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DEVELOPMENT OF DOMINATING WAVES FROM SMALL 
DISTURBANCES IN FALLING VISCOUS-LIQUID FILMS 

G. M. Sisoev and V. Ya. Shkadov UDC 532.516:532.59 

For wavy liquid films, the principle of selection of the periodic solutions realized experimentally as regular waves is justified. By means 
of numerical methods, the bifurcations of the families of steady periodic waves and the attractors of the corresponding nonstationary 
problem are systematically studied. A comparison of the bifurcations and the attractors shows that, when several periodic solutions exist 
for a given wave number; the solution with the maximum wave amplitude and the maximum phase velocity develops from small initial 
disturbances (the dominating wave regime). With wave number variation, near the bifurcation points the attractor passes discontinuously 
from one family to another. This passage is accompanied by the appearance of two-periodic solutions in small neighborhoods of these 
points. The relations between the calculated parameters of the dominating waves are in a good agreement with all the available 
experimental data. 

Capillary liquid-ftlm flows demonstrate a variety of instabilities and developing wave structures. Researchers are 
attracted by the fact that there are technical means of experimentally registering the waves and measuring the wave 
parameters, which is not usually possible in other unstable fluid flows. Periodic waves of two kinds traveling with 
different phase velocities have been revealed: (i) slow waves with a single film thickness maximum per period and (ii) 
fast waves with a steep leading front preceded by a capillary ripple and a gradually sloping trailing front [1]. The surface 
proftles of the first kind resemble a harmonic wave while those of the second kind are more similar to a solitary wave. 
When small periodic disturbances are introduced in the entrance flow region, clearly registered regular waves develop. 

The theoretical explanation of the experimental data on regular nonlinear waves in films with finite liquid flow rates 
is based of the equations derived in [2]. In [2], the first nonlinear periodic solution family was constructed and the 
parameters of waves of the first kind observed experimentally were calculated. In later studies [3-6], the class of 
nonlinear wave solutions was considerably extended. A periodic solution family of the second kind consistent with the 
data of [1] was found in [5]. In [4], solutions in the form of solitary waves were obtained. In [5, 6], two solitary wave 
sequences (fast and slow) were constructed and the existence of other nonlinear wave solutions of the equations of [2] 
was demonstrated. 

While explaining the experimental results, the theoretical studies [3-6] raised a new fundamental problem. It turned 
out that, for given values of the governing parameters (the mean ftlm thickness and the wavelength), several periodic 
solutions exist, each of which determines a regular wave regime. At the same time, in experiments under these 
conditions a perfectly definite regular regime develops from small disturbances and the results can be repeated in 
different experiments. The problem is to determine the principle of selection of these dominating solutions from the 
set of possible solutions. 

In this paper, we give a detailed justification of the selection principle for dominating wave regimes. For this 
purpose, we performed extensive calculations of the periodic solution family bifurcations and the nonstationary problem 
attractors. Our purpose was to analyze the set of families of periodic and solitary wave solutions, to study the relations 
between the families and their conditions of formation from small disturbances. Below, universal relations between the 
dominating wave parameters (independent of the particular liquid properties) are obtained and used for comparison 
with experiment. 

1. BASIC EQUATIONS AND THEIR SLIGHTLY NONLINEAR APPROXIMATIONS 

For the mathematical description of the nonlinear waves developing due to hydrodynamic instability in thin liquid 
ftlms falling along solid surfaces, we will use the equations derived in [2]: 

ah aq 
- + -=0 
at ax 
CJq + !~(q2)=~(h&h + h _ iL) 
at 5 ax h S~ ax3 h2 

(1.1) 
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Here, h(x, t) and q(x, t) are the local values of the nondimensionallayer thickness and the liquid flow rate. The 
mean layer thickness h. and the velocity U.=gM/(3v) are taken as the scales; here, v is the kinematic viscosity of the 
liquid, and g is the gravity force acceleration. The dimensional coordinate x', time t', flow rate q', and thickness h' 
are calculated using the formulas: 

,'=th yl/3U-1Re-219 ' qh U • • • q = • .' h'=hh • 

Re=3U h v-I • • 
Here, p is the density and a is the surface tension coefficient. The variable transformations containing the 

parameter ~ were proposed in [4]. These transformations make it possible to apply the results of analyzing the solutions 
of (1.1) to flows of different liquids. 

Equations (1.1) were derived in [2] from the complete boundary-value problem for the Navier-Stokes equations 
in two steps. First, the problem was reduced to the equations of the boundary layer with a self-induced pressure gradient. 
Then, the Galerkin method with a single approximating function along the normal to the surface was used. A 
generalization of the derivation of the equations for several basis functions is given in a paper by the same authorl . 

For steady-state waves traveling with a constant phase velocity c, if the solution form is h(~), q(~), ~ =x - ct, the 
system (1.1) can be reduced to a single differential equation [2-6]: 

h3d3h + ~r6(q _ c)2 _ c2h2] dh + h3 - q - c(h - 1) =0 
d(3 l 0 d~ 0 (1.2) 

q«() =qo + c(h - 1) 

The mean liquid flow rate qo and the phase velocity c are determined together with h(~) in the course of solving 
the problem. 

We note the limiting asymptotic slightly-nonlinear forms of Eqs. (1.1) for 6 .... 0 (inftnitely small mm thickness). 
Introducing the compressed coordinates -r = £t, ,,= &X, £ = «0 .. (156 )1/2, from (1.1) we subsequently obtain: 

q=h3 + 0(£3) 

Substituting (1.3) in the second of equations (1.1) gives: 

q =h3 + £3 (h3 <J3h + h6 ah) + O(t:~ 
a" 3 a" 

Then, from the first of equations (1.1) we obtain: 

ah + 3h2 ah + £3~ (h3 &h + h6 Oh) + O(t:~ =0 
0. a" a" at] 3 a" 

Changing variables in (1.4) gives: 

oH + ~(CH + 3H2 + &H + aH) + 0(t:3)=0 
at.> a( a(3 ac 

h=1 + t:3H, (=" - (3 - Ct:3}t, t.>=t:3-r 

For the steady-state waves, from (1.5) we obtain the equation 

d3H + dB + 3H2 + CH = roost 
de3 de 

which is an asymptotic limiting form of Eq. (1.2) [2]. 

(1.3) 

(1.4) 

(1.5) 

(1.6) 
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The model equations (1.5), (1.6), first derived for a qualitative analysis of possible wave structures in ftlms with 
finite flow rates2, were later obtained in studying some problems of chemical kinetics and diffusion processes. This 
indicates that, apart from the narrow application to wave ftlms, the basic system (1.1) is of more general interest as a 
system with dispersion and dissipation [7-9]. 

The detailed analysis of the bifurcations and the attractors of Eq. (1.5) given in [9] is used here to assign initial 
approximate values of the parameters c and qo and to check the calculation accuracy of the solutions of (1.1) and (1.2) 
for finite values of a. 

2. BIFURCATIONS OF THE STEADY-STATE WAVES 

The trivial solution of (1.1) h = 1, q= 1 corresponding to a possible waveless flow is linearly unstable with respect 
to space-periodic disturbances h!exp(ilXX), q!(t)exp(ilXX) for the wave numbers IX E (0, 1X0)' This allows us to consider 
a two-parameter family of solutions of (11) periodic in x and determined by the values of a and IX. 

These solutions of (1.1) with the wave number IX can be represented as Fourier expansions: 

N N 

h = L hJJt) exp (ilXh) , 
l=-N 

q = L ql (t) exp (ilXh) 
l=-N (2.1) 

Here, the asterisk signifies complex conjugacy. The expansion coefficients hk(t), qk(t) are determined by numerical 
mtegration of the dynamic system resulting from applying the Galerkin method [1, 2] to (1.1). At the initial instant, we 
assign the values of hk(O) and qk(O). The numerical solution of this Cauchy problem describes the development of the 
initial disturbances in time and, for t -- "", the formation of the limiting wave structures (the attractors of system (1.1» 
for various a and IX. 

The study of the bifurcations of steady-state waves periodic in ~ reduces to seeking nontrivial solutions of the 
nonlinear algebraic system resulting from the application of the Galerkin method to (1.2). If for some a and IX one such 
solution is known, continuation in the parameter IX makes it possible to construct the solution family originating at the 
bifurcation point [5]. The solutions for one family of waves is calculated by passing to a fictitious system of differential 
equations in accordance with the invariant imbedding method. These differential system solutions were corrected using 
the Newton-Kantorovich method (see footnote!). 

The calculations, made with carefully controlled accuracy, showed a multiform pattern of bifurcations of the 
periodic solutions of Eq. (1.2) which with increase in a becomes considerably more complex. 

We will characterize each periodic solution by the wave profile h(~) and two parameters: the phase velocity c and 
the mean flow rate qo. We will also use the maximum and minimum ftlm thicknesses hmax and hmin and the wave 
amplitude a=hmax - h",;n. 

The first family of periodic solutions of (1.2) branches smoothly from the trivial solution on the neutral curve at 
S=IX/lXo=l [2]. First family solutions exist for any S E (0, 1] and for s -- 0 are transformed into concave solitary waves 
with the phase velocity c < 3. In [5], a second family of periodic solutions of (1.2) branching discontinuously from the 
first family in the neighborhood of S2"0.5 was obtained. Second family solutions exist for any S E (0, S2(a)] and, for s 
... 0, transform into convex solitary waves with c > 3. In [5], the existence of other solutions in the form of periodic 
steady-state waves with bifurcation points in neighborhoods of the values s= 1/3, 1/4, ... was predicted. Convincing 
confirmation was obtained by studying the solitary waves. The first solutions of (1.2) in solitary wave form were obtained 
in [4]. Then, in [6] for any ~ E [0; 0.2] two sequences of solutions of (1.2) corresponding to solitary waves (for brevity, 
they will be called solitons) were constructed. The phase velocity of the fast waves is c > 3, while that of the slow waves 
;c; c < 3. It was shown that the slow solitons with minimum phase velocity c are related by the passage to the limit s ... 
o with the first family, while the fast solitons with maximum c are related with the second family of periodic solutions. 
The values of c for both families approach c = 3. The existenc.e of a spectrum of solitons, into which the periodic waves 
can transform at s--O, allows us to assume the existence of bifurcation sequences for the periodic steady-state solution 
families. Systematic thorough calculations make it possible to construct the ordered bifurcation set as a whole. Below, 
we present some of our results. 

For any ~ there exist m (m ~ 2) families of periodic steady-state solutions Yk{h(~), c, qo} of Eq. (1.2) with m 
independent of a. 

2V. Ya. Shkadov, Problems of Nonlinear Hydrodynamic Stability of VISCOUS Liquid Layers, Capillary Jets, and Internal Flows [in Russian], Diss. 
D. Sci., Moscow State Univ., Mech-Math. Dep., Moscow (1973). 
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TABLE 1 

j=2 j=3 

S c qo a S c I qo a 

Sj 0.4763 2.914 1.040 0.3401 0.3208 2.932 1.032 0.2975 
s! 0.5056 2.976 1.123 0.6996 0.3839 3.193 1.174 0.8561 
I 

We will call an arbitrary Yk the family of the k-th bifurcation. As in [5], the families Y/ and Ym will be called "the 
ftrst and second families", respectively. This emphasizes that these families exist at any a and represent two 
fundamentally different wave types. The families Yz, ••• ,Y(m-l) will be called "additional" because they appear at ftnite 
values of a and their number increases with increase in this parameter. In the series of particular calculations for 
a =0.04, 0.1, 0.15, and 0.247, we obtained the bifurcation numbers m =2, 3, 4, and 7, respectively. 

Each family Yk (k=l, 2, ... , m) originates at the bifurcation point Sk and exists for S E (0, s/], where Sk ~ Sk'. The 
ftrst main family smoothly branching from the trivial solution takes the maximum value SI =SI' = 1. The minimum value 
Sm belongs to the second main family, and with increase in a the value Sm is displaced toward the point s=O. The 
intermediate bifurcation points Sz > S3 > ... > Sm_l belong to additional families. 

The ftrst main family Yl appears as a 21t-periodic harmonic wave with an inftnitely small amplitude at SI = 1. Each 
subsequent family Yk (k=2, ... , m) appears at the bifurcation point Sk as a 21t/k-periodic and almost harmonic solution 
with a ftnite amplitude. In the direction of smaller s from the bifurcation point all the families are continued up to s = 0, 
with the families Yh"" Ym-l transforming into negative (slow) solitary waves and the second main family into a positive 
(fast) solitary wave. In the direction of increasing values of s from the bifurcation point each family Yz, ••• , Ym exists on 
a small interval s E [Sk' s/]. On this interval there exist at least two solutions of a given family for any s. In particular, 
this means that at the bifurcation point two solutions appear. 

For instance, for a =0.1 there are three bifurcations. The values of Sk' s/ are given in Tab. 1. The above-mentioned 
features of the new family bifurcations are illustrated in Figs. 1 and 2. In Fig. 1, the continuous lines correspond to three 
families of periodic solutions in the plane (s, c). In Fig. 2a, an additional family Yz is plotted, while Fig. 2b shows the 
second main family Y3' These two families appear near the points s=1/2 and s=1/3 as 21t/2- and 21t/3-periodic 
solutions with a ftnite amplitude. With decrease in s, the evolution of the proftles of the waves of each family from 
harmonic to soliton becomes clear. 

As is clear from Fig. 1, for a given a = 0.1 there may exist from one to ftve steady-state wave regimes which differ 
with respect to the values of a, qo, c depending on the value of s E (0, 1]. For the case a =0.15, for which in Fig. 4 we 
have plotted four families of periodic solutions in the plane (hmax, c), the number of solutions varies from one to seven. 
This ftgure clearly shows that the second, third, and fourth families branch off the ftrst basic family. 

3. ATfRACTORS AND DOMINATING WAVES 

The presence of several solutions for traveling stationary nonlinear waves at fIXed a and s raises the question of 
the possibility of their realizability, i.e. which of several solutions will predominate in the development of small 
disturbances. For a fIXed a, the notion of "optimality" introduced in [2] classiftes the waves according to their amplitude 
(or flow rate) on the interval of s. In [3], the problem of solution classiftcation according to stability with respect to small 
disturbances was considered and the wave regimes for ftnite a were demonstrated to be unstable, with the ampliftcation 
factors being strong functions of a and s. The optimum regimes proved to be least unstable and hence the assumption 
of their realizability in experiments was, in a some sense, conftrmed. In subsequent studies of the instability of the wave 
solutions of Eqs. (1.1), rare cases of stability were also observed (small zones in the plane (a, s». However, both these 
approaches concern the ftrst family and do not lead to ftrm conclusions about the advantages of each of several solutions 
for fixed a and s. 

A more constructive approach is to obtain a direct numerical time-dependent solution of Eqs. (1.1), to determine 
the limiting regimes attracting the solutions developing from small initial disturbances, and to compare them with the 
periodic steady-state wave bifurcations. The numerical solution of this problem begun in [3] and continued in [10, 11] 
made it possible to establish the following: (i) the self-development of the initial disturbances terminates in either the 
formation of a traveling steady-state wave or passage to a two-periodic (oscillating in space and time) wave regime, (ii) 
complex transition processes with the formation of intermediate wave structures occur. Further studies of the unsteady 
problem, including more extensive numerical experiments and a comparison of their results with the bifurcations of the 
traveling steady-state waves, led to the idea of dominating waves. 
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Fig. 1. Periodic solutions for a = O.L The symbols denote the 
calculations for the unsteady problem. 

We will now analyze the systematic numerical results for the unsteady solutions of Eqs. (1.1). 
The attractors of Eqs. (1.1) for fmite a were studied by direct numerical solution of the dynamic system resulting 

from the use of the Galerkin method for various initial conditions. For each specified relative wave number s, integration 
over t was performed until the solution reached a clearly identified limiting state. For calculating the nonlinear 
operations in Fourier coefficient space, we used the fast Fourier transform. In the course of the calculations we 
eliminated the spurious representation errors which can result in nonlinear numerical instability. The number of 
harmonics was varied from 32 to 256. For large times, controlled accuracy was ensured by increasing the parameter N 
in (2.1) with increase in the wave profile complexity. It was required that, at any instant, IhNI < edhd (e 1 « 1). 

We studied initial (t = 0) conditions of two kinds: (i) one non-zero Fourier harmonic was specified, (ii) the first N /2 
non-zero small-amplitude harmonics calculated using a pseudorandom number generator were specified. The first case 
corresponds to the artificial excitation of a wave of a certain frequency, while the second case models the natural wave 
development due to hydrodynamic instability. 

Some results of calculating the limiting values of c, a are given in the plane (s, c) (Fig. 1.) and in the plane (hmax> 
c) (Fig. 3). Points 1 show the quantities corresponding to unsteady problem attractors. Their values and the limiting 
solution as a whole are completely determined by the values of a and s and are independent of the type of initial 
conditions and the non-zero harmonic amplitUde. The analysis of the results presented in Figs. 1 and 3 indicates that 
the attractors of Eqs. (U) coincide with those steady-state wave solutions of Eq. (1.2) which, for given a and s, have 
the largest amplitude and phase velocity. The passage of the attractor from one periodic wave family to the other with 
variation of s occurs jumpwise (the two discontinuities corresponding to the number of branching families are clearly 
visible in Fig. 1). Figure 40 shows the stages of wave profile evolution in one calculation. The passage from an initial 
stochastic distribution of the harmonic amplitudes to an almost harmonic wave and its subsequent transformation into 
a wave of the second main family are clearly apparent. It is this wave, shown by the broken line in Fig. 40, which has 
the maximum values of c and a for the given s. For small s (s < sm'), the atractors were second family waves with the 
maximum phase velocity and amplitude. In Fig. 1, the left upward branch corresponds to these solutions. We note that, 
in the experiments [1, 12], for fairly small frequencies fast solitary waves typical of the second family were also observed. 
Limiting waves formed as t ~ ao and almost independent of the boundary condition kind predominate over the other 
possible wave structures. 

Near the values of s at which a discontinuous passage from one family to the other occurs, the onset of oscillating 
limiting solutions is also possible. Table 2 contains examples of the maximum and minimum values of the amplitude and 
the flow rate for the oscillating regimes when a = 0.15. 

The oscillating two-periodic solutions may have their own development dynamics. In calculating the variants, we 
obtained both slow monotonous variations of the oscillation amplitude and subsequent fast passages to zero amplitude. 

For the oscillating regimes, it is not possible to introduce a single wave velocity; accordingly, in Fig. 1, for a = 0.1 
the numbers 2, 3 refer to the minimum and maximum values of the first harmonic velocity for s=O.384 and 0.507, 
respectively, the first regime being slightly damped. 
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Fig. 2. Periodic wave families for ~=0.1: (a) Y2' s=0.4763, 0.4, 0.25, 0.05 (curves 1-4); 
(b) Y3, s=0.3208, 0.26, 0.15, 0.08 (curves 1-4). 

Fig. 3. Periodic solutions for ~ =0.15. Points 1 refer to the calculations for the unsteady problem. 

TABLE 2 

s amax amin qmax qnrin 

0.3 1.102 0.995 1.272 1.221 
0.35 1.083 0.604 1.260 1.103 
0.466 0.920 0539 1.191 1.074 
05 0.817 0.792 1.155 1.149 

The time variation of the spatial wave structure is particular apparent from considering the spectrum development 

Figure 4b shows the time variation of the spectrum components bk for the waves presented in Fig. 4a. Connecting 
the points (k, bk ) with a broken line, we obtain a spectral image of the nonlinear wave, which is particularly convenient 
for tracing the wave evolution due to hydrodynamic instability. 

With respect to the calculations presented in Figs. 4a, b, as for the other calculations, it is possible to distinguish 
the following stages: (i) nonlinear excitation of the multiple harmonics, (ii) fast harmonic growth from the neighborhood 
of the fastest -growing harmonics in accordance with the linear theory, (iii) the formation of intermediate nonlinear 
structures and their transformation due to instability into subharmonics and short waves, and (iv) the formation of the 
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Fig. 4. Wave regime evolution for d=O.l, s=0.3. 

equilibrium amplitude distribution over the spectrum due to the development of the subharmonics and short waves. 
The spectrum fills up progressively with increase in the basic harmonic wavelength, i. e. with approach to the point 

s=O. The maximum energy belongs to a harmonic with a fairly high number kmax, excited by the nonlinear interaction, 
rather than to the basic harmonic. For example, for ~ =01 we obtained kmax=3; 5; and 9 for s=0.3; 0.2; and 0.1, 
respectively. Thus, with approach to the soliton (as s ~ 0) along the second main family branch the pattern of the 
limiting nonlinear wave becomes more and more complex and the calculations become more and more difficult. The 
fact is that the second family has a mean flow rate maximum at small s ~ 01. Although, with increase in s, the phase 
Velocity and the stationary wave amplitude still increase, the mean flow rate decreases and the attractors are no longer 
dominating. In particular, in the calculation for s = 0.05 and ~ = 0.04 we used the limiting wave corresponding to s = 0.1. 

4. DOMINATING WAVES IN EXPERIMENTS 

Dominating waves appear when small initial disturbances self-develop to the steady-state wave regime. For a given 
parameter ~, the corresponding solutions of (1.1) are completely determined by the value of s. 

We will use the notion of dominating waves to interpret some general experimental facts, concerning, in particular, 
the region of existence of steady-state periodic waves and the dependence of the phase velocity and wavelength on the 
wave amplitude or maximum height [1, 12). 
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Fig. 5. Dominating wave solutions: curves /1-/4 correspond to ~ =0.1, 0.15, 0.247, 0.4. 

Fig. 6. Comparison of the dominating waves for ~ =0.15 with the experimental data: 
y =3298, 1129, 491, 465, 195, 105, 722, 1147, 1116 (points 1--9). 

0 

J 

The dominating waves can be combined into three groups. The first group includes only first family waves and exists 
for S E [S2', 1]. The second group includes all the families of additional bifurcations S E [sm', s/]. Finally, the third 
group includes only second family waves and exists for S E [sm", sm']. Here, sm" is the point at which the mean flow 
rate is maximum. In the numerical experiments, on choosing S to the left of this point steady-state wave regimes were 
not attained. In a certain neighborhood of sm" we obtained undamped oscillations with the wave numbers sand 1$. 

Figure 5 shows the dominating wave solutions for four values of ~. In the last case, we have reproduced the 
solutions only for the first five bifurcations. For convenience of comparison with experiment, we chose the coordinates 
VI and V2 from [12] which are related with the universal parameters of Eqs. (1.1), (1.2) by the formulas 

v1 =kRe = 15~q~«, v2 = ReFi-l/ll =7.508~9/11qo 

Here, k and Re are the wave number and the Reynolds number from [12], and Fi=y3. In Fig. 5, we have also 
plotted the neutral curve 1 and the boundary curves 2, 3, 4 from [12] showing the boundaries of the regions I, II, and 
III in which the waves were observed in the experiments. There is almost complete coincidence between the boundary 
points dividing the three groups of dominating waves and the experimental boundaries of the wave regimes. In regions 
II and III, clearly registered steady-state waves developing from small time-periodic disturbances introduced in the initial 
region of fIlm flow are formed. In region II, less regular waves are formed, also due to the development of external 
disturbances (naturally developing waves). The fastest-growing waves in the linear approximation (curve 5), which have 
an advantage in the case of natural onset, also belong to this region. However, due to the existence of two-periodic 
oscillating regimes near the bifurcation points of the intermediate families the wave pattern can be more complex, even 
for artiftcial excitation. In the experiments [1], besides waves of the second and third groups first group waves were also 
observed for a E [0.04; 0.2]. The corresponding points are located near the optimum regime curve 6 [2]. 

Usually, in experiments with wave fIlms the parameters c and a are recorded and the linear dependence c(a) is 
noted. This dependence is also obtained in the numerical calculations. The linear relation between c and hmax ai more 
clearly traceable. As is clear from Fig. 3, the phase velocities and the maximum wave height are related by a complex 
nonmonotonic dependence. However, for the dominating waves the points in the plane (hmax, c) are grouped along a 
single straight line, which is particularly clear for the second main family solutions. With increase in ~, the behavior of 
the continuous curves becomes more complex but the main linear dependence remains. 

In [12], the experimental data for the wavelengths A are presented in the nondimensional complexes 
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( 1 )1/3 
Zz' = a/pg 

Here, A is the maximum wave height. On the basis of Eqs. (U), (1.2) and the associated transformations, it may 
be concluded that the following parameters are universal and independent of the particular liquid properties: 

( )
-0.46 

ZI =y1.04{llZl' = (4Sarl.14111 ~o hIUX 

Zz =ylf}:1.Zz' = (21t)I/3(4Sa)I/.33(l-l/3 

In Fig. 6, the broken curve I represents the dominating waves for a =0.15 (the three breaks correspond to the 
bifurcation points). The corresponding curves for a =0.1 and 0.247 lie close to the curve I and are not reproduced. 
Clearly, the calculated values of Zb Z2 and the experimental points [12] for different liquids fall within the same region 
in the plane (Zl' Z2). 

Summary. The notion of dominating waves naturally orders the families of periodic and solitary wave solutions of 
Eqs. (U), (1.2) and relates them with the wave structures which develop under experimental conditions. For each a, 
the set of dominating waves consists of all the solutions of the branching families y k which, for a fixed s, have the 
maximum amplitude and phase velocity. It is precisely these solutions which develop from small initial disturbances with 
time. This set is defmed on the segments ll~, k= 1, ... , m in the region of variation of s E (0; 1]. These segments are 
separated by narrow intervals near the points of passage from one family to another. The parameter a is crucial for the 
complication of the nonlinear dynamics of the wave solutions. With increase in a, the number of branching families of 
solutions Y k quickly increases and the role of random factors in the excitation of the intermediate oscillating regimes 
should also increase. This agrees with the fact that, at large a, regular wave solutions were not observed experimentally. 

The work received fmancial support from the Russian Foundation for Fundamental Research (project 94-01-01637). 
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