EXISTENCE OF WEAK SOLUTIONS OF AN UNSTEADY THERMISTOR SYSTEM WITH p**-LAPLACIAN TYPE EQUATION**

JOACHIM NAUMANN

Abstract. In this paper, we consider an unsteady thermistor system, where the usual Ohm law is replaced by a non-linear monotone constitutive relation between current and electric field. This relation is modeled by a p-Laplacian type equation for the electrostatic potential φ . We prove the existence of weak solutions of this system of PDEs under mixed boundary conditions for φ , and a Robin boundary condition and an initial condition for the temperature u.

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^n$ ($n = 2$ or $n = 3$) be a bounded domain with Lipschitz boundary $\partial \Omega$, and set $Q_T = \Omega \times [0, T]$ $(0 < T < +\infty)$.

Let *J* and *q* denote the electric current field density and the heat flux, respectively, of a thermistor occupying the domain Ω under unsteady operating conditions. Then the balance equations for the electric current and the heat flow within the thermistor material are the following two PDEs

$$
\nabla \cdot \mathbf{J} = 0, \quad \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{q} = f(x, t, u, \nabla \varphi) \quad \text{in } Q_T,
$$

where $\varphi = \varphi(x, t)$ and $u = u(x, t)$ represent the electrostatic potential and the temperature, respectively (see, e.g., [29, Chap. 8]).

We make the following constitutive assumptions on *J* and *q*

$$
\mathbf{J} = \sigma(u, |\mathbf{E}|) \mathbf{E} \quad \text{Ohm's law}, \quad \mathbf{q} = -\kappa(u)\nabla u \quad \text{Fourier's law},
$$

where

 $E = -\nabla \varphi$ density of the electric field, $\sigma = \sigma(u, |\mathbf{E}|)$ electrical conductivity, $\kappa = \kappa(u)$ thermal conductivity.

²⁰¹⁰ Mathematics Subject Classification. 35J92, 35K20, 35Q79, 80A20.

Key words and phrases. Thermistor system, Robin boundary condition, p-Laplacian, saturation of current, self-heating.

Received 05/09/2016, accepted 27/10/2016.

With these notations the above system of PDEs takes the form

(1.1)
$$
-\nabla \cdot (\sigma(u, |\nabla \varphi|) \nabla \varphi) = 0 \text{ in } Q_T,
$$

(1.2)
$$
\frac{\partial u}{\partial t} - \nabla \cdot (\kappa(u)\nabla u) = f(x, t, u, \nabla \varphi) \quad \text{in } Q_T.
$$

The function $f = f(x, t, u, \nabla \varphi)$ represents a heat source that will be specified below (see (1.13) and (H3), Section 2).

We supplement system (1.1) – (1.2) by boundary conditions for φ and u, and an initial condition for u. Without any further reference, throughout the paper we assume

 $\partial\Omega=\Gamma_D\cup\Gamma_N$ disjoint, Γ_D non-empty, open.

Define

 $\Sigma_D = \Gamma_D \times [0, T[, \quad \Sigma_N = \Gamma_N \times [0, T[,$

We then consider the conditions

(1.3)
$$
\varphi = \varphi_D \text{ on } \Sigma_D, \quad \mathbf{J} \cdot \mathbf{n} = 0 \text{ on } \Sigma_N,
$$

(1.4)
$$
\boldsymbol{q} \cdot \boldsymbol{n} = g(u-h) \text{ on } \partial \Omega \times]0,T[,
$$

$$
(1.5) \t\t u = u_0 \t\t in \t\Omega \times \{0\}
$$

 $(n =$ unit outward normal to $\partial\Omega$). The first condition in (1.3) means that there is an applied voltage φ_D along Σ_D , whereas the second condition characterizes electrical insulation of the thermistor along Σ_N . The Robin boundary condition $(1.4)^{1}$ means that the flux of heat through $\partial \Omega \times [0,T]$ is proportional to the temperature difference $u-h$, where g denotes the thermal conductivity of the surface $\partial\Omega$ of the thermistor, and h represents the ambient temperature (cf. $[10]$, $[15]$, $[22]$, $[29]$, Chap. 8 and $[32]$ (nonlinear boundary conditions)).

We present two prototypes for the electrical conductivity σ . To this end, let $\sigma_0 : \mathbb{R} \to$ \mathbb{R}_+^2 be a continuous function such that

 \Box

$$
0 < \sigma_* \le \sigma(u) \le \sigma^* < \infty \quad \forall \ u \in \mathbb{R} \quad (\sigma_*, \sigma^* = \text{const}).
$$

We then consider the following functions

(1.6)
$$
\sigma(u,\tau) = \sigma_0(u)(\delta + \tau^2)^{(p-2)/2}, \quad (u,\tau) \in \mathbb{R} \times \mathbb{R}_+ \quad (\delta = \text{const} > 0, \ 1 < p < +\infty)
$$

and

(1.7)
$$
\sigma(u,\tau) = \sigma_0(u)\tau^{p-2}, \quad (u,\tau) \in \mathbb{R} \times \mathbb{R}_+ \quad (2 \le p < +\infty).
$$

The electrical conductivities which correspond to these functions $\sigma = \sigma(u, \tau)$ read

(1.8)
$$
\sigma(u, |\mathbf{E}|) = \sigma_0(u) (\delta + |\mathbf{E}|^2)^{(p-2)/2}
$$

and

(1.9)
$$
\sigma(u, |\mathbf{E}|) = \sigma_0(u) |\mathbf{E}|^{p-2},
$$

¹⁾ This boundary condition is also called "Newton's cooling law" or "third boundary condition".

²⁾ $\mathbb{R}_{+} = [0, +\infty)$.

respectively (\boldsymbol{E} = electrical field density). Here, the factor $\sigma_0(u)$ characterizes the thermal dependence of the electrical conductivity of the thermistor material. Observing that $E =$ $-\nabla\varphi$, equ. (1.1) takes the form of p-Laplacian equations

$$
-\nabla \cdot (\sigma_0(u) (\delta + |\nabla \varphi|^2)^{(p-2)/2} \nabla \varphi) = 0,
$$

resp.

$$
-\nabla \cdot (\sigma_0(u)|\nabla \varphi|^{p-2}\nabla \varphi) = 0.
$$

Let $p = 2$. Then both (1.8) and (1.9) lead to $J = \sigma_0(u)E$. If the right hand side in (1.2) is of the form $f = \sigma_0(u) |\nabla \varphi|^2 = \mathbf{J} \cdot \mathbf{E}$ (Joule heat), (cf. (1.13) below), then (1.1)–(1.2) represents the "classical" thermistor system (see [1], [9], [15], [33]). This system has been studied in [18]–[20] with a degeneration of the coefficients $\sigma_0(u)$ and $\kappa(u)$ (cf. also [10] for a similar degeneration of $\sigma_0(u)$.

Remark 1. (The case $1 < p \le 2$.) Let be $\sigma = \sigma(u, \tau)$ as in (1.6). Then Ohm's law reads

(1.10)
$$
J = \sigma_0(u) (\delta + |E|^2)^{(p-2)/2} E
$$

(cf. (1.8)). To make things clearer, let $I = |J|$ and $V = |E|$ denote the current and voltage, respectively, in an electrical conductor. Equ. (1.10) then gives the current-voltage characteristic

(1.11)
$$
I = \sigma_0(u)(\delta + V^2)^{(p-2)/2}V.
$$

If $p = 2$, then this current-voltage characteristic turns into the well-known linear (i.e., Ohmic) characteristic $I = \sigma_0(u)V$. If p is "sufficiently near to 1", then (1.11) can be used as an approximation of current-voltage characteristics for transistors (see, e.g., [23], [31, Chap. $6.2.2$]).

The characteristic (1.11) continues to make sense if $p = 1$, i.e.,

(1.12)
$$
I = \frac{\sigma_0(u)}{(\delta + V^2)^{1/2}} V.
$$

This current-voltage characteristic is widely used to describe the effect of saturation of current in certain transistors under high electric fields (see, e.g., [27, Chap. 2.5] for details). The following figure gives an illustration of the relationship between the limit case $p = 1$ and the effect of saturation of current.

Fig. Current-voltage characteristic I vs. V $(I_0 = \sigma_0(u))$

Broken line: $I = \frac{I_0}{(\delta + V^2)^{(2-p)/2}} V$, $1 < p < 2$ (cf. (1.11)); dotted line: $I = \frac{I_0}{(\delta + V^2)^{1/2}} V$ (cf. (1.12), i.e., asymptotic saturation of current $I \nearrow I_0$ when V increases;

bold-faced line: experimental data I vs. V of MOSFETs, i.e., linear slope $I = \sigma_0(u)V$ for voltages $V \ll V_S$ (cf. (1.11) with $p = 2$), and saturation of current $I = I_0$ for voltages $V \geq V_S$ (see, e.g., [23], [31, p. 304, fig 9]).

Finally, we notice that for the case $\delta = 0$ and $p = 1$, Ohm's law (1.10) and the currentvoltage characteristic (1.11) have to be replaced by

$$
J \in \overline{B_{r_0}(0)} \quad \text{if} \quad E = 0, \qquad J = \frac{r_0}{|E|} E \quad \text{if} \quad E \neq 0,
$$

$$
0 \le I \le r_0 \quad \text{if} \quad V = 0, \qquad I = r_0 \quad \text{if} \quad V > 0,
$$

respectively, where $\overline{B_{r_0}(0)} = {\{\xi \in \mathbb{R}^n; |\xi| \leq r_0\}, r_0 = r_0(u) \text{ (cf. [21])}.}$

Remark 2. (The case $2 \leq p \leq +\infty$.) In [11], the author considers the steady case of (1.1) with $\sigma = \sigma(|\nabla \varphi|)$, where

$$
\lim_{\tau \to +\infty} \frac{\sigma(\tau)}{\tau^{p-2}} = a > 0, \quad p \ge 2
$$

(cf. (1.7)). Electrical conductors obeying the constitutive law $J = -\sigma(|\nabla \varphi|) \nabla \varphi$ are called *varistors* ($=$ varying resistors).

Equ. (1.1) with this constitutive law is then studied under the boundary conditions

$$
\varphi = 0
$$
 on Γ'_D , $\varphi = \Phi$ on Γ''_D , $\frac{\partial \varphi}{\partial n} = 0$ on Γ_N ($\Gamma_D = \Gamma'_D \cup \Gamma''_D$ disjoint),

where Φ is an unknown constant (cf. (1.3)). The constant Φ is related to $\nabla\varphi$ by a nonlocal boundary condition on Γ''_D which models a current limiting device (see, e.g., [15] for more details).

A second topic of [11] concerns the steady case of (1.1) – (1.2) with $J = -\sigma(u)\nabla\varphi$ and $f = \sigma(u) |\nabla \varphi|^2$ under analogous boundary conditions as above.

Similar studies of the steady case of (1.1) – (1.2) with $J = -\sigma(u, \varphi) \nabla \varphi$ and $f = \sigma(u, \varphi) |\nabla \varphi|^2$ can be found in [12]. \Box

Another type of non-Ohmic current-voltage characteristics is

$$
I = (\sigma_0(x, u)V^{p(x)-2})V, \quad 2 \le p(x) < +\infty \quad (x \in \Omega),
$$

where $p = p(x)$ is a jump function (cf. (1.7) and (1.9)). The experimental findings which lead to this characteristic, are presented in [14]. This characteristic is used to model both Ohmic and non-Ohmic behavior of the device material (i.e., $\{x \in \Omega; p(x)=2\}$ and $\{x \in$ Ω ; $2 < p_i(x) < +\infty$, respectively, $(i = 1, \ldots, m)$ (see also [24] for more details). \Box

We present a prototype for the heat source term f in (1.2) which motivates hypotheses (H3) in Section 2.

Let be $\sigma = \sigma(u, \tau)$ as in (1.6) or (1.7). For $(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^n$ we consider functions f such that

(1.13)
$$
\begin{cases} f(x, u, \xi) = \alpha(x, u, \xi) \sigma(u, |\xi|) |\xi|^2, \\ \alpha : \Omega \times \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}_+ \text{ is Carathéodory}, \\ 0 \le \alpha(x, u, \xi) \le \alpha_0 = \text{const} \quad \forall (x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^n \quad (\alpha_0 = \text{const}). \end{cases}
$$

If $\alpha \equiv 1$, then

$$
f(x, u, \nabla \varphi) = \sigma(u, |\nabla \varphi|)(-\nabla \varphi) \cdot (-\nabla \varphi) = \mathbf{J} \cdot \mathbf{E}.
$$

Let be α of the form

$$
\alpha(x, u, \xi) = \widehat{\alpha}(x, u, -\xi)
$$

or

$$
\alpha(x, u, \xi) = \widehat{\alpha}(x, u, -\sigma(u, |\xi|)\xi),
$$

where $\hat{\alpha} : \Omega \times \mathbb{R} \times \mathbb{R}^n$ is a Carathéodory function such that $0 \leq \hat{\alpha} \leq 1$ everywhere. Then (1.2) models a self-heating process with source term (1.2) models a self-heating process with source term

$$
f = \alpha \mathbf{J} \cdot \mathbf{E},
$$

where the factor

$$
\alpha = \widehat{\alpha}(x, u, \mathbf{E})
$$
 or $\alpha = \widehat{\alpha}(x, u, \mathbf{J})$

 $\alpha = \widehat{\alpha}(x, u, E)$ or $\alpha = \widehat{\alpha}(x, u, J)$
characterizes a loss of Joule heat (cf. [24] for more details).

The existence of weak solutions to the *steady case* of (1.1) – (1.4) has been proved for the first time in [24] for $2 < p < +\infty$ and in [17] for $2 \le p(x) < +\infty$ ($n = 2$ in both papers). Extensions of these results for measurable exponents $p = p(x)$ such that $1 < p_1 \leq p(x) \leq$ $p_2 < +\infty$ ($p_1, p_2 = \text{const}$), and any dimension n have been recently presented in [7], [8]. \Box

In $[28]$, we proved the existence of a weak solution of (1.1) – (1.5) when the function $\tau \mapsto \sigma(u, \tau)$ is strictly monotone and f satisfies hypothesis (H3) below (see Section 2) which includes (1.13) as a special case. The aim of the present paper is to prove an analogous existence result when $\tau \mapsto \sigma(u, \tau)$ is merely monotone whereas the function f, however, has to satisfy a structure condition of type (1.13).

2. WEAK FORMULATION OF (1.1) – (1.5)

We introduce the notations which will be used in what follows.

By $W^{1,p}(\Omega)$ $(1 \leq p < +\infty)$ we denote the usual Sobolev space. Define

$$
W_{\Gamma_D}^{1,p}(\Omega) = \{ v \in W^{1,p}(\Omega) ; v = 0 \text{ a.e. on } \Gamma_D \}.
$$

This space is a closed subspace of $W^{1,p}(\Omega)$. Throughout the paper, we consider $W^{1,p}_{\Gamma_D}(\Omega)$ equipped with the norm

$$
|v|_{W^{1,p}} = \left(\int\limits_{\Omega} |\nabla v|^p dx\right)^{1/p}
$$

.

Let X denote a real normed space with norm $|\cdot|_X$ and let X^* be its dual space. By $\langle x^*, x \rangle_X$ we denote the dual pairing between $x^* \in X^*$ and $x \in X$. The symbol $L^p(0,T,X)$ $(1 \leq p \leq +\infty)$ stands for the vector space of all strongly measurable mappings $u: 0, T \rightarrow X$ such that the function $t \mapsto |u(t)|_X$ is in $L^p(0,T)$ (cf. [4, Chap. III, §3; Chap. IV, §3], [5, App.], [13, Chap. 1]). For $1 \leq p < +\infty$, the spaces $L^p(0,T;L^p(\Omega))$ and $L^p(Q_T)$ are linearly isometric. Therefore, in what follows we identify these spaces.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_H$ such that $X \subset H$ densely and continuously. Identifying H with its dual space H^* via Riesz' Representation Theorem, we obtain the continuous embedding $H \subset X^*$ and

(2.1)
$$
\langle h, x \rangle_X = (h, x)_H \quad \forall \ h \in H, \ \forall \ x \in X.
$$

Given any $u \in L^1(0,T;X)$ we identify this function with a function in $L^1(0,T;X^*)$ and denote it again by u. If there exists $U \in L^1(0,T;X^*)$ such that

$$
\int\limits_0^T u(t)\alpha'(t)dt\stackrel{\mathrm{in} X^*}{=} -\int\limits_0^T U(t)\alpha(t)dt\quad\forall~\alpha\in C_c^\infty(\,]\,0,T\,[\,),
$$

then U will be called derivative of u in the sense of distributions from $\lfloor 0, T \rfloor$ into X^* and denoted by u' (see [5, App.], [13, Chap. 21]). \square

Let $1 < p < +\infty$ be fixed. We make the following assumptions on the coefficients σ , κ and the right hand side f in $(1.1)–(1.2)$:

(H1)
\n
$$
\begin{cases}\n\sigma : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}_+ \text{ is continuous,} \\
c_1 \tau^p - c_2 \le \sigma(u, \tau) \tau^2, \ 0 \le \sigma(u, \tau) \le c_3 (1 + \tau^2)^{(p-2)/2} \\
\forall (u, \tau) \in \mathbb{R} \times \mathbb{R}_+, \text{ where } c_1, c_3 = \text{const} > 0 \text{ and } c_2 = \text{const} \ge 0; \\
\kappa : \mathbb{R} \to \mathbb{R}_+ \text{ is continuous,} \\
0 < \kappa_0 \le \kappa(u) \le \kappa_1 \quad \forall u \in \mathbb{R}, \text{ where } \kappa_0, \kappa_1 = \text{const,}\n\end{cases}
$$

and

(H3)
$$
\begin{cases} f: Q_T \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}_+ \text{ is Carathéodory,} \\ 0 \le f(x, t, u, \xi) \le c_4 (1 + |\xi|^p) \\ \forall (x, t, u, \xi) \in Q_T \times \mathbb{R} \times \mathbb{R}^n, \text{ where } c_4 = \text{const} > 0. \end{cases}
$$

It is readily seen that (H1) and (H3) are satisfied by the prototypes for σ and f we have considered in Section 1. \Box

Definition. Assume $(H1)$ – $(H3)$ and suppose that the data in (1.3) – (1.5) satisfy

(2.2)
$$
\varphi_D \in L^p\big(0, T; W^{1,p}(\Omega)\big);
$$

$$
(2.3) \t\t g = const, \t h = const;
$$

$$
(2.4) \t\t u_0 \in L^1(\Omega).
$$

The pair

$$
(\varphi, u) \in L^p\big(0,T; W^{1,p}(\Omega)\big) \times L^q\big(0,T; W^{1,q}(\Omega)\big) \quad \Big(1
$$

is called *weak solution* of $(1.1)–(1.5)$ if

(2.5)
$$
\int_{Q_T} \sigma(u, |\nabla \varphi|) \nabla \varphi \cdot \nabla \zeta \, dx dt = 0 \quad \forall \, \zeta \in L^p\big(0, T; W_{\Gamma_D}^{1,p}(\Omega)\big);
$$

(2.6) $\varphi = \varphi_D$ a.e. on Σ_D ;

$$
(2.7) \qquad \exists u' \in L^1(0, T; (W^{1,q'}(\Omega))^*);
$$

(2.8)
$$
\begin{cases} \int\limits_{0}^{T} \langle u'(t), v(t) \rangle_{W^{1,q'}} dt + \int\limits_{Q_T} \kappa(u) \nabla u \cdot \nabla v \, dxdt + g \int\limits_{0}^{T} \int\limits_{\partial \Omega} (u - h) v \, d_x S dt \\ = \int\limits_{Q_T} f(x, t, u, \nabla \varphi) v \, dxdt \quad \forall \, v \in L^{\infty}(0, T; W^{1,q'}(\Omega)); \end{cases}
$$

(2.9) $u(0) = u_0$ in $(W^{1,q'}(\Omega))^*$.

From (H1) and (H3) it follows that $f(\cdot, \cdot, u, \nabla \varphi) \in L^1(Q_T)$. Therefore, $u \in L^q(0,T;W^{1,q}(\Omega))$ $(1 < q < \frac{n+2}{n+1})$ is standard for weak solutions of parabolic equations with right hand side in L^1 (see, e.g., the papers cited in [28]).

We notice that $v \in L^{\infty}(0,T,W^{1,q'}(\Omega))$ can be identified with a function in $L^{\infty}(Q_T)$ (cf. [28]). Hence, the integral on the right hand side of the variational identity in (2.8) is well-defined.

To make precise the meaning of (2.9), let $\frac{2n}{n+2} < q < \frac{n+2}{n+1}$. Then $\frac{nq}{n-q} > 2$ and $q' > n+2$. Identifying $L^2(\Omega)$ with its dual, we obtain

(2.10)
$$
W^{1,q'}(\Omega) \subset W^{1,q}(\Omega) \subset L^2(\Omega) \subset (W^{1,q'}(\Omega))^*.
$$

continuously compactly continuously

Therefore, u can be identified with an element in $L^q(0,T; (W^{1,q'}(\Omega))^*)$. Together with (2.7) this implies the existence of a function $\tilde{u} \in C([0,T]; (W^{1,q'}(\Omega))^*)$ such that

 $\widetilde{u}(t) = u(t)$ for a.e. $t \in [0, T]$

(see, e.g., [13, p. 45, Th. 2.2.1]).

On the other hand, there exists a uniquely determined $\tilde{u}_0 \in (W^{1,q'}(\Omega))^*$ such that

(2.11)
$$
\langle \widetilde{u}_0, z \rangle_{W^{1,q'}} = \int_{\Omega} u_0 z \, dx \quad \forall \ z \in W^{1,q'}(\Omega).
$$

Thus, (2.9) has to be understood in the sense

$$
\widetilde{u}(0) = \widetilde{u}_0 \quad \text{in} \quad (W^{1,q'}(\Omega))^*.
$$

Remark 3. Let (φ, u) be a sufficiently regular solution of (1.1) – (1.5) . We multiply (1.1) and (1.2) by smooth test functions ζ and v, respectively, satisfying the conditions

$$
\zeta = 0
$$
 on Σ_D , $v(\cdot, T) = 0$ in Ω .

Then we integrate the div-terms by parts over Ω and the term $\frac{\partial u}{\partial t}v$ by parts over the interval $[0, T]$. It follows

$$
-\int_{Q_T} u \frac{\partial v}{\partial t} dx dt + \int_{Q_T} \kappa(u)\nabla u \cdot \nabla v dx dt + g \int_{0}^{T} \int_{\partial\Omega} (u - h)v dx S dt
$$

(2.12)

$$
= \int_{\Omega} u_0 v(\cdot, 0) dx + \int_{Q_T} f(x, t, u, \nabla \varphi) v dx dt.
$$

This variational formulation of initial/boundary-value problems for parabolic equations is frequently used in the literature.

We notice that from a variational identity of type (2.12) it follows the existence of a distributional time derivative of u (see the arguments concerning (4.25) and (4.26) below).

Remark 4. Let (φ, u) be a weak solution of (1.1) – (1.5) . From (2.8) it follows that, for any $z \in W^{1,q'}(\Omega),$

$$
\langle u'(t), z \rangle_{W^{1,q'}} + \int_{\Omega} \kappa(u(x,t)) \nabla u(x,t) \cdot \nabla z(x) dx + g \int_{\partial \Omega} (u(x,t) - h) z(x) d_x S
$$

(2.13)
$$
= \int_{\Omega} f(x,t,u(x,t), \nabla \varphi(x,t)) z(x) dx
$$

for a.e. $t \in [0, T]$, where the null set in $[0, T]$ of those t for which (2.13) fails, does not depend on z. We integrate (2.13) (with s in place of t) over the interval [0, t] $(0 \le t \le T)$ and integrate the first term on the left hand side by parts. Using the above notation \tilde{u} and (2.11) , we obtain

$$
\langle \widetilde{u}(t), z \rangle_{W^{1,q'}} + \int_{0}^{t} \int_{\Omega} \kappa(u(x, s)) \nabla u(x, s) \cdot \nabla z(x) dx ds + g \int_{0}^{t} \int_{\partial \Omega} (u(x, s) - h) z(x) d_x S ds
$$

(2.14) =
$$
\int_{\Omega} u_0(x) z(x) dx + \int_{0}^{t} \int_{\Omega} f(x, s, u(x, s), \nabla \varphi(x, s)) z(x) dx ds.
$$

Let be $p = 2$ and let be $f(x, t, u, \xi) = \sigma_0(u)|\xi|^2 \left(((x, t), u, \xi) \in Q_T \times \mathbb{R} \times \mathbb{R}^n; \text{ cf. (1.13)} \right).$ Taking $z \equiv 1$ in (2.14), we obtain

$$
\langle \widetilde{u}(t), 1 \rangle_{W^{1,q'}} + g \int_{0}^{t} \int_{\partial \Omega} \big(u(x, s) - h \big) d_x S ds = \int_{\Omega} u_0(x) dx + \int_{0}^{t} \int_{\Omega} \mathbf{J} \cdot \mathbf{E} \, dx ds, \quad t \in [0, T].
$$

3. Existence of weak solutions

Our existence result for weak solutions of (1.1) – (1.5) is the following

Theorem. Assume (H1) and (H2). Suppose further that

(3.1)
$$
(\sigma(u, |\xi|)\xi - \sigma(u, |\eta|)\eta) \cdot (\xi - \eta) \geq 0 \quad \forall u \in \mathbb{R}, \ \forall \xi, \eta \in \mathbb{R}^n,
$$

and

(3.2)
$$
\begin{cases}\nf(x, t, u, \xi) = \alpha(x, t, u)\sigma(u, |\xi|)|\xi|^2 & \forall \ ((x, t), u, \xi) \in Q_T \times \mathbb{R} \times \mathbb{R}^n, \\
where \ \alpha: Q_T \times \mathbb{R} \to \mathbb{R}_+ \text{ is } Carathéodory, \\
0 \leq \alpha(x, t, u) \leq \alpha_0 = \text{const} \quad \forall \ ((x, t), u) \in Q_T \times \mathbb{R}, \\
\sigma = \sigma(u, \tau) \quad as \ in \ (\text{H1}).\n\end{cases}
$$

Let φ_D and u_0 satisfy (2.2) and (2.4), respectively, and suppose that (3.3) $q = \text{const} > 0, \quad h = \text{const}.$

Then there exists a pair

$$
(\varphi, u) \in L^p(0, T; W^{1, p}(\Omega)) \times \Big(\bigcap_{1 < q < (n+2)/(n+1)} L^p(0, T; W^{1, q}(\Omega)) \Big)
$$

such that

$$
(2.5) and (2.6) are satisfied,
$$

(3.4)
$$
\exists u' \in \bigcap_{n+2 < r < +\infty} L^1(0, T; (W^{1,r}(\Omega))^*),
$$

and for any $n + 2 < s < +\infty$ there holds

(3.5)
$$
\begin{cases} \int_{0}^{T} \langle u', v \rangle_{W^{1,s}} dt + \int_{Q_T} \kappa(u) \nabla u \cdot \nabla v \, dx dt + g \int_{0}^{T} \int_{\partial \Omega} (u - h) v \, d_x S dt \\ = \int_{Q_T} f(x, t, u, \nabla \varphi) v \, dx dt \quad \forall \, v \in L^{\infty}(0, T; W^{1,s}(\Omega)), \end{cases}
$$

(3.6) $u(0) = u_0 \quad in \ \left(W^{1,s}(\Omega)\right)^*.$

Moreover, u satisfies

(3.7)
\n
$$
\begin{cases}\n\|u\|_{L^{\infty}(L^{1})} + \lambda \int_{Q_{T}} \frac{|\nabla u|^{2}}{(1+|u|)^{1+\lambda}} dxdt \\
\leq c(1+\|u_{0}\|_{L^{1}} + \||\nabla \varphi_{D}|\|_{L^{p}}^{p}), \quad 0 < \lambda < 1^{3}\n\end{cases}
$$
\n(3.8)
\n $u \in \bigcap_{L^{T}(0,T;L^{T}(\Omega))}$.

$$
1 < r < (n+2)/n
$$
\nFig. 2.1: (n+2)/n

The proof of this theorem is a further development of the approximation method we used in [28]. In this paper, the function $\tau \mapsto \sigma(u, \tau)$ is assumed to satisfy the condition of strict monotonicity

$$
(\sigma(u,|\xi|)\xi - \sigma(u|\eta|)\eta) \cdot (\xi - \eta) > 0 \quad \forall u \in \mathbb{R}, \ \forall \xi, \eta \in \mathbb{R}^n, \ \xi \neq \eta.
$$

This condition allows to prove that the sequence $(\nabla \varphi_{\varepsilon})_{\varepsilon>0}$ converges a.e. in Q_T as $\varepsilon \to 0$, where $(\varphi_{\varepsilon}, u_{\varepsilon})_{\varepsilon>0}$ is an approximate solution of the problem under consideration. Therefore, the discussion in $[28]$ includes the large class of source functions f characterized by (H3).

³⁾ For notational simplicity, in what follows, for indexes we write $L^p(X)$ in place of $L^p(0,T; X)$. If there is no danger of confusion, we briefly write L^p in place of $L^p(E)$ ($E \subset \mathbb{R}^m$).

However, due to (3.1), in the present paper we have to work only with the weak convergence of the sequence $(\varphi_{\varepsilon})_{\varepsilon>0}$ in $L^q(0,T;W^{1,q}(\Omega))$ as $\varepsilon \to 0$, which in turn makes the structure condition (3.2) necessary for the passage to the limit $\varepsilon \to 0$.

4. Proof of the theorem

We begin by introducing two notations. For $\varepsilon > 0$, define

$$
f_{\varepsilon}(x,t,u,\xi) = \frac{f(x,t,u,\xi)}{1 + \varepsilon f(x,t,u,\xi)}, \quad ((x,t),u,\xi) \in Q_T \times \mathbb{R} \times \mathbb{R}^n.
$$

To our knowledge, this approximation has been introduced for the first time by Bensoussan-Frehse [2] for the study of nonlinear elliptic systems in stochastic game theory. Detailed proofs of [2] are presented in [3]. Later on the above approximation has been widely used for the study of nonlinear elliptic and parabolic problems with right hand side in $L¹$.

The function f_{ε} is Carathéodory and satisfies the inequalities

$$
0 \le f_{\varepsilon}(x,t,u,\xi) \le \frac{1}{\varepsilon} \quad \forall \ ((x,t),u,\xi) \in Q_T \times \mathbb{R} \times \mathbb{R}^n.
$$

Let $(u_{0,\varepsilon})_{\varepsilon>0}$ be a sequence of functions in $L^2(\Omega)$ such that $u_{0,\varepsilon} \to u_0$ strongly in $L^1(\Omega)$
as $\varepsilon \to 0$. as $\varepsilon \to 0$.

We divide the proof of the theorem into five steps.

1◦ Existence of approximate solutions. We have

Lemma 1. For every $\varepsilon > 0$ there exists a pair

$$
(\varphi_{\varepsilon}, u_{\varepsilon}) \in L^p(0,T; W^{1,p}(\Omega)) \times L^2(0,T; W^{1,2}(\Omega))
$$

such that

(4.1)
$$
\begin{cases} \varepsilon \int_{Q_T} |\nabla \varphi_{\varepsilon}|^{p-2} \nabla \varphi_{\varepsilon} \cdot \nabla \zeta \, dxdt + \int_{Q_T} \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) \nabla \varphi_{\varepsilon} \cdot \nabla \zeta \, dxdt \\ = 0 \quad \forall \, \zeta \in L^p(0, T; W^{1,p}_{\Gamma_D}(\Omega))^{4)}; \end{cases}
$$

(4.2) $\varphi_{\varepsilon} = \varphi_D$ a.e. on Σ_D ;

(4.3)
$$
\exists u'_{\varepsilon} \in L^{2}(0,T; (W^{1,2}(\Omega))^{*});
$$

(4.4)
$$
\begin{cases} \int_{0}^{T} \langle u'_{\varepsilon}, v \rangle_{W^{1,2}} dt + \int_{Q_{T}} \kappa(u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla v \, dx dt + g \int_{0}^{T} \int_{\partial \Omega} (u_{\varepsilon} - h) v \, d_{x} S dt \\ = \int_{Q_{T}} f_{\varepsilon}(x, t, u_{\varepsilon}, \nabla \varphi_{\varepsilon}) v \, dx dt \quad \forall \, v \in L^{2}(0, T; W^{1,2}(\Omega)); \end{cases}
$$

(4.5) $u_{\varepsilon}(0) = u_{0,\varepsilon}$ in $L^2(\Omega)$.

⁴⁾ If $1 < p < 2$, for $z \in W^{1,p}(\Omega)$ we define $|\nabla z(x)|^{p-2} \nabla z(x) = 0$ a.e. in $\{x \in \Omega; \nabla z(x) = 0\}$.

Proof. To begin with, we notice that, for all $\xi, \eta \in \mathbb{R}^n$,

(4.6)
\n
$$
\left(|\xi|^{p-2}\xi - |\eta|^{p-2}\eta\right) \cdot (\xi - \eta)
$$
\n
$$
\geq \begin{cases}\n\frac{p-1}{(1+|\xi|+|\eta|)^{2-p}} |\xi - \eta|^2 & \text{if } 1 < p \leq 2, \\
\min\left\{\frac{1}{2}, \frac{1}{2^{p-2}}\right\} |\xi - \eta|^p & \text{if } 2 < p < +\infty\n\end{cases}
$$

(cf. $[25, pp. 71, 74]$, $[28]$).

For $\varepsilon > 0$ and $(u, \tau) \in \mathbb{R} \times \mathbb{R}_+$, define

$$
\begin{aligned}\n\sigma_{\varepsilon}(u,0) &= \sigma(u,0) & \text{if } \tau = 0, \\
\sigma_{\varepsilon}(u,\tau) &= \varepsilon \tau^{p-2} + \sigma(u,\tau) & \text{if } 0 < \tau < +\infty.\n\end{aligned}
$$

Thus, by (3.1) and (4.6) ,

$$
(\sigma_{\varepsilon}(u,|\xi|)\xi - \sigma_{\varepsilon}(u,|\eta|)\eta) \cdot (\xi - \eta) \ge \varepsilon (|\xi|^{p-2}\xi - |\eta|^{p-2}\eta) \cdot (\xi - \eta) > 0
$$

for all $u \in \mathbb{R}$ and all $\xi, \eta \in \mathbb{R}^n$, $\xi \neq \eta$.

The assertion of Lemma 1 now follows from [28, Lemma 1] with σ_{ε} in place of σ . \Box

 $2°$ *A-priori estimates.* We have

Lemma 2. Let be $(\varphi_{\varepsilon}, u_{\varepsilon})$ as in Lemma 1. Then, for all $0 < \varepsilon \leq 1$, (4.7) $\|\nabla\varphi_\varepsilon\|\|$ $_{L^{p}}^{p}+\|\varphi_{\varepsilon}\|_{L^{p}(W^{1,p})}^{p}\leq c(1+\| |\nabla\varphi_{D}|\|)$ p $\binom{p}{L^p}$ 5);

(4.8)
$$
\begin{cases} ||u_{\varepsilon}||_{L^{\infty}(L^{1})} + \lambda \int\limits_{Q_{T}} \frac{|\nabla u_{\varepsilon}|^{2}}{(1+|u_{\varepsilon}|)^{1+\lambda}} dxdt \\ \leq c(1+ ||u_{0,\varepsilon}||_{L^{1}} + |||\nabla \varphi_{D}|||_{L^{p}}^{p}), \quad 0 < \lambda < 1; \end{cases}
$$

(4.9)
$$
||u_{\varepsilon}||_{L^{q}(W^{1,q})} \leq c \quad \forall 1 < q < \frac{n+2}{n+1},
$$

(4.10)
$$
\|u_{\varepsilon}\|_{L^r(L^r)} \leq c \quad \forall 1 < r < \frac{n+2}{n},
$$

(4.11)
$$
||u'_{\varepsilon}||_{L^{1}((W^{1,q'})^{*})} \leq c \quad \forall 1 < q < \frac{n+2}{n+1}.
$$

Proof. By (4.2), the function $\varphi_{\varepsilon} - \varphi_D$ is in $L^p(0,T;W^{1,p}_{\Gamma_D}(\Omega))$. Inserting this function into (4.1), we find

$$
\varepsilon \int_{Q_T} |\nabla \varphi_{\varepsilon}|^p dxdt + \int_{Q_T} \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) |\nabla \varphi_{\varepsilon}|^2 dxdt
$$

=
$$
\varepsilon \int_{Q_T} |\nabla \varphi_{\varepsilon}|^{p-2} \nabla \varphi_{\varepsilon} \cdot \nabla \varphi_D dxdt + \int_{Q_T} \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) \nabla \varphi_{\varepsilon} \cdot \nabla \varphi_D dxdt.
$$

⁵⁾ Without any further reference, in what follows, by c we denote constants which may change their numerical value from line to line, but do not depend on ε .

From this, (4.7) easily follows by combining $(H1)$ and Hölder's inequality.

Estimates (4.8)–(4.11) can be proved by following line by line the proof of [28, Lemma 2]. \Box

3[°] Convergence of subsequences. Let be $(\varphi_{\varepsilon}, u_{\varepsilon})$ as in Lemma 1. From (4.7) and (4.9), (4.10) we conclude that there exists a subsequence of $(\varphi_{\varepsilon}, u_{\varepsilon})_{\varepsilon>0}$ (not relabelled) such that

(4.12)
$$
\varphi_{\varepsilon} \longrightarrow \varphi \quad \text{ weakly in } L^p(0,T;W^{1,p}(\Omega))
$$

and

(4.13)
$$
\begin{cases} u_{\varepsilon} \to u \text{ weakly in } L^{q}(0,T;W^{1,q}(\Omega)) \quad \left(1 < q < \frac{n+2}{n+1}\right) \\ \text{and weakly in } L^{r}(0,T;L^{r}(\Omega)) \quad \left(1 < r < \frac{n+2}{n}\right) \end{cases}
$$

as $\varepsilon \to 0$. Then (4.2) and (4.12) yield $\varphi = \varphi_D$ a.e. on Σ_D , i.e., φ satisfies (2.6).

Next, fix any $1 < q < \frac{n+2}{n+1}$. Taking into account the embeddings (2.10), from (4.9) and (4.11) we obtain by the aid of a well-known compactness result [6, Prop. 1] or [30, Cor. 4] the existence of a subsequence of $(u_{\varepsilon})_{\varepsilon>0}$ (not relabelled) such that $u_{\varepsilon} \to u$ strongly in $L^q(0,T;L^2(\Omega))$, and therefore

(4.14)
$$
u_{\varepsilon} \longrightarrow u
$$
 a.e. in Q_T as $\varepsilon \longrightarrow 0$.

We prove estimate (3.7). To begin with, we find an $0 < \varepsilon_0 \leq 1$ such that

$$
||u_{0,\varepsilon}||_{L^1} \le 1 + ||u_0||_{L^1} \quad \forall \ 0 < \varepsilon \le \varepsilon_0.
$$

Then, given any $\psi \in L^{\infty}(0,T)$, $\psi \geq 0$ a.e. in [0, T], from (4.8) it follows that

(4.15)
$$
\int_{Q_T} |u_{\varepsilon}(x,t)\psi(t)| dx dt \leq C_0 \int_0^T \psi(t) dt \quad \forall \ 0 < \varepsilon \leq \varepsilon_0
$$

where

$$
C_0 := c \big(1 + \|u_0\|_{L^1} + \big\| |\nabla \varphi_D| \big\|_{L^p}^p \big).
$$

Taking the lim inf in (4.15) , we find

$$
\int_{Q_T} |u(x,t)\psi(t)| dx dt \leq C_0 \int_0^T \psi(t) dt.
$$

Hence,

$$
\int_{\Omega} |u(x,t)| dx \le C_0 \quad \text{for a.e.} \ \ t \in [0,T].
$$

Next, from (4.8) and (4.14) we infer (by passing to a subsequence if necessary) that

$$
\frac{\nabla u_{\varepsilon}}{\left(1+|u_{\varepsilon}|\right)^{(1+\lambda)/2}} \longrightarrow \frac{\nabla u}{\left(1+|u|\right)^{(1+\lambda)/2}} \quad \text{ weakly in } \left[L^2(Q_T)\right]^n
$$

as $\varepsilon \to 0$. Then taking the lim inf in (4.8) gives

$$
\lambda \int\limits_{Q_T} \frac{|\nabla u|^2}{\left(1+|u|\right)^{1+\lambda}} \, dx dt \le C_0.
$$

Summarizing, from (4.12) – (4.14) we deduced the existence of a pair

$$
(\varphi, u) \in L^p(0, T; W^{1, p}(\Omega)) \times \Big(\bigcap_{1 < q < (n+2)/(n+1)} L^q(0, T; W^{1, q}(\Omega)) \Big)
$$

which satisfies (2.6) and (3.7), (3.8). It remains to prove that (φ, u) satisfies the variational identity in (2.5) and that (3.4) – (3.6) hold true. This can be easily done by the aid of Lemma 3 and 4 we are going to prove next.

 $4°$ Passage to the limit $\varepsilon \rightarrow 0$. We have

Lemma 3. Let be $(\varphi_{\varepsilon}, u_{\varepsilon})$ as in Lemma 1, and let be (φ, u) as in (4.12), (4.13). Then

(4.16)
$$
\int_{Q_T} \sigma(u, |\nabla \varphi|) \nabla \varphi \cdot \nabla \zeta \, dx dt = 0 \quad \forall \, \zeta \in L^p(0, T; W^{1,p}_{\Gamma_D}(\Omega))
$$

i.e., (φ, u) satisfies (2.5) ;

(4.17)
$$
\sigma\big(u_{\varepsilon},|\nabla\varphi_{\varepsilon}|\big)\nabla\varphi_{\varepsilon}\longrightarrow\sigma\big(u,|\nabla\varphi|\big)\nabla\varphi\quad weakly\ in\ \left[L^{p'}(Q_T)\right]^n\ \ as\ \ \varepsilon\longrightarrow 0;
$$

$$
(4.18) \qquad \sigma\big(u_{\varepsilon},|\nabla\varphi_{\varepsilon}|\big)|\nabla\varphi_{\varepsilon}|^2\longrightarrow \sigma\big(u,|\nabla\varphi|\big)|\nabla\varphi|^2\quad weakly\ in\quad L^1(Q_T)\quad as\ \ \varepsilon\longrightarrow 0.
$$

Proof of (4.16) (cf. the "monotonicity trick" in $[26, pp. 161, 172]$, $[34, p. 474]$). The function $\varphi_{\varepsilon} - \varphi_D$ is in $L^p(0,T;W^{1,p}_{\Gamma_D}(\Omega))$ (see (4.2)). Thus, given any $\psi \in L^p(0,T;W^{1,p}_{\Gamma_D}(\Omega))$, the function $\zeta = \varphi_{\varepsilon} - \varphi_{D} - \psi$ is admissible in (4.1). By the monotonicity condition (3.1) $(\xi = \nabla \varphi_{\varepsilon} \text{ and } \eta = \nabla(\psi + \varphi_D)),$

$$
0 = \varepsilon \int_{Q_T} |\nabla \varphi_{\varepsilon}|^{p-2} \nabla \varphi_{\varepsilon} \cdot \nabla (\varphi_{\varepsilon} - (\psi + \varphi_D)) dx dt + \int_{Q_T} \sigma (u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) \nabla \varphi_{\varepsilon} \cdot \nabla (\varphi_{\varepsilon} - (\psi + \varphi_D)) dx dt \n\geq -\varepsilon \int_{Q_T} |\nabla \varphi_{\varepsilon}|^{p-2} \nabla \varphi_{\varepsilon} \cdot \nabla (\psi + \varphi_D) dx dt + \int_{Q_T} \sigma (u_{\varepsilon}, |\nabla (\psi + \varphi_D)|) \nabla (\psi + \varphi_D) \cdot \nabla (\varphi_{\varepsilon} - (\psi + \varphi_D)) dx dt.
$$

The passage to the limit $\varepsilon \to 0$ gives

(4.19)
$$
0 \geq \int_{Q_T} \sigma(u, |\nabla(\psi + \varphi_D)|) \nabla(\psi + \varphi_D) \cdot \nabla(\varphi - (\psi + \varphi_D)) dx dt
$$

(cf. (4.7) , (4.12) and (4.14)).

Let $\zeta \in L^p(0,T;W^{1,p}_{\Gamma_D}(\Omega))$. For any $\lambda > 0$, we insert $\psi = \varphi - \varphi_D \mp \lambda \zeta$ into (4.19), divide then by λ and carry through the passage to the limit $\lambda \to 0$. It follows

$$
\int_{Q_T} \sigma(u, |\nabla \varphi|) \nabla \varphi \cdot \nabla \zeta \, dx dt = 0.
$$

 \Box

Proof of (4.17). From (H1) and (4.7) it follows that there exists a subsequence of $(\nabla \varphi_{\varepsilon})_{\varepsilon>0}$ (not relabelled) such that

$$
\sigma\big(u_{\varepsilon},|\nabla\varphi_{\varepsilon}|\big)\nabla\varphi_{\varepsilon}\longrightarrow\mathbf{F}\quad\text{weakly in }\left[L^{p'}(Q_T)\right]^n\text{ as }\varepsilon\longrightarrow0.
$$

The function $\zeta = \varphi - \varphi_D$ being admissible in (4.1), we find

$$
\int_{Q_T} \boldsymbol{F} \cdot \nabla (\varphi - \varphi_D) dx dt = \lim_{\varepsilon \to 0} \int_{Q_T} \sigma (u_\varepsilon, |\nabla \varphi_\varepsilon|) \nabla \varphi_\varepsilon \cdot \nabla (\varphi - \varphi_D) dx dt = 0.
$$

Thus, using (4.1) with $\zeta = \varphi_{\varepsilon} - \varphi_D$, it follows

$$
\int_{Q_T} \mathbf{F} \cdot \nabla \varphi \, dxdt = \int_{Q_T} \mathbf{F} \cdot \nabla \varphi_D \, dxdt
$$
\n
$$
= \lim_{\varepsilon \to 0} \int_{Q_T} \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) \nabla \varphi_{\varepsilon} \cdot \nabla \varphi_D \, dxdt
$$
\n(4.20)\n
$$
\geq \liminf_{\varepsilon \to 0} \int_{Q_T} \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) |\nabla \varphi_{\varepsilon}|^2 dxdt.
$$

Claim (4.17) is now easily seen by the aid of the "monotonicity trick" with respect to the dual pairing $([L^p(Q_T)]^n, [L^{p'}(Q_T)]^n)$. Indeed, let $G \in [L^p(Q_T)]^n$. Using (3.1) with $\xi = G$, $\eta = \nabla \varphi_{\varepsilon}$, we find by the aid of (4.12), (4.20) and Lebesgue's Dominated Convergence Theorem

$$
\int_{Q_T} \sigma(u,|G|) \mathbf{G} \cdot (\mathbf{G} - \nabla \varphi) dx dt \geq \int_{Q_T} \mathbf{F} \cdot (\mathbf{G} - \nabla \varphi) dx dt.
$$

Hence, given $\boldsymbol{H} \in [L^p(Q_T)]^n$ and $\lambda > 0$, we take $\boldsymbol{G} = \nabla \varphi \pm \lambda \boldsymbol{H}$, divide by $\lambda > 0$ and carry through the passage to the limit $\lambda \to 0$ to obtain

$$
\int_{Q_T} \sigma(u, |\nabla \varphi|) \nabla \varphi \cdot \boldsymbol{H} \, dxdt = \int_{Q_T} \boldsymbol{F} \cdot \boldsymbol{H} \, dxdt.
$$

Whence (4.17).

Proof of (4.18). Define

$$
g_{\varepsilon} = (\sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) \nabla \varphi_{\varepsilon} - \sigma(u_{\varepsilon}, |\nabla \varphi|) \nabla \varphi) \cdot \nabla(\varphi_{\varepsilon} - \varphi) \quad \text{a.e. in } Q_T.
$$

By the aid of (4.17), (4.16) and $u_{\varepsilon} \to u$ a.e. in Q_T (see (4.14)) one easily obtains

$$
\lim_{\varepsilon \to 0} \int_{Q_T} g_{\varepsilon} dx dt = 0.
$$

By (3.1), $g_{\varepsilon} \geq 0$ a.e. in Q_T . Thus

(4.21)
$$
\lim_{\varepsilon \to 0} \int_{Q_T} g_{\varepsilon} z \, dx dt = 0 \quad \forall z \in L^{\infty}(Q_T).
$$

We next multiply each term of the equation

$$
\sigma(u_{\varepsilon},|\nabla\varphi_{\varepsilon}|)|\nabla\varphi_{\varepsilon}|^2 = g_{\varepsilon} + \sigma(u_{\varepsilon},|\nabla\varphi_{\varepsilon}|)\nabla\varphi_{\varepsilon}\cdot\nabla\varphi + \sigma(u_{\varepsilon},|\nabla\varphi|)\nabla\varphi\cdot\nabla(\varphi_{\varepsilon}-\varphi)
$$

by $z \in L^{\infty}(Q_T)$ and integrate over Q_T . Then (4.18) follows from (4.21), (4.17) and (4.14), \Box $(4.12).$

The next lemma is fundamental to the passage to the limit $\varepsilon \to 0$ in (4.4).

Lemma 4. Let be $(\varphi_{\varepsilon}, u_{\varepsilon})$ as in Lemma 1, and let be (φ, u) as in (4.12), (4.13). Then, for any $z \in L^{\infty}(Q_T)$,

(4.22)
$$
\lim_{\varepsilon \to 0} \int_{Q_T} f_{\varepsilon}(x, t, u_{\varepsilon}, \nabla \varphi_{\varepsilon}) z \, dxdt = \int_{Q_T} f(x, t, u, \nabla \varphi) z \, dxdt.
$$

Proof. For notational simplicity, we write $(·, ·)$ in place of the variables (x, t) .

The structure condition (3.2) and the definition of f_{ε} yield

$$
\int_{Q_T} \frac{f(\cdot, \cdot, u_\varepsilon, \nabla \varphi_\varepsilon)}{1 + \varepsilon f(\cdot, \cdot, u_\varepsilon, \nabla \varphi_\varepsilon)} z \, dxdt - \int_{Q_T} f(\cdot, \cdot, u, \nabla \varphi) z \, dxdt = J_{1,\varepsilon} + J_{2,\varepsilon} + J_{3,\varepsilon}
$$

where

$$
J_{1,\varepsilon} = \int_{Q_T} A_{\varepsilon} B_{\varepsilon} dxdt,
$$

\n
$$
A_{\varepsilon} = z\alpha(\cdot, \cdot, u_{\varepsilon}) \Big(\frac{1}{1 + \varepsilon \alpha(\cdot, \cdot, u_{\varepsilon}) \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) |\nabla \varphi_{\varepsilon}|^2} - 1 \Big)
$$

\n
$$
B_{\varepsilon} = \sigma(u_{\varepsilon}, |\nabla \varphi_{\varepsilon}|) |\nabla \varphi_{\varepsilon}|^2,
$$

and

$$
J_{2,\varepsilon} = \int_{Q_T} z(\alpha(\cdot,\cdot,u_\varepsilon) - \alpha(\cdot,\cdot,u)) B_\varepsilon dxdt,
$$

$$
J_{3,\varepsilon} = \int_{Q_T} z\alpha(\cdot,\cdot,u) (B_\varepsilon - \sigma(u,|\nabla\varphi|)|\nabla\varphi|^2) dxdt.
$$

Observing that $0 \le \alpha \le \alpha_0 = \text{const}$ a.e. in Q_T (see (3.2)), we find (4.23) $|A_{\varepsilon}| \leq \alpha_0 \|z\|_{L^{\infty}}$ a.e. in Q_T , $\forall \varepsilon > 0$.

On the other hand, from

$$
\int_{Q_T} \alpha(\cdot,\cdot,u_\varepsilon)\sigma\big(u_\varepsilon,|\nabla\varphi_\varepsilon|\big)|\nabla\varphi_\varepsilon|^2 dxdt \leq c \quad \forall \ \varepsilon > 0
$$

it follows (by going to a subsequence if necessary) that

$$
\varepsilon \alpha(\cdot,\cdot,u_\varepsilon) \sigma\big(u_\varepsilon,|\nabla \varphi_\varepsilon|\big)|\nabla \varphi_\varepsilon|^2 \longrightarrow 0 \quad \text{a.e. in } Q_T \text{ as } \varepsilon \longrightarrow 0.
$$

Hence,

(4.24)
$$
A_{\varepsilon} \longrightarrow 0
$$
 a.e. in Q_T as $\varepsilon \longrightarrow 0$.

From (4.23), (4.24) and $B_{\varepsilon} \to \sigma(u, |\nabla \varphi|) |\nabla \varphi|^2$ weakly in $L^1(Q_T)$ (see (4.18)) we conclude with the help of Egorov's theorem and the absolute continuity of the integral that

$$
J_{1,\varepsilon} = \int\limits_{Q_T} A_{\varepsilon} B_{\varepsilon} dxdt \longrightarrow 0 \quad \text{as } \varepsilon \longrightarrow 0
$$

(see, e.g., [16, p. 54, Prop. 1 (i)]). Analogously,

$$
J_{k,\varepsilon} \longrightarrow 0 \text{ as } \varepsilon \longrightarrow 0 \quad (k = 2,3).
$$

Whence (4.22) .

5° Proof of (3.4)–(3.6). Let $n+2 < r < +\infty$ (i.e., setting $q = r'$, then $1 < q < \frac{n+2}{n+1}$, $q' = r$, and vice versa).

Let be $z \in W^{1,r}(\Omega)$ and $\psi \in C^1([0,T])$, $\psi(T) = 0$. We set $v(x,t) = z(x)\psi(t)$ for a.e. $(x, t) \in Q_T$. An integration by parts gives

$$
\int_{0}^{T} \langle u'_{\varepsilon}, v \rangle_{W^{1,2}} dt = -\langle u_{\varepsilon}(0), z \rangle_{W^{1,2}} \psi(0) - \int_{0}^{T} \langle z \psi', u_{\varepsilon} \rangle_{W^{1,2}} dt
$$
\n
$$
= -\int_{\Omega} u_{\varepsilon}(\cdot, 0) z \, dx \, \psi(0) - \int_{Q_T} u_{\varepsilon} z \psi' dx dt \qquad \text{[by (2.1)]}
$$

(see [13, p. 54, Prop. 2.5.2 with $p = q = 2$, $r = 1$ therein]).

With the help of (4.13), (4.14) and (4.22) the passage to the limit $\varepsilon \to 0$ in (4.4) (with $v = z\psi$ therein) is easily done. We find

$$
-\int_{Q_T} u z \psi' dx dt + \int_{Q_T} \kappa(u) \nabla u \cdot \nabla z \psi dx dt + g \int_{0}^{T} \int_{\partial \Omega} (u - h) z \psi dx dt
$$

(4.25)

$$
= \int_{\Omega} u_0 z dx \psi(0) + \int_{Q_T} f(x, t, u, \nabla \varphi) z \psi dx dt
$$

(recall $u_{\varepsilon}(\cdot,0) = u_{0,\varepsilon} \to u_{\varepsilon}$ strongly in $L^1(\Omega)$). Following line by line the arguments in [28], from (4.25) we deduce the existence of the distributional derivative

 $u' \in L^1(0,T; (W^{1,r}(\Omega))^*)$

(cf. $[5, p. 154, Prop. A6]$), i.e., (3.4) holds. Moreover, we have

(4.26)
$$
\int_{0}^{T} \langle u'(t), z\psi(t) \rangle_{W^{1,r}} dt + \langle \tilde{u}(0), z \rangle_{W^{1,r}} \psi(0) = -\int_{Q_T} u z \psi' dx dt \qquad [by (2.1)],
$$

where $\tilde{u} \in C([0, T]; (W^{1,r}(\Omega))^*)$ is as in Section 2 (see [13, p. 54, Prop. 2.5.2 with $p = 1$, $q = +\infty$, $r = 1$ therein). We insert (4.26) into (4.25) and obtain $q = +\infty$, $r = 1$ therein. We insert (4.26) into (4.25) and obtain

$$
\int_{0}^{T} \langle u'(t), z\psi(t) \rangle_{W^{1,r}} dt + \langle \tilde{u}(0), z \rangle_{W^{1,r}} \psi(0)
$$
\n
$$
+ \int_{Q_T} \kappa(u)\nabla u \cdot \nabla z\psi \, dxdt + g \int_{0}^{T} \int_{\partial\Omega} (u - h)z\psi \, d_x Sdt
$$
\n
$$
= \int_{\Omega} u_0 z \, dx \, \psi(0) + \int_{Q_T} f(x, t, u, \nabla \varphi) z\psi \, dxdt
$$

for all $z \in W^{1,r}(\Omega)$ and all $\psi \in C^1([0,T])$, $\psi(T) = 0$.

To prove (3.5), we take $\psi \in C_c^1(0,T[)$ in (4.27). A routine argument yields

(4.28)
$$
\langle u'(t), z \rangle_{W^{1,r}} + \int_{\Omega} \kappa(u)\nabla u \cdot \nabla z \, dx + g \int_{\partial \Omega} (u - h)z \, d_x S
$$

$$
= \int_{\Omega} f(x, t, u, \nabla \varphi) z \, dx
$$

for all $z \in W^{1,r}(\Omega)$ and a.e. $t \in [0,T]$, where the null set in $[0,T]$ of those t for which (4.28) fails, does not depend on z. Now, given $v \in L^{\infty}(0,T;W^{1,s}(\Omega))$ $(n+2 < s < +\infty)$, we insert $z = v(\cdot, t)$ into (4.28) (with $r = s$ therein) and integrate over the interval [0, T]. Whence $(3.5).$

Equ. (3.6) in $(W^{1,s}(\Omega))^*$ is now easily seen. Indeed, let $z \in W^{1,s}(\Omega)$ $(n+2 < s < +\infty)$, and let $\psi \in C^1([0,T])$, $\psi(0) = 1$ and $\psi(T) = 0$. We multiply (4.28) by $\psi(t)$ and integrate over $[0, T]$. Combining (4.27) and (4.28) , we obtain

$$
\left\langle \widetilde{u}(0), z \right\rangle_{W^{1,s}} = \int_{\Omega} u_0 z \, dx,
$$

i.e., (3.6) holds (cf. (2.11) with $q' = s$ therein).

The proof of the theorem is complete.

REFERENCES

- [1] S. N. Antontsev and M. Chipot, The thermistor problem: existence, smoothness, uniqueness, blowup, SIAM J. Math. Anal. **25** (1994), 1128–1156.
- $[2]$ A. Bensoussan and J. Frehse, Jeux différentiels stochastique et systèmes d'équations aux dérivées partielles non linéaires, C. R. Acad. Sc. Paris, sér. I **293** (1981), 187-190.
- [3] A. Bensoussan and J. Frehse, Nonlinear elliptic systems in stochastic game theory, J. Reine Angew. Math. **350** (1984), 23–67.
- [4] N. Bourbaki, Éléments de Mathématique, Livre VI, Intégration 1–4, Hermann, Paris, 1965.
- [5] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publ. Comp., Amsterdam, 1973.
- [6] F. E. Browder, Strongly nonlinear parabolic equation of higher order, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat Appl. **77** (1986), 159–172.
- [7] M. Bulíček, A. Glitzky and M. Liero, Systems describing electrothermal effects with $p(x)$ -Laplacian-like structure for discontinuous variable exponents, SIAM J. Math. Anal. **48** (2016), 3496-3514.
- [8] M. Bulíček, A. Glitzky and M. Liero, Thermistor systems of $p(x)$ -Laplace-type with discontinuous exponents via entropy solutions, www.wias-berlin.de/publications/wias-publ./no.2247.
- [9] G. Cimatti, Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor, Ann. Mat. Pura Appl. **162** (1992), 33–42.
- [10] G. Cimatti, The thermistor problem with Robin boundary condition, Rend. Semin. Mat. Univ. Padova **135** (2016), 175–199.
- [11] G. Cimatti, Voltage-current characteristics of varistors and thermistors, Boll. Unione Mat. Ital. (9) **2** (2009), 635–650.
- [12] G. Cimatti, The mathematics of varistors, Euro. Jnl of Applied Mathematics (to appear).
- [13] J. Droniou, *Intégration et espaces de Sobolev à valeurs vectorielles*, www-gm3.univ-mrs.fr/polys/.

- [14] A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, J. Fuhrmann, K. Gärtner and A. Glitzky, Self-heating, bistability, and thermal switching in organic semiconductors, Phys. Rev. Letters **110** (2013), 126601.
- [15] A. C. Fowler, I. Frigaard and S. D. Howison, Temperature surges in current-limiting circuit devices, SIAM J. Appl. Math. **52** (1992), 998–1011.
- [16] M. Giaquinta, J. Modica and J. Souček, Cartesian currents in the calculus of variations, vol. I, Springer-Verlag, Berlin 1998.
- $[17]$ A. Glitzky and M. Liero, Analysis of $p(x)$ -Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices, www.wias-berlin.de/publications/wias-publ./no.2143.
- [18] M. T. Gonzáles and F. Ortegón Gallego, *The evolution thermistor problem with degenerate thermal* conductivity, Comm. Pure Appl. Anal. **1** (2002), 313–325.
- [19] M. T. Gonzáles Montesinos and F. Ortegón Gallego, The evolution thermistor problem under the Wiedemann-Franz law with metallic conduction, Discrete Cont. Dyn. Systems, Series B **8** (2007), 901– 923.
- [20] M. T. Gonzáles Montesinos and F. Ortegón Gallego, The thermistor problem with degenerate thermal conductivity and metallic conduction, Discrete Cont. Dyn. Systems, Suppl. 2007, 446–455.
- [21] J. Haskovec and C. Schmeiser, *Transport in semiconductors at saturated velocities*, Comm. Math. Sci. **3** (2005), 219–233.
- [22] S. D. Howison, J. F. Rodrigues and M. Shillor, Stationary solutions to the thermistor problem, J. Math. Anal. Appl. **174** (1993), 573–588.
- [23] K. A. Jenkins and K. Rim, Measurements of the effect of self-heating in strained-silicon MOSFETs, IEEE Electr. Device Lett. **23** (2002), 360–362.
- [24] M. Liero, T. Koprucki, A. Fischer, R. Scholz and A. Glitzky, p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys. **66** (2015), 2957– 2977.
- [25] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä, Department of Mathematics and Statistics, 102. Univ. Jyväskylä 2006, 80 pp.
- [26] J.-L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.
- [27] P. Markowich, C. Ringhofer and C. Schmeißer, Semiconductor equations, Springer-Verlag, Wien, New York, 1990.
- [28] J. Naumann, On the existence of weak solutions of a thermistor system with p-Laplacian type equation: the unsteady case, Discrete Cont. Dyn. Systems, Series S (to appear).
- [29] M. P. Shaw, V. V. Mitin, E. Schöll and H. L. Gubin, The physics of instabilities in solid state electron devices, Plenum Press, New York, 1992.
- [30] J. Simon, *Compact sets in the spaces* $L^p(0,T;B)$, Annali Mat. Pura Appl. **146** (1987), 65–96.
- [31] S. M. Sze and K. Ng Kwok, Physics of semiconductor devices, 3rd ed., J. Wiley, New Jersey, 2007.
- [32] X. Xu, A p-Laplacian problem in L^1 with nonlinear boundary conditions, Comm. Part. Diff. Equs. 19 (1994), 143–176.
- [33] G. Yuan and Z. Liu, Existence and uniqueness of the C^{α} solution for the thermistor problem with mixed boundary value, SIAM J. Math. Anal. **25** (1994), 1157–1166.
- [34] E. Zeidler, Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators, New York, Berlin, Springer-Verlag, 1990.

Mathematics Department, Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin E-mail address: jnaumann@math.hu-berlin.de