
International Journal 0/ Parallel Programming, Vol. 24, No. 6, 1996

Efficient Distribution Analysis via

Graph Contraction

Thomas J. Sheffler, 1 ,6 Robert Schreiber,2,6 William Pugh,3
John R. Gilbert,4 and Siddhartha Chatterjee 5,6

Alignment and distribution of array data should be managed by optimizing
compilers for parallel computers, but current approach es to the distribution
problem formulate it as an NP-complete graph optimization problem. The
graphs arising in applications are large and diflicult to optimize. In this paper,
we improve some earlier results on methods that use graph contraction to
reduce the size of a distribution problem. We report on an experiment using
seven example programs that show these contraction operations to be etTective
in practice; we obtain from 70 to 99 percent reductions in problem size, the
larger number being more typical, without loss of solution quality.

KEV WORDS: Parallel computing; array distribution; optimizing compilers;
graph algorithms.

1 Rambus Inc., 2465 Latham Street, Mountain View, California 94040. (E-mail: sheffienty
rambus.com).

2 Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304-1126.
(E-mail: schreiber@hpl.hp.com).

3 Departrnent of Computer Science, University of Maryland, College Park, Maryland 20742.
(E-mail: pugh@cs.umd.edu).

4 Xerox Palo Alto Research Center, 3333 Coyote Hili Road, Palo Alto, California 94304-1314.
(E-mail: gilbert@parc.xerox.com). Copyright © 1995 by Xerox Corporation. All rights
reserved.

5 Department of Computer Science, University of North Carolina, Chapel Hili, North
Carolina 27599-3175. (E-mail: sc@cs.unc.edu).

6 The work was supported by the NAS Systems Division via Contract NAS 2-13721 between
NASA and the Universities Space Research Association (USRA) while he was at RIACS.

599

828/24/6-9 0885-7458/96/1200-0599$09.50/0 © 1996 Plenum Publishing Corporation

600 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

1. INTRODUCTION

Programmers expect that array parallel languages such as High-Perfor
mance Fortran (HPF) will provide high performance on distributed
memory parallel computers if they pay careful attention to the distribution
of arrays to the available processors. Currently, array distribution must be
performed by the programmer, who annotates a program with distribution
directives. This difficult task is further complicated by the fact that the
optimal distribution for a pro gram is dependent on the target machine. In
the interest of simplifying the task of the programmer and enhancing the
portability of array parallel pro grams, distribution should be handled by
the compiler.

Unfortunately, distribution is a difficult combinatorial optimization
problem. (I) Heuristic algorithms can be effective for small programs. For
very large programs or very detailed analyses (employing interprocedural
analysis, for example) these algorithms may become less effective or unac
ceptably slow.

In this paper, we show how to reduce the size of a distribution
problem. We recall the formulation (1.2) of the distribution problem as a
graph labeling problem, then show how the size of the graph may be
reduced through graph contraction without affecting the best solutions. We
propose algorithms that identify regions of the pro gram (the vertices of a
subgraph) that may be performed under the same distribution. Once iden
tified, the algorithm collapses each such subgraph into a single vertex that
captures all of the information present in the original problem. In contrast,
other authors have advocated controlling the size of the data flow graphs
mode1ing distribution problems, but they have used coarse criteria, such as
forcing any loop to be executed without redistribution. (I)

This paper has two components: a rigorous analysis of an abstract
graph model, and a discussion of the implementation of the algorithms in
our compilation system. The graph model and the contraction lemmas dis
cussed could be used in any other compilation system as a pre-processing
step to further distribution analysis. We use the results collected from our
own implementation to show that the theoretical results presented are
effective in practice.

In our experiments, we ex amine different strategies for applying the
contraction operations and evaluate their relative merit. Initial experiments
conducted with example pro grams show that these contraction operations
are very effective. It is possible, moreover, that stronger contraction opera
tions will further reduce the size of problems to the point where they could
be solved exactly.

Efficient Distribution Analysis via Graph Contraction 601

1.1. Related Work

While we are aware of no other approaches to the distribution
problem through graph contraction, there is a significant amount of work
done concerning other aspects of automatie distribution. Some work
regarding alignment analysis has actually considered the effects of distribu
tionY· 4) However, these and other papers regarding alignment do not
address the problems introduced by allowing a rich set of distribution
parameters that indudes block, cydic, and block-cydic distributions by
array axis.

Formulations of the distribution optimization problem may be
categorized as either solving the static or dynamic distribution problem.
Previous researchers have focused on the static version, in which the dis
tribution of each array remains fixed throughout the execution of the
program. Wholey(5) uses a hilldimbing procedure to successively refine the
distribution parameters for a given program until the program can no
longer be improved. His algorithm attempted to select the best number of
processors and dimensions to be distributed, but can get caught in local
minima. Guptal6l uses heuristic methods to decide between block and
cydic partitioning, and other parameters are selected based on estimated
program costs. Our formulation of the distribution optimization problem
allows the distribution of an array object to change over its lifetime. This
is the dynamic distribution problem.

In contrast to some previous approaches, wh ich directly generate the
distributions for arrays, our analysis begins with a set of candida te dis
tributions and selects one of these for each array. The resulting solution is
naturaUy dynamic.

We previously introduced a divide-and-conquer approach to the
dynamic distribution problem. (3) In this approach, the program is recur
sively divided into regions to which static distributions are independently
assigned. The conquer stage merges two regions, choosing a static distribu
tion when the cost of the dynamic distribution is worse. Recently, Gupta's
techniques have been applied by Palermo to the dynamic distribution
problem. (7) Palermo's is also a divide-and-conquer approach, and uses
Gupta's static analyzer to assign distributions to the regions genera ted.

Kremer(8) and Bixby, et al. (I) use essentially the same data flow graph
and cost model as we. (We allow only a single distribution candidate set,
while they allow a different set for each pro gram operation; one formula
tion may be easily transformed into the other.) The first of these papers
showed that this formulation of the distribution problem is NP-complete.
In the second, the problem is reduced to 0, I-integer programming, and it

602 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

is shown that for modest sized problems heuristic methods (in the form of
the CPLEX package) are effective at finding an optimal solution.

Our approach may be viewed as a preprocessing step for these
methods. We reduce the problem size so as to speed up the subsequent
analysis.

2. MODELING DISTRIBUTION

This section first describes how data mapping is specified in HPF
through alignment and distribution directives. We then propose an array
data flow graph with a cost model that estimates the running time of a
program as a function of the alignments and distributions of its arrays. We
discuss the generation of a set of candidate distributions. Finally, we
discuss the graph contraction process that we develop in the following
sections.

2.1. Alignment and Distribution

Our model of data mapping follows that of HPF: an array is
aligned to a template, which is distributed over the available processors.
A template is an abstract array used as a target in aIignment directives.
An alignment is specified by four separate components. These are axis,
stride, offset, and replication. Axis alignment determines the corre
spondence of array axes to template axes. Stride alignment specifies the
factor by which the array is stretched across the template. Offset is a vector
specifying the distance of an array from the origin of the template, and
replication specifies certain axes of the template over which an array might
be copied.

An ex am pie of alignment and distribution as specified in an HPF
program folIo ws. The first two directives dec1are the template and describe
the alignment of the array. The third and fourth lines together describe the
distribution. The PROCESSORS directive describes the allocation of
arrays to the axes of the template, while the D ISTR I 8 UTE directive
specifies how the template is divided over the processors. In this ca se, the
8 LOCK directive says that the first dimension of the template is distributed
in blocks of 25 over 4 processors, and the CYCLIC directive specifies that
the second dimension is distributed in blocks of 10 over 8 processors. Since
the extent of the template is 200 in the second dimension, the blocks will
wrap around the processors.

Efficient Distribution Analysis via Graph Contraction

real :: a(100,100)

!hpf$ template t(100,200)

!hpf$ align a(i,j) with t(i,j+l00)

!hpf$ proeessors p(4, 8)

!hpf$ distribute t(bloek, eyelie(10)) onto p

603

The alignment or distribution of an array object may change
throughout its lifetime in a pro gram. A change in alignment effectively
changes the data mapping of an array and results in realignment com
munication. The type of communication needed to implement the realign
ment is determined by the component of an alignment that changes. Axis
or stride realignment requires aU-to-aU personalized communication, offset
realignment requires shift communication, and replication realignment
requires a spread (broadcast) communication operation. In general,
redistribution requires aU-to-all personalized communication.

We choose to perform distribution analysis after alignment analysis. In
our system, we first optimize axis and stride alignment, then replication
alignment, foUowed by shift alignment. Previously, we presented algorithms
that efficiently determine each of these alignment parameters. (9. 10) The
order of the optimizations is motivated by the relative costs of the co m
munication required by these types of realignment. It might be possible to
find a better alignment if distribution information were known, but dis
tribution analysis is difficult without some model of realignment co m
munication costs. Consider the foUowing example code fragment, typical of
a finite-difference stencil computation.

integer, parameter:: n = 1000

real a(n), left(n-2), right(n-2), cl, er

left = cl * a(1:n-2)

right = er * a(3:n)

a(2:n-l) = a(2:n-l) + left + right

In our system, we would perform alignment first. The axis and stride
alignments chosen he re cause no realignment, but there is offset realign
ment in this fragment. Because of the necessary off set realignment, which
comes to light in the alignment optimization phase, we would prefer to give
the arrays a block rather than a cycIic distribution, since this reduces data

604 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

traffic when shift communication is performed. It would be difficult to
determine this fact about distribution without first having established align
ment information.

2.2. The Alignment Distribution Graph

A data-parallel program may be modeled as a directed graph (V, E).
The members of the vertex set V of the graph correspond to array opera
tions in the program. An operation consumes one or more arrays, and
produces one or more arrays as a result. A directed edge (v, w) E E connects
adefinition of an array object in array operation v to a use by operation
w. Only true dependences are modeled by edges.

A weight labels each edge; it is an estimate of the cost of the redistribu
tion communication that would occur if the array carried by the edge is
redistributed along it. In our system we compute the edge weight as a func
ti on of a constant communication overhead, the number of elements in the
array carried by the edge multiplied by an estimated trip-count of the edge
in an execution of the program. In this way, the weight incorporates infor
mation about control flow.

Alignment is specified for the head and tail of each edge, giving the
alignment of an array at its definition and use. Distribution must also be
given for each vertex, specifying the distribution that is applied to each of
the arrays involved in the vertex computation. The graph, along with these
labels, is called an alignment-distribution graph (ADG). (11) In our previous
papers about the ADG it was important to distinguish between different
vertex types for alignment analysis. Distribution analysis does not require
such differentiation.

2.3. Modeling Redistribution Cost

The alignment-distribution graph (ADG) G = (V, E) may be used to
model the effects of distribution decisions. Our system first finds a set D of
candidate distributions. Vertex costs are recorded in a matrix, C, and edge
costs are recorded in a matrix, W. Entry C(d, v) estimates the time required
to perform operation v E V under distribution d E D. Realignment costs are
also incorporated in this model by adding an estimate of the cost of per
forming the realignment, if any, on directed edge (u, v), for each distribu
tion d, into the cost entry C(d, u). Each edge, (u, v) E E, has an associated
weight, W(u, v), which is an estimate of the time required to redistribute
the array value communicated along the edge. Even though this single
weight is a simplistic measure of redistribution (since it is insensitive to the
actual starting and ending layouts, the machine topology, and other factors

Efficient Distribution Analysis via Graph Contraction 605

that might playa role) experiments have shown that this metric accurately
reflects the cost of performing aredistribution step. (12) Furthermore, any
edge that carries an axis or stride realignment has its weight changed to
zero prior to distribution analysis, since redistribution of the value carried
by the edge can be accomplished as part of the all-to-all personalized com
munication required for the realignment.

We seek to give each ADG vertex a distribution in D, i.e., we seek a
mapping m: V --> D. For a particular distribution map, we estimate the
execution time of the pro gram it models by the sum over the vertices of
the cost of performing the vertex computation in its given distribution, plus
the sum of the weights of all edges whose end points have different distribu
tions:

cost(m) = L: C(m(v), v) + W(u, v)
VE V (u. v) E E. m(u) ""m(v)

The goal of distribution analysis is to map each vertex to a distribution so
that this cost is minimized.

The model's vertex cost component is trivially minimized by mapping
each vertex to its distribution of smallest vertex cost, but this can resu!t in
many edges carrying redistribution comrnunication. At the other extreme,
edge costs may be avoided entirely by mapping every vertex to some one
distribution, the best of these being the distribution that minimizes the sum
of the vertex costs. The optimal solution typically lies at neither of these
extremes. The conflict between reducing vertex costs (by labeling vertices
independent!y) and eliminating edge costs (by labeling vertices identically)
makes the problem difficult.

2.4. The Set of Distributions

A distribution d E D specifies both the deployment of processors to the
axes of arrays and the blocking factor with which each axis is distributed
to the processors (in a cyclic fashion). Our analysis requires a set D of
candidate distributions. The set may be specified by a programmer, or may
be generated by a compiler as it analyzes the program. We adopt the latter
approach.

The generation of a set of distributions requires care. The achieved
cost is never increased, and may be reduced, by allowing a larger set of
candidate distributions, but the running time of our optimization algo
rithms is sensitive to the size of D. Thus we want a small set D that
nevertheless includes those distributions that are best for the given
pro gram. We have previously shown how to select candidate distributions

606 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

and how to limit their number. (3) To summarize these ideas, consider a
data object of rank three, and let the number of processors be P. We allow
distribution onto processors arrangements of shape (PI, Pz, P3) with each
Pi allowed to be in the set 1, p 1/3, pilZ, P subject to the constraint
PIPZP3 = P. In addition, we consider processor shape vectors that are
proportional to the sizes of the large arrays in the program. In each dimen
sion i for which Pi> 1 we allow either block or cyclic or cyclic(k} dis
tribution, for a few values k. We choose the allowed distribution block sizes
by examining the sizes of array sections in the given dimension, in order to
determine the algorithm's "natural" block sizes.

2.5. Static and Dynamic Mappings

We introduce two terms to describe a distribution map for a sub set of
ADG vertices S. Let m be a given distribution map. Then S is static under
m if m maps each member of S to the same distribution; S is dynamic under
m otherwise. We say that the map m is static if V is static under m. Since
all vertices in a static subset have the same distribution, no edge internal
to a static subset can carry redistribution cost; the cost of a static distribu
tion is completely determined by the vertex costs.

Bach cost matrix entry, C(d, v), gives an estimate of the time required
to perform the computation of vertex v und er distribution d. It is con
venient to speak of the cost vector of a vertex, which is simply the column
ofentries C(*, v) pertaining to the vertex, denoted Cv. We extend this term
to sets of vertices, S, where the cost vector of a sub set is simply the vector
sum ofthe cost vectors ofthe vertices in S, denoted Cs. Thus, Cs(d) is the
cost of performing all of the operations of S in distribution d.

The way in which we attempt to reduce the size of the graph is to
identify optimally static (O.S.) subsets of vertices in the distribution graph.

Definition 1 (Optimally Static). A sub set S':;; V, is optimally static
if for any map m: V -+ D there exists a map m' such that m' and m take
identical values on V - S, S is static under m', and cost(m') ~ cost(m).

An optimally static sub set usually corresponds to a region of code, one
in which it is provably not profitable to change distributions internally.

Our overall plan for finding a distribution map m is this. We first find
a collection of optimally static subsets of V; we seek to cover V with the
smallest possible number of them. Then, we aggregate each subset into a
single "super" vertex whose cost vector is the sum of the cost vectors of its
members. Clearly, any O.S. sub set can be so contracted, as this does not
increase the cost of the best distribution. We then use some heuristic or
exact method to obtain a distribution mapping on the contracted graph,
and take m to be its extension to the full graph.

Efficient Distribution Analysis via Graph Contraction 607

The remainder of the paper is concemed with finding O.S. subsets.
Our approach is to first find a candidate sub set, and then test whether it
is O.S. The next section develops a theory of O.S. subsets. Section 4
discusses heuristic strategies for finding candidate sub sets.

3. SUFFICIENT CONDITIONS FOR OPTIMAlLY
STATIC SUBSETS

An understanding of properties of the distribution graph allows us to
develop theorems that describe how sub sets of vertices can be collapsed or
amalgamated into super vertices, without changing the problem in an
essential way. In this manner, we will reduce the size of the ADG as a first
step in distribution analysis.

3.1. Definitions

In discussing whether or not a set S is O.s., we need to look at the
largest and smallest entries of C s, i.e., the largest and smallest aggregate
vertex costs for S when it is distributed statically. Let

C~~i~t)(S) == min Cs(d)
dED

and

In contrast, we need to compare these with the smallest possible vertex cost
total for S. Let

C(dynl(S) == '\' min C (d)
mrn i..J s

SES dED

Last, let the difference between the maximum and minimum cost of a single
vertex be called the range of the vertex,

range(v) == max Cv(d) - min Cjd)
dED dED

Many of our proofs require consideration of the edges crossing from
one set S to another set T. Define w(S, T) as folIows:

w(S, T) == L W(v, w) + W(w, v)
veS, WE T

608 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

Thus, w(S, S) is the sum of the weights of all edges entering or leaving S.
We will commit the obvious abuse of using w(s, T) instead of w({s}, T) for
a single vertex s. Note that w is a symmetric function of its arguments.

3.2. Optimally Static Subsets

We present a number of tests that may be used to verify that a subset
of vertices is O.S. Each of the next lemmas give an explicit construction
showing, for a dass of subsets S, how a map with dynamic S can be
modified on S to make S static and not increase the cost. A following sec
tion discusses the implementation of the tests and the expected nmning
time of each.

Lemma 1 (Accretion(3). Let S be O.S. and assurne v f/= S. If

w(v, S) + range(v) ~ w(v, S)

then S u {v} is O.S.

Proof. Any map may, by assumption, be modified on S to make
S static without increasing the cost of the map. Now consider a map in
which S is static with distribution d and v has a different distribution d'.
Changing the distribution of vertex v to cl reduces the cost of the mapping
by w(v, S) and raises it by at most w(v, S) + range(v). By the hypotheses,
this change also does not increase the cost. Hence S u {v} is O.S. 0

Corollary 1 (Edge Contraction). Let sand v be distinct vertices. The
set {s,v} is O.S. ifw(v, {.f})+range(v)~w(v,s).

Proof. Since any singleton vertex is an O.S. sub set, the corollary
follows immediately by applying Lemma 1 to S = {s}. 0

This simple corollary of Lemma 1 turns out to be very useful in prac
tice: it identifies pairs of vertices that should be merged. In particular,
unary operations representing SPREAD and REDUCE functions often
have small ranges and have input and output edges of very different
weights. Elementwise unary operations may have zero range with equal
weights on their two incident edges.

Lemma 2 (Min-cut(3). A set S is O.S. if

w(S, S) + C~:~t)(S) - C:::fnn)(S» ~ mincut(S)

Proof. Assurne that S is dynamic under a given distribution map. If
the inequality holds, then the cost of this map is not increased by assigning

Efficient Distribution Analysis via Graph Contraction 609

S to its best static distribution. For we gain at least rnincut(S) in edge
costs, and lose at most C~:~t)(S) - C~i~n)(s) in added vertex costs and at
most w(S, S) in additional redistribution on edges leaving S. 0

The strategy of the previous lemma was to remap all of S to its
preferred single location. As an alternative, we consider remapping all of S
to the distribution of one of its neighbors, so as to make S static and avoid
redistribution on edges connecting it to that neighbor. These results are
new to this paper.

Lemma 3 (External Vertex). A set S is O.S. if for some vertex v rf: S,

(w(S, S) - w(S, v)) + (C~~'::)(S) - C~fnn)(S)) ~ rnincut(S) (I)

Pfoof. Let S be dynamic under some map m, and let v be connected
to S by a set of edges of largest total weight. Remap all vertices in S to the
distribution of vertex v. The vertex costs can increase, but not by more
than the second term of the inequality (1); the edges from S except those
touching v may now incur redistribution costs, but these added costs are
not more than the first term of the inequality. Since, again, we gain at least
mincut(S) in avoided redistribution on edges internal to S, the remapping
cannot increase the total cost. 0

Note that although the construction in the proof guarantees that
S u { v} is static after the relabeling, we cannot conclude that S u { v} is
O.S., since we claimed a gain of mincut(S) after relabeling a map for which
S is dynamic. The following reformulation allows us to conclude that S is
O.S. by considering remapping S to the same distribution as one of its own
vertices.

Lemma 4 (Internal Vertex). A set S is O.S. if, for some vertex v E S,

w(S - {v}, S) + (C~~'::)(S - {v}) - C~fnn)(s - {v})) ~ mincut(S) (2)

The proof is analogous to that of the External Vertex lemma.

4. LOCATING CANDIDATE SUBSETS

The lemmas developed in the preceding section verify that a subset of
vertices is O.S., but do not reveal how to find candidate subsets. It is not
practical to consider all possible subsets of V, so we develop heuristics to
locate sub sets with the potential to be O.S.

Our heuristic creates aseries of partitions of the graph by deleting
edges whose weight falls below a given threshold. Note that a single
threshold value uniquely defines a partition of the graph. To generate a

610 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

large number of candidate subsets, our heuristic examines all partitions
defmed by a set of thresholds, T.

The set of thresholds is generated. by histogramming the edge weights
of the graph and then gathering the histogram points into clusters. The
minimum value in each cluster becomes a threshold value in the set T. To
use this algorithm, we work through the thresholds in T from heaviest to
lightest. We apply the O.S. tests to each connected component at the
current threshold.

This heuristic is effective because of the way the O.S. Lemmas are con
structed and the way that the edge weights in the ADG are calculated.
Lemmas 2-4 prefer sets that have no small edge cut. The heuristic finds
subsets that are highly connected internally (leading to a large min-cut
value), with low weight connections to vertices outside of the subset. For
a given threshold value t, the mincut of any such component is not less
than t, while the weight of each extern al edge is less than t.

The ADG tends to have clusters of heavy weight edges bordered by
lighter weight edges. Recall that the ADG incorporates the effects of
control flow into its edge weight calculation by multiplying the weight of
an edge by its estimated trip count. In the ADG, vertices corresponding to
operations within loops are connected by heavy edges, and values are com
municated into and out of loops by lighter edges (because they are
traversed only once). This strategy tends to find connected components
encompassing the operations inside the bodies of loops, and the threshold
values correspond to different levels in loop nests.

The complexity of this subset finding algorithm is proportional to the
number of edges, lEI, and the number of thresholds, ITI. The histogram
ming phase of the algorithm can be performed in time O(lEI), and con
nected components can be found in time O(lEI) by using depth-first search.
The enumeration of all subsets using this technique can be performed in
time O(I TI lEI).

5. IMPLEMENTING THE 0.5. TESTS AND THE
CONTRACTION OPERATION

This section suggests data structures and algorithms for implementing
the tests of Section 3. We make use of basic sparse matrix techniques to
keep the running times of the O.S. tests and the contraction operations low.

5.1. Data Structures

The matrices C and Ware stored as sparse matrices. An element in a
matrix is arecord structure storing its row, column, and value, and

Efficient Distribution Analysis via Graph Contraction 611

pointers threading it into two doubly-linked lists: a list of elements in the
same row, and another list of elements in the same column. The elements
of the lists are unordered.

Finding a particular matrix element in this data structure requires
potentially searching through an entire row or column list. However, our
algorithms do not require finding individual elements quickly, but rather
depend on a data structure that supports unit time insertion and deletion
of single elements, and finding the neighbors of a given vertex. The data
structure previously described supports these operations.

Our algorithms use a Sparse Accumulator (SPA) to add sparse vec
tors.(13) A SPA is used to compute the sum ofseveral sparse vectors in time
proportional to the number of nonzero elements in the vectors. This
capability is important when contracting vertices.

5.2. Contracting Vertices

The vertex contraction operation replaces a set of vertices, S, with a
single vertex s in a reduced graph. The vertex cost vector es of the new
vertex is the sum of the vertex cost vectors of its members, and the weight
of each edge incident to s is the sum of the weights of all edges between the
adjacent vertex and members of S. Precisely, this is written as

C(d, s) = I C(d, v); W(s, w) = I W(v, w); W(w, s) = I W(w, v)
"ES VE S

Our technique contracts S by adding the sparse vectors that encode
the edge weight and adjacency information for the vertices in S. Merging
the cost table entries for the vertices requires adding the corresponding
columns of C. Thus, the cost table entries for a set can be computed in
O(ISI·IDI) time.

Merging the adjacency table entries requires merging both the row
and column lists for the vertices of S. When merging row lists, we treat
each row as a spar se vector and use the SPA to add the vectors, deleting
the elements from the matrix as we go. We then enumerate the nonzero
elements of the SPA and insert these new values in the contracted matrix.
Column merging proceeds the same way. By using a SPA, the modification
of the adjacency matrix requires time linear in the number of nonzeros
processed.

5.3. Complexity Analysis

We now consider the overall complexity of the contraction algorithms
we propose. These algorithms consist of the application of a sequence of

612 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

transformations in some prespecified or adaptively chosen order, until some
stopping criterion is satisfied. The three transformations we use follow.

Edge Contract Test all edges using Corollary 1.
Min-Cut Generate a set T ofthresholds and for each, generate a set

of subsets, as in Section 4. Apply the Min-Cut lemma to each sub
set and contract it if it is O.S.

Distinguished-Vertex Generate a set T of thresholds and for
each, genera te a set of subsets, as in Section 4. For each subset,
and for each vertex either adjacent to or internal to the subset,
apply the relevant Distinguished Vertex lemma and contract it if
it is O.S.

A single pass refers to an application of the "Edge Contract" test
to every edge in the graph, or an application of the "Min-Cut" and
"Distinguished-Vertex" to all of the subgraphs of a partition of the graph
defined by a single threshold value t. We have already shown that the
modification of the data structures takes linear time; here we show that the
application of the tests is efficient too.

We make the following assumption about our algorithm: The number
I TI of thresholds and the number IDI of candidate distributions are
bounded above by constants, and are not a function of graph size. For
instance, IDI is related to the complexity of the distribution requirements
of a pro gram. Some small pro grams may perform few arithmetic operations
but possess complex distribution requirements, while larger programs may
perform many more arithmetic operations with simple distribution
requirements. See Table I for details.

Table I. Properties of the Program Graphs"

Program IVI lEI IDI

ADI 232 308 12
BlockLU 108 l31 41
Erle 666 845 7
LU 21 25 12
Shallow 445 545 3
Tred 105 124 9
TwoZone 335 411 12

" Each is quite sparse. In general. the number of distributions
used in the analysis of each program is smalI, with the excep
tion of BlocklU.

Efficient Distribution Analysis via Graph Contraction 613

5.3.1. Edge Contraction

Edge contraction is easy to implement. In order to facilitate it, we can
store the range, the weight of all incident edges, and the weight of the
heaviest incident edge in the vertex data structure. Then we can
immediately tell whether a given vertex can be contracted into a neighbor.
An important observation is that when a contraction occurs, vertices not
adjacent to the two merged vertices are unaffected: if they could not be
contracted into a neighbor before, they cannot after. Vertices adjacent to
one of the merged vertices are likewise unaffected. Vertices adjacent to both
may become contractable into the new vertex, and our implementation
checks such vertices and contracts them in, if possible, immediately. Thus,
we may examine the vertices, including those created by contraction, onee
each. When we fmish, no more edges can be contracted. The total number
of vertices we need to examine is therefore O(I VI). The cost of the contrac
tion of an edge is domina ted by the cost of the addition of two rows and
columns of W, which grows as the degree of the new vertex. Let B be the
largest degree of any vertex created during the process; obviously B< I VI.
The edge contraction algorithm runs in time O(B . IVI).

5.3.2. Min-cut Based Contraction

Application of the min-cut and the distinguished vertex lemmas to
each subset S in a partition of the graph requires knowledge of the weight
of edges leaving S, mincut(S), C~:~t), C~~~;)(S), and C~fnn)(s). The weight
of edges leaving each sub set can be computed in a single pass over the
graph in O(lEI) time. Clearly, the sum of the minima and the minimum
and maximum of the sum of the vertex costs for each sub set can be com
puted in O(I VI·IDI) time. The difficult part is computing the mincut. There
are two options: use an easily obtained lower bound on the mincut, or
compute it exactly.

If S is connected, then mincut(S) is not less than than the minimum
weight edge in S. We may find the lightest one by examining all edges
internal to S. For a particular partition of the graph (defined by a
threshold value t), we may determine the lightest edge of each sub set in
O(lEI) time. With this simple lower bound on the min-cut, a single pass of
the "Min-Cut" test takes O(I VI·IDI + lEI) = O(I VI + lEI) time.

In the second case, we compute the global min-cut of eaeh set S
exactly, using an algorithm of Goldberg and Tarjan which runs in O(I S1 4)

time. (14) In practice, when using this option, we only.invoke the min-cut
procedure when the size of the set is smaller than some predefined
value-because the running time of the min-cut procedure becomes unac
ceptable for large sets.

614 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

5.3.3. Distinguished Vertex Tests

The application of the extern al vertex test requires finding the external
vertex whose weight connecting it to a sub graph S in apartition of the
graph is greater than that of any other vertex. (Computation of the other
quantities is straightforward.) Using a SPA, for each subgraph S, we can
compute the total weight with which it is connected to each external vertex.
This operation is the same as the contraction step, except that we do not
modify the matrix W. In doing this for each subset, each edge will be
traversed at most twice: once from each vertex. Using the simple lower
bound on the min-cut (as earlier), a single pass of the external vertex test
takes O(I VI + lEI) time.

The internal vertex test is similar to the external vertex test except that
for each vertex VES we compute c~~a:)(s- {V}) and min Cv' This may be
done in the following way to make the test efficient. Record the cost vector
for the set, Cs. Now, as each vertex is visited, make use of the fact that
C~:~)(S-{v})=max(Cs-Cv) and compute both this value and minCv

in O(IDI) time. The rest of the implementation of the test is the same as the
external vertex test. Thus, with the simple lower bound on the min-cut a
single pass of the internal vertex test takes O(I VI + I EI) time.

6. EXPERIMENTS

We now present an experimental study of the effectiveness of the con
traction operations developed earlier. The process of locating subsets and
verifying that they are O.S. is heuristic; such a study is therefore mandated,
and we view the data as prelirninary, pending better tools and a larger base
of experimental pro grams.

Using program analysis tools we have developed earlier, (11) we con
structed the distribution graphs for seven test programs and applied
various combinations of the contraction operations. The contraction opera
tions are sensitive to the adjacency structure of the graph as weil as the
values of the cost entries. For this reason, it is important to understand
how the test ca ses were generated. We begin by describing the example
programs and how the cost values were calculated. We then discuss con
traction strategies and examine the results of these strategies.

6.1. The Example Programs

We chose seven example programs that represent typical scientific
applications. Abrief description of each of the seven folIows. In addition,
Table I describes properties of the cost and adjacency tables for each of the

Efficient Distribution Analysis via Graph Contraction 615

pro grams. Each of the graphs is quite sparse. With the exception of
BlocklU, each program was analyzed with a reiatively small number of
distributions. Because BlockLU has many different feature sizes, a large
number of distributions are generated by our automatic system.

ADI: A two-dimensional alternating-direction implicit algorithm.
This uses cyclic reduction to solve tridiagonal systems.

BlocklU: A blocked algorithm for LU factorization of a dense
matrix.

Erle: A three-dimensional alternating-direction implicit algorithm.
This differs from ADI in that it uses Gaussian elimination to solve
the tridiagonal systems.

LU: Unblocked LU factorization of a dense matrix.
Shallow: A benchmark weather prediction pro gram; finite-difference

approximation of the shallow water equations.
Tred: Reduction of a dense matrix to tridiagonal form using

Householder transformations.
TwoZone: Solution of Poisson's equation in an L shaped domain by

Schwartz alternating procedure, using a Jacobi over-relaxation
method for the subdomain solver.

6.2. Cost Matrix Construction

In Section 2, we differentiated between three communication patterns:
all-to-all personalized communication, offset communication (shift), and
reductionjreplication communication. When analyzing a program, we
estimate the time of an elementwise operation to be proportional to the
amount of data on the most heavily loaded processor, with all arithmetic
operations requiring unit time per element. We estimate the time of a com
munication operation to be proportional to the maximum amount of data
sent or received by any one processor, with the constant of proportionality
determined by the type of operation. The three constants are p (for all-to
all), (I (for reductionjreplication) and v (for shift). (The names recall the
now ancient and disappearing Connection Machine jargon: router, scan,
NEWS). High-level operations in HPF give rise to one of these three types
of low-Ievel communication. Table II shows the correspondence between
high-level and low-Ievel communication operations. In general, it is
impossible to predict how varying the parameters, p, (I, and v, will affect
the contraction operations. Even the interaction between this model of
communication and the cost values generated is quite complex. Realign
ment costs are incorporated into the vertex cost matrix, while redistribu
tion costs affect adjacency information. Varying the parameters p the same

616 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

Table 11. Mapping of High-Level HPF Operations to Low-Level
Communication Types"

Coefficients of proportionality

High-level operation Low-Ievel communication type Constant

Redistribute
Stride realign
Axis realign
Offset realign
Replication realign
Subscript
Reduction

all-to-all
all-to-all
all-to-all

shift
broadcast
all-to-all

fan-in

p
p
p

p
(J

"Each of the three low-Ievel operations is modcled as requiring time proportional to the
amount of data communicated, with the constant of proportionality as shown.

factor changes the relationship between elementwise computation and
communication. Varying the parameter p can affect values in both, while
varying (1 or v can only affect values in the cost matrix. Because of these
complex interactions, we ran tests of the contraction operations for a
number of values of the parameters to see how the results changed.

6.3. Contraction Operation Strategies

The contraction operations may be applied individually, or in com
binations. In all, we experimented with 21 different combinations of the
contraction operations. In the discussion of the combinations of contrac
ti on operations we use a shorthand. The character "e" means repeated
application of edge contraction to all edges until the graph does not
change. The character "m" stands for the min-cut test, and "d" for the dis
tinguished vertex tests. By default, each of the "m" and "d" tests use the
simple lower-bound on the min-cut value. We also ran these tests using the
exact min-cut algorithm, but only for sub sets whose size is sm aller than a
specified threshold. These thresholds are indicated by a number following
the test combination, e.g. "eme:50." The contraction combinations
examined are listed here:

m m:25 rn:50 ern ern:25 ern:50 erne eme:25 erne:50

d d:25 d:50 ed ed:25 ed:50 ede ede:25 ede:50

e ememe emederne:50

Efficient Distribution Analysis via Graph Contraction 617

6.4. Results

For each of the seven pro grams, we generated test data assuming a 64
processor target using these five sets of comrnunication parameter values
shown in Table IH.

Case 1 reflects an architecture where comrnunication costs as much as
computation. There is no such machine widely available today, but such a
machine would tolerate a lot of redistribution, preferring dynamic distribu
tions over static ones. Thus, this case should thwart many of our contrac
tion operations.

Case 2 reflects an architecture where communication is only slightly
expensive. Cases 3, 4, and 5 describe architectures with progressively more
expensive communication. We expect that the cases with higher redistribu
tion costs will encourage static solutions to the distribution problem, and
thus expect our contraction operations to do weIl.

Rather than present tables containing all 735 data points, the contrac
tion data is summarized in a scatter plot in Fig. 1. Each of the test program
and communication parameter combinations appears along the X-axis,
with test programs abbreviated by the first letter of their name. A single
column of points illustrates the contraction obtained by all of the various
contraction combinations tried. The amount of contraction achieved by
combination "eme:50" is shown as a box, and "eme" is shown as a star. All
other combinations are simply shown as a dot. From this graph it is clear
that combination "eme:50" achieved the best contraction for almost all of
the tests. For only the first two test programs of Case 5 did it not achieve
the highest contraction rate.

The "eme" combination performs nearly as weIl as "eme:50" in many
of the tests. Using the min-cut approximation ensures that the contraction
tests ron in linear time, and these results show that this crude approxima
tion to the min-cut value is etTective in practice. If ron time is not a factor,
however, then using the exact min-cut pro duces better results in a few of
the few tests.

Table 111. Communication Parameter Values Used tor Generating Test Data

Case I p=1 a=1 v=1

Case 2 p= 10 a=1 v= I

Case 3 p= 100 a=1 v = I

Case 4 p= 100 a = lü v= I

Case 5 p= 1000 a=1 v= I

618

0-

Percent so
Reduction -

100-

Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

'.' '.'

.'~
t,

u " ~ i t '
e ~ I!I

~~
I!! ee "I!! I'!l

1111111 : 111111
ABELSTI ABELSTI

Casel ""'CaSe2

....

I,

, i •
,I'I!! "
ee~ I!! I!!

11111 I

ABELSTI
CäSe3

, • ' , '" I " 0 eme:SO

*eme
• other

I, h
1 i .:

:
I !!

" I!!

e'!"!! " I!!
'I!!I!!I!I!!II!!

1111111 1111 11

ABELSTI ABELSTI
Case4 CaseS

Test Program/Communication Parameters

Fig. I. Scatter plot of the contraction data. Combination "eme:50" is highlighted as a box,
and "emen appears as astar; all others are dots. Combination "eme:50" most consistently
achieves the highest contraction rate.

The overall percentage of reduction achieved by the "eme:50" com
bination is shown in Table IV. Initially, we did not expect to see high
contraction rates for Case 1 because redistribution is inexpensive and the
low edge-weights lead to small min-cut values relative to the node costs.
The results show that, on the contrary, the tests are efTective even when p
is small.

Table IV. The Percentage Contraction for the Combination "eme:50""

ADI Block Erle LU Shal Tred TwoZ

Case I 83% 91% 70% 90% 98% 95% 99%
Case 2 99% 98% 83% 90% 98% 95% 99%
Case 3 99% 98% 99% 95% 98% 95% 99%
Case 4 99% 98% 99% 90% 98% 95% 99%
Case 5 75% 77% 99% 95% 98% 96% 99%

U This particular combination proved the most effective overall.

Efficient Distribution Analysis via Graph Contraction 619

7. CONClUSIONS

When we began formulating algorithms for solving the distribution
problem, we originally feIt that sophisticated optimization techniques
would be needed. We now believe that contraction operations can dramat
ically reduce the size of a distribution problem without losing information.
With effective contraction operations, problem sizes become so small that
less powerful optimization strategies may suffice. Indeed, some problems
become small enough that it may be possible to find optimal solutions
exact1y.

Some issues that remain open are these. If one should relax the
requirement that the contraction operations remain lossless-that is, sub
graphs that are not necessarily O.S. are contracted anyway-what is the
tradeoff between compile time and run-time? Is it better to do a heuristic
optimization of a big but exact distribution problem or an exact optimiza
tion of a small but approximate problem? We also need to reexamine our
subset se1ection procedure. In the few cases in which the contracted graph
remains large, is it because we haven't found the right sub sets to test, or are
our lemmas not powerful enough to prove that these subsets are indeed
O.S?

8. SOFTWARE

Software implementing the graph contraction algorithms presented
here is available from the authors, or at URL ftp:jjriacs.edujpubj
Excaliburjexcalibur.html.

REFERENCES

I. R. Bixby, K. Kennedy, and U. Kremer, Automatie Data Layout Using 0-1 Integer
Programming. Teehnieal Report CRPC-TR93349-S, Center for Research on Parallel
Computation, Rice University, Houston, Texas (November 1993).

2. 1. M. Anderson and M. S. Lam, Global Optimizations for Parallelism and Locality on
Scalable Parallel Machines. Proc. ACM SIGPLAN '93 Con[. PLDI, Albuquerque,
New Mexico, pp. \12-125 (lune 1993).

3. S. Chatterjee, 1. R. Gilbert, R. Schreiber, and T. 1. Sheffier, Array Distribution in Data
Parallel Programs. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,
(eds)., Proc. 0/ the Seventh Ann. Workshop on Languages ami Compilers /or Parallel
Computing, Ithaca, New York, Springer-Verlag, Lecture Notes in Computer Science,
892:76-91, (August 1994). Also available as RIACS Teehnieal Report 94.09.

4. 1. Li and M. Chen, The Data Alignment Phase in Compiling Programs far Distributed
Memory Maehines. J. 0/ Parallel and Distrib. Comput. 13(2):213-221 (Oetober 1991).

5. S. Wholey, Automatie Data Mapping for Distributed-Memory Parallel Computers. Ph.D.
Thesis, Sehool of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania (May 1991). Available as Technical Report CMU-CS-91-121.

620 Sheffler, Schreiber, Pugh, Gilbert, and Chatterjee

6. M. Gupta, Automatie Data Partitioning on Distribllted Memory Multicomputers. Ph.D.
Thesis, University of IlIinois at Urbana-Champaign, Urbana, Illinois (September 1992).
Available as Technical Reports UILU-ENG-92-2237 and CRHC-92-19.

7. D. J. Palermo and P. Banerjee, Automatie Seleetion of Dynamie Data Partitioning
Schemes for Distributed-Memory Multicomputers. Talk presented at the Workshop on
Automatie Data Layout and Performance Predietion. Center for Research on Parallel
Computing, Rice University. (April 1995).

8. U. Kremer, NP-Completeness of Dynamic Remapping. Technical Report CRPC-TR93-
330-S, Center for Research on Parallel Computation, Rice University, August 1993.
Appears in the Proc. 0/ the Fourth Workshop on Compilers tor Parallel Computers, Delft,
The Netherlands (December 1993).

9. S. Chatterjee, J. R. Gilbert, and R. Schreiber, Mobile and Replicated Alignment of Arrays
in Data-Parallel Programs. Proc. 0/ Supercomputing '93, Portland, Oregon, pp. 420--429,
(November 1993).

10. T. J. Sheffier, R. Schreiber, J. R. Gilbert, and S. Chatterjee, Aligning Parallel Arrays to
Reduce Communication. Proc. 0/ Frontiers '95: The Fifih Symp. on (he Frontiers 0/
Massively Parallel Computation pp. 324-331 (February 1995 l.

I!. S. Chatterjee, 1. R. Gilbert, R. Schreiber, and T. 1. Sheffier, Modeling Data-Parallel
programs with the Alignment-Distribution Graph. 1. Programming Languages, 2:227-258
(1994). Special issue on compiling and run-time issues for distributed address space
machines.

12. P. HOllgh and T. 1. Shel11er, A Performance Analysis of Colleetive Communication on the
CM-5. Excalibur projeet meeting note.

\3. J. R. Gilbert, C. MoIer, and R. Schreiber, Sparse Matriees in MATLAB: Design and
Implementation. SIAM J. Matrix Anal. Appl. 13{ I):333-356 (1anuary 1992).

14. A. V. Goldberg and R. E. Tarjan, A New Approach to the Maximum-Flow Problem.
J. ACM, 35(4):921--940 (October 1988).

Pl'illled in Belgium

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

