3.5)

u(0) = u0 in
(
W 1,s(Ω)

)∗
.(3.6)

Moreover, u satisfies ⎧⎪⎨⎪⎩
‖u‖L∞(L1) + λ

∫
QT

|∇u|2(
1 + |u|)1+λ

dxdt

≤ c
(
1 + ‖u0‖L1 +

∥∥ |∇ϕD|
∥∥p
Lp

)
, 0 < λ < 1 3)

(3.7)

u ∈
⋂

1<r<(n+2)/n

Lr
(
0, T ;Lr(Ω)

)
.(3.8)

The proof of this theorem is a further development of the approximation method we used
in [28]. In this paper, the function τ �→ σ(u, τ) is assumed to satisfy the condition of strict
monotonicity(

σ
(
u, |ξ|)ξ − σ

(
u|η|)η) · (ξ − η) > 0 ∀ u ∈ R, ∀ ξ, η ∈ Rn, ξ �= η.

This condition allows to prove that the sequence (∇ϕε)ε>0 converges a.e. in QT as ε → 0,
where (ϕε, uε)ε>0 is an approximate solution of the problem under consideration. Therefore,
the discussion in [28] includes the large class of source functions f characterized by (H3).

3) For notational simplicity, in what follows, for indexes we write Lp(X) in place of Lp(0, T ;X). If there
is no danger of confusion, we briefly write Lp in place of Lp(E) (E ⊂ Rm).
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However, due to (3.1), in the present paper we have to work only with the weak con-
vergence of the sequence (ϕε)ε>0 in Lq

(
0, T ;W 1,q(Ω)

)
as ε → 0, which in turn makes the

structure condition (3.2) necessary for the passage to the limit ε→ 0.

4. Proof of the theorem

We begin by introducing two notations. For ε > 0, define

fε(x, t, u, ξ) =
f(x, t, u, ξ)

1 + εf(x, t, u, ξ)
,
(
(x, t), u, ξ

) ∈ QT × R× Rn.

To our knowledge, this approximation has been introduced for the first time by Bensoussan-
Frehse [2] for the study of nonlinear elliptic systems in stochastic game theory. Detailed
proofs of [2] are presented in [3]. Later on the above approximation has been widely used
for the study of nonlinear elliptic and parabolic problems with right hand side in L1.

The function fε is Carathéodory and satisfies the inequalities

0 ≤ fε(x, t, u, ξ) ≤ 1

ε
∀ ((x, t), u, ξ) ∈ QT × R× Rn.

Let (u0,ε)ε>0 be a sequence of functions in L2(Ω) such that u0,ε → u0 strongly in L1(Ω)
as ε→ 0. �
We divide the proof of the theorem into five steps.

1◦ Existence of approximate solutions. We have

Lemma 1. For every ε > 0 there exists a pair

(ϕε, uε) ∈ Lp
(
0, T ;W 1,p(Ω)

)× L2
(
0, T ;W 1,2(Ω)

)
such that ⎧⎪⎪⎨⎪⎪⎩

ε

∫
QT

|∇ϕε|p−2∇ϕε · ∇ζ dxdt+
∫
QT

σ
(
uε, |∇ϕε|

)∇ϕε · ∇ζ dxdt

= 0 ∀ ζ ∈ Lp
(
0, T ;W 1,p

ΓD
(Ω)
)
4) ;

(4.1)

ϕε = ϕD a.e. on ΣD;(4.2)

∃ u′ε ∈ L2
(
0, T ;

(
W 1,2(Ω)

)∗)
;(4.3) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T∫
0

〈u′ε, v〉W 1,2dt+

∫
QT

κ(uε)∇uε · ∇v dxdt+ g

T∫
0

∫
∂Ω

(uε − h)v dxSdt

=

∫
QT

fε(x, t, uε,∇ϕε)v dxdt ∀ v ∈ L2
(
0, T ;W 1,2(Ω)

)
;

(4.4)

uε(0) = u0,ε in L2(Ω).(4.5)

4) If 1 < p < 2, for z ∈ W 1,p(Ω) we define
∣∣∇z(x)

∣∣p−2∇z(x) = 0 a.e. in {x ∈ Ω;∇z(x) = 0}.
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Proof. To begin with, we notice that, for all ξ, η ∈ Rn,(|ξ|p−2ξ − |η|p−2η
) · (ξ − η)

≥

⎧⎪⎪⎨⎪⎪⎩
p− 1(

1 + |ξ|+ |η|)2−p |ξ − η|2 if 1 < p ≤ 2,

min
{1
2
,

1

2p−2

}
|ξ − η|p if 2 < p < +∞

(4.6)

(cf. [25, pp. 71, 74], [28]).
For ε > 0 and (u, τ) ∈ R× R+, define

σε(u, 0) = σ(u, 0) if τ = 0,

σε(u, τ) = ετp−2 + σ(u, τ) if 0 < τ < +∞.

Thus, by (3.1) and (4.6),(
σε
(
u, |ξ|)ξ − σε

(
u, |η|)η) · (ξ − η) ≥ ε

(|ξ|p−2ξ − |η|p−2η
) · (ξ − η) > 0

for all u ∈ R and all ξ, η ∈ Rn, ξ �= η.
The assertion of Lemma 1 now follows from [28, Lemma 1] with σε in place of σ. �

2◦ A-priori estimates. We have

Lemma 2. Let be (ϕε, uε) as in Lemma 1. Then, for all 0 < ε ≤ 1,

(4.7) ε
∥∥ |∇ϕε|

∥∥p
Lp + ‖ϕε‖pLp(W 1,p) ≤ c

(
1 +
∥∥ |∇ϕD|

∥∥p
Lp

)
5) ;

(4.8)

⎧⎪⎨⎪⎩
‖uε‖L∞(L1) + λ

∫
QT

|∇uε|2(
1 + |uε|

)1+λ
dxdt

≤ c
(
1 + ‖u0,ε‖L1 +

∥∥ |∇ϕD|
∥∥p
Lp

)
, 0 < λ < 1;

‖uε‖Lq(W 1,q) ≤ c ∀ 1 < q <
n+ 2

n+ 1
,(4.9)

‖uε‖Lr(Lr) ≤ c ∀ 1 < r <
n+ 2

n
,(4.10)

‖u′ε‖L1((W 1,q′ )∗) ≤ c ∀ 1 < q <
n+ 2

n+ 1
.(4.11)

Proof. By (4.2), the function ϕε − ϕD is in Lp
(
0, T ;W 1,p

ΓD
(Ω)
)
. Inserting this function into

(4.1), we find

ε

∫
QT

|∇ϕε|pdxdt+
∫
QT

σ
(
uε, |∇ϕε|

)|∇ϕε|2dxdt

= ε

∫
QT

|∇ϕε|p−2∇ϕε · ∇ϕD dxdt+

∫
QT

σ
(
uε, |∇ϕε|

)∇ϕε · ∇ϕD dxdt.

5) Without any further reference, in what follows, by c we denote constants which may change their
numerical value from line to line, but do not depend on ε.



98 JOACHIM NAUMANN

From this, (4.7) easily follows by combining (H1) and Hölder’s inequality.
Estimates (4.8)–(4.11) can be proved by following line by line the proof of [28, Lemma 2].

�
3◦ Convergence of subsequences. Let be (ϕε, uε) as in Lemma 1. From (4.7) and (4.9),
(4.10) we conclude that there exists a subsequence of (ϕε, uε)ε>0 (not relabelled) such that

(4.12) ϕε −→ ϕ weakly in Lp
(
0, T ;W 1,p(Ω)

)
and

(4.13)

⎧⎪⎨⎪⎩
uε → u weakly in Lq

(
0, T ;W 1,q(Ω)

) (
1 < q <

n+ 2

n+ 1

)
and weakly in Lr

(
0, T ;Lr(Ω)

) (
1 < r <

n+ 2

n

)
as ε→ 0. Then (4.2) and (4.12) yield ϕ = ϕD a.e. on ΣD, i.e., ϕ satisfies (2.6).

Next, fix any 1 < q < n+2
n+1 . Taking into account the embeddings (2.10), from (4.9) and

(4.11) we obtain by the aid of a well-known compactness result [6, Prop. 1] or [30, Cor. 4]
the existence of a subsequence of (uε)ε>0 (not relabelled) such that uε → u strongly in
Lq
(
0, T ;L2(Ω)

)
, and therefore

(4.14) uε −→ u a.e. in QT as ε −→ 0.

We prove estimate (3.7). To begin with, we find an 0 < ε0 ≤ 1 such that

‖u0,ε‖L1 ≤ 1 + ‖u0‖L1 ∀ 0 < ε ≤ ε0.

Then, given any ψ ∈ L∞(0, T ), ψ ≥ 0 a.e. in [0, T ], from (4.8) it follows that

(4.15)

∫
QT

∣∣uε(x, t)ψ(t)∣∣dxdt ≤ C0

T∫
0

ψ(t)dt ∀ 0 < ε ≤ ε0

where
C0 := c

(
1 + ‖u0‖L1 +

∥∥ |∇ϕD|
∥∥p
Lp

)
.

Taking the lim inf
ε→0

in (4.15), we find

∫
QT

∣∣u(x, t)ψ(t)∣∣dxdt ≤ C0

T∫
0

ψ(t)dt.

Hence, ∫
Ω

∣∣u(x, t)|dx ≤ C0 for a.e. t ∈ [0, T ].

Next, from (4.8) and (4.14) we infer (by passing to a subsequence if necessary) that

∇uε(
1 + |uε|

)(1+λ)/2
−→ ∇u(

1 + |u|)(1+λ)/2
weakly in

[
L2(QT )

]n
as ε→ 0. Then taking the lim inf

ε→0
in (4.8) gives

λ

∫
QT

|∇u|2(
1 + |u|)1+λ

dxdt ≤ C0.
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�
Summarizing, from (4.12)–(4.14) we deduced the existence of a pair

(ϕ, u) ∈ Lp
(
0, T ;W 1,p(Ω)

)× ( ⋂
1<q<(n+2)/(n+1)

Lq
(
0, T ;W 1,q(Ω)

))
which satisfies (2.6) and (3.7), (3.8). It remains to prove that (ϕ, u) satisfies the variational
identity in (2.5) and that (3.4)–(3.6) hold true. This can be easily done by the aid of
Lemma 3 and 4 we are going to prove next.

4◦ Passage to the limit ε→ 0. We have

Lemma 3. Let be (ϕε, uε) as in Lemma 1, and let be (ϕ, u) as in (4.12), (4.13). Then

(4.16)

∫
QT

σ
(
u, |∇ϕ|)∇ϕ · ∇ζ dxdt = 0 ∀ ζ ∈ Lp

(
0, T ;W 1,p

ΓD
(Ω)
)

i.e., (ϕ, u) satisfies (2.5);

σ
(
uε, |∇ϕε|

)∇ϕε −→ σ
(
u, |∇ϕ|)∇ϕ weakly in

[
Lp′

(QT )
]n

as ε −→ 0;(4.17)

σ
(
uε, |∇ϕε|

)|∇ϕε|2 −→ σ
(
u, |∇ϕ|)|∇ϕ|2 weakly in L1(QT ) as ε −→ 0.(4.18)

Proof of (4.16) (cf. the “monotonicity trick” in [26, pp. 161, 172], [34, p. 474]). The function

ϕε − ϕD is in Lp
(
0, T ;W 1,p

ΓD
(Ω)
)
(see (4.2)). Thus, given any ψ ∈ Lp

(
0, T ;W 1,p

ΓD
(Ω)
)
, the

function ζ = ϕε − ϕD − ψ is admissible in (4.1). By the monotonicity condition (3.1)
(ξ = ∇ϕε and η = ∇(ψ + ϕD)),

0 = ε

∫
QT

|∇ϕε|p−2∇ϕε · ∇
(
ϕε − (ψ + ϕD)

)
dxdt

+

∫
QT

σ
(
uε, |∇ϕε|

)∇ϕε · ∇
(
ϕε − (ψ + ϕD)

)
dxdt

≥ −ε
∫
QT

|∇ϕε|p−2∇ϕε · ∇(ψ + ϕD)dxdt

+

∫
QT

σ
(
uε,
∣∣∇(ψ + ϕD)

∣∣)∇(ψ + ϕD) · ∇(ϕε − (ψ + ϕD)
)
dxdt.

The passage to the limit ε→ 0 gives

(4.19) 0 ≥
∫
QT

σ
(
u,
∣∣∇(ψ + ϕD)

∣∣)∇(ψ + ϕD) · ∇(ϕ− (ψ + ϕD)
)
dxdt

(cf. (4.7), (4.12) and (4.14)).

Let ζ ∈ Lp
(
0, T ;W 1,p

ΓD
(Ω)
)
. For any λ > 0, we insert ψ = ϕ− ϕD ∓ λζ into (4.19), divide

then by λ and carry through the passage to the limit λ→ 0. It follows∫
QT

σ
(
u, |∇ϕ|)∇ϕ · ∇ζ dxdt = 0.
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Proof of (4.17). From (H1) and (4.7) it follows that there exists a subsequence of (∇ϕε)ε>0

(not relabelled) such that

σ
(
uε, |∇ϕε|

)∇ϕε −→ F weakly in
[
Lp′

(QT )
]n

as ε −→ 0.

The function ζ = ϕ− ϕD being admissible in (4.1), we find∫
QT

F · ∇(ϕ− ϕD)dxdt = lim
ε→0

∫
QT

σ
(
uε, |∇ϕε|

)∇ϕε · ∇(ϕ− ϕD)dxdt = 0.

Thus, using (4.1) with ζ = ϕε − ϕD, it follows∫
QT

F · ∇ϕdxdt =

∫
QT

F · ∇ϕD dxdt

= lim
ε→0

∫
QT

σ
(
uε, |∇ϕε|

)∇ϕε · ∇ϕD dxdt

≥ lim inf
ε→0

∫
QT

σ
(
uε, |∇ϕε|

)|∇ϕε|2dxdt.(4.20)

Claim (4.17) is now easily seen by the aid of the “monotonicity trick” with respect to

the dual pairing
([
Lp(QT )

]n
,
[
Lp′

(QT )
]n)

. Indeed, let G ∈ [Lp(QT )
]n
. Using (3.1) with

ξ = G, η = ∇ϕε, we find by the aid of (4.12), (4.20) and Lebesgue’s Dominated Convergence
Theorem ∫

QT

σ
(
u, |G|)G · (G−∇ϕ)dxdt ≥

∫
QT

F · (G−∇ϕ)dxdt.

Hence, given H ∈ [Lp(QT )
]n

and λ > 0, we take G = ∇ϕ±λH, divide by λ > 0 and carry
through the passage to the limit λ→ 0 to obtain∫

QT

σ
(
u, |∇ϕ|)∇ϕ ·H dxdt =

∫
QT

F ·H dxdt.

Whence (4.17).

Proof of (4.18). Define

gε =
(
σ
(
uε, |∇ϕε|

)∇ϕε − σ
(
uε, |∇ϕ|

)∇ϕ) · ∇(ϕε − ϕ) a.e. in QT .

By the aid of (4.17), (4.16) and uε → u a.e. in QT (see (4.14)) one easily obtains

lim
ε→0

∫
QT

gε dxdt = 0.

By (3.1), gε ≥ 0 a.e. in QT . Thus

(4.21) lim
ε→0

∫
QT

gεz dxdt = 0 ∀ z ∈ L∞(QT ).

We next multiply each term of the equation

σ
(
uε, |∇ϕε|

)|∇ϕε|2 = gε + σ
(
uε, |∇ϕε|

)∇ϕε · ∇ϕ+ σ
(
uε, |∇ϕ|

)∇ϕ · ∇(ϕε − ϕ)
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by z ∈ L∞(QT ) and integrate over QT . Then (4.18) follows from (4.21), (4.17) and (4.14),
(4.12). �
The next lemma is fundamental to the passage to the limit ε→ 0 in (4.4).

Lemma 4. Let be (ϕε, uε) as in Lemma 1, and let be (ϕ, u) as in (4.12), (4.13). Then, for
any z ∈ L∞(QT ),

(4.22) lim
ε→0

∫
QT

fε(x, t, uε,∇ϕε)z dxdt =

∫
QT

f(x, t, u,∇ϕ)z dxdt.

Proof. For notational simplicity, we write (·, ·) in place of the variables (x, t).
The structure condition (3.2) and the definition of fε yield∫

QT

f(·, ·, uε,∇ϕε)

1 + εf(·, ·, uε,∇ϕε)
z dxdt−

∫
QT

f(·, ·, u,∇ϕ)z dxdt = J1,ε + J2,ε + J3,ε

where

J1,ε =

∫
QT

AεBεdxdt,

Aε = zα(·, ·, uε)
( 1

1 + εα(·, ·, uε)σ
(
uε, |∇ϕε|

)|∇ϕε|2
− 1
)

Bε = σ
(
uε, |∇ϕε|

)|∇ϕε|2,
and

J2,ε =

∫
QT

z
(
α(·, ·, uε)− α(·, ·, u))Bε dxdt,

J3,ε =

∫
QT

zα(·, ·, u)(Bε − σ
(
u, |∇ϕ|)|∇ϕ|2)dxdt.

Observing that 0 ≤ α ≤ α0 = const a.e. in QT (see (3.2)), we find

(4.23) |Aε| ≤ α0‖z‖L∞ a.e. in QT , ∀ ε > 0.

On the other hand, from∫
QT

α(·, ·, uε)σ
(
uε, |∇ϕε|

)|∇ϕε|2dxdt ≤ c ∀ ε > 0

it follows (by going to a subsequence if necessary) that

εα(·, ·, uε)σ
(
uε, |∇ϕε|

)|∇ϕε|2 −→ 0 a.e. in QT as ε −→ 0.

Hence,

(4.24) Aε −→ 0 a.e. in QT as ε −→ 0.

From (4.23), (4.24) and Bε → σ
(
u, |∇ϕ|)|∇ϕ|2 weakly in L1(QT ) (see (4.18)) we conclude

with the help of Egorov’s theorem and the absolute continuity of the integral that

J1,ε =

∫
QT

AεBε dxdt −→ 0 as ε −→ 0



102 JOACHIM NAUMANN

(see, e.g., [16, p. 54, Prop. 1 (i)]). Analogously,

Jk,ε −→ 0 as ε −→ 0 (k = 2, 3).

Whence (4.22). �

5◦ Proof of (3.4)–(3.6). Let n+2 < r < +∞ (i.e., setting q = r′, then 1 < q < n+2
n+1 , q

′ = r,

and vice versa).
Let be z ∈ W 1,r(Ω) and ψ ∈ C1

(
[0, T ]

)
, ψ(T ) = 0. We set v(x, t) = z(x)ψ(t) for a.e.

(x, t) ∈ QT . An integration by parts gives

T∫
0

〈u′ε, v〉W 1,2dt = −〈uε(0), z〉W 1,2ψ(0)−
T∫

0

〈zψ′, uε〉W 1,2dt

= −
∫
Ω

uε(·, 0)z dxψ(0)−
∫
QT

uεzψ
′dxdt [by (2.1)]

(see [13, p. 54, Prop. 2.5.2 with p = q = 2, r = 1 therein]).
With the help of (4.13), (4.14) and (4.22) the passage to the limit ε → 0 in (4.4) (with

v = zψ therein) is easily done. We find

−
∫
QT

uzψ′dxdt+
∫
QT

κ(u)∇u · ∇zψ dxdt+ g

T∫
0

∫
∂Ω

(u− h)zψ dxSdt

=

∫
Ω

u0z dxψ(0) +

∫
QT

f(x, t, u,∇ϕ)zψ dxdt(4.25)

(recall uε(·, 0) = u0,ε → uε strongly in L1(Ω)). Following line by line the arguments in [28],
from (4.25) we deduce the existence of the distributional derivative

u′ ∈ L1
(
0, T ;

(
W 1,r(Ω)

)∗)
(cf. [5, p. 154, Prop. A6]), i.e., (3.4) holds. Moreover, we have

(4.26)

T∫
0

〈
u′(t), zψ(t)

〉
W 1,rdt+

〈
ũ(0), z

〉
W 1,rψ(0) = −

∫
QT

uzψ′dxdt [by (2.1)],

where ũ ∈ C
(
[0, T ];

(
W 1,r(Ω)

)∗)
is as in Section 2 (see [13, p. 54, Prop. 2.5.2 with p = 1,

q = +∞, r = 1 therein]). We insert (4.26) into (4.25) and obtain

T∫
0

〈
u′(t), zψ(t)

〉
W 1,rdt+

〈
ũ(0), z

〉
W 1,rψ(0)

+

∫
QT

κ(u)∇u · ∇zψ dxdt+ g

T∫
0

∫
∂Ω

(u− h)zψ dxSdt

=

∫
Ω

u0z dxψ(0) +

∫
QT

f(x, t, u,∇ϕ)zψ dxdt(4.27)
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for all z ∈W 1,r(Ω) and all ψ ∈ C1
(
[0, T ]

)
, ψ(T ) = 0.

To prove (3.5), we take ψ ∈ C1
c

(
] 0, T [

)
in (4.27). A routine argument yields〈

u′(t), z
〉
W 1,r +

∫
Ω

κ(u)∇u · ∇z dx+ g

∫
∂Ω

(u− h)z dxS

=

∫
Ω

f(x, t, u,∇ϕ)z dx(4.28)

for all z ∈W 1,r(Ω) and a.e. t ∈ [0, T ], where the null set in [0, T ] of those t for which (4.28)
fails, does not depend on z. Now, given v ∈ L∞(0, T ;W 1,s(Ω)

)
(n+2 < s < +∞), we insert

z = v(·, t) into (4.28) (with r = s therein) and integrate over the interval [0, T ]. Whence
(3.5).

Equ. (3.6) in
(
W 1,s(Ω)

)∗
is now easily seen. Indeed, let z ∈W 1,s(Ω) (n+ 2 < s < +∞),

and let ψ ∈ C1
(
[0, T ]

)
, ψ(0) = 1 and ψ(T ) = 0. We multiply (4.28) by ψ(t) and integrate

over [0, T ]. Combining (4.27) and (4.28), we obtain〈
ũ(0), z

〉
W 1,s =

∫
Ω

u0z dx,

i.e., (3.6) holds (cf. (2.11) with q′ = s therein).
The proof of the theorem is complete.
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[20] M. T. Gonzáles Montesinos and F. Ortegón Gallego, The thermistor problem with degenerate thermal
conductivity and metallic conduction, Discrete Cont. Dyn. Systems, Suppl. 2007, 446–455.

[21] J. Haskovec and C. Schmeiser, Transport in semiconductors at saturated velocities, Comm. Math. Sci.
3 (2005), 219–233.

[22] S. D. Howison, J. F. Rodrigues and M. Shillor, Stationary solutions to the thermistor problem, J. Math.
Anal. Appl. 174 (1993), 573–588.

[23] K. A. Jenkins and K. Rim, Measurements of the effect of self-heating in strained-silicon MOSFETs,
IEEE Electr. Device Lett. 23 (2002), 360–362.

[24] M. Liero, T. Koprucki, A. Fischer, R. Scholz and A. Glitzky, p-Laplace thermistor modeling of
electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys. 66 (2015), 2957–
2977.

[25] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä, Department of Math-
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