International Journal of Parallel Programming, Vol. 24, No. 6, 1996

Transitive Closure of Infinite Graphs
and lts Applications

Wayne Kelly,! William Pugh,! Evan Rosser,' and
Tatiana Shpeisman'

Integer tuple relations can concisely summarize many types of information
gathered from analysis of scientific codes. For example, they can be used to
precisely describe which iterations of a statement are data dependent of which
other iterations. It is generally not possible to represent these tuple relations by
enumerating the related pairs of tuples. For example, it is impossible to
enumerate the related pairs of tuples in relation {[i/1—[i+2]|1<i<n—2}.
Even when it is possible to enumerate the related pairs of tuples, such as for the
relation {[i, j1— [, /"I <4, j, i’, j < 100}, it is often not practical to do so.
We instead use a closed form description by specifying a predicate consisting of
affine constraints on the related pairs of tuples. As we just saw, these affine con-
straints can be parameterized, so what we are really describing are infinite
families of relations (or graphs). Many of our applications of tuple relations rely
heavily on an operation called transitive closure. Computing the transitive
closure of these “infinite graphs” is very difterent from the traditional problem
of computing the transitive closure of a graph whose edges can be enumerated.
For example, the transitive closure of the first relation above is the relation
{[i1->[I"113B st i'—i=28A1<i<i'<n}. As we will prove, transitive
closure is not comutable in the general case. We have developed algorithms that
produce exact results in most commonly occuring cases and produce upper of
lower bounds (as necessary) in the other cases. This paper will describe ou algo-
rithms for computing transitive closure and some of its applications such as
determining which inter-processor synchronizations are redundant.

KEY WORDS: Integer tuple relations; transitive closure; dependence rela-
tions; redundant sychronization removal.

! Department of Computer Science, University of Maryland, College Park, Maryland 20742.
E-mail: {wak,pugh,ejr,murka}@cs.umd.edu.

579

0885-7458/96/1200-0579%09.50/0 © 1996 Plenum Publishing Corporation

580 Kelly, Pugh, Rosser, and Shpeisman

1. INTRODUCTION

This paper proposes a new general purpose abstraction called tuple rela-
tions, that is capable of concisely summarizing many kinds of information
gathered from analysis of scientific codes. We provide a number of opera-
tions on these tuple relations including a particularly powerful one called
transitive closure. We will show how transitive closure leads to simple and
elegant solutions to several program analysis problems.

An integer tuple relation is a relation whose domain consists of integer
k-tuples and whose range consists of integer k'-tuples, for some fixed k and
k'. An integer k-tuple is simply a point in Z*. The following is an example
of a relation from 1-tuples to 2-tuples:

{Lil-1 I <i=i'=j'<n}

One possible use of tuple relations is to concisely and accurately repre-
sent the data dependences in a program. For example, the relation given
here describes the data dependences from statement 1 to statement 2 in the
program shown in Fig. 1.

We use the term dependence relation rather than tuple relation when
relations describe data dependences. A dependence relation is a much more
powerful abstraction than the traditional dependence distance or direction
abstractions. The above program has dependence distance (0), but that
doesn’t tell us that only the last iteration of j loop is involved in the
dependence. This type of additional information is crucial for determining
the legality of a number of advanced transformations.”

Tuple relations can also be used to represent other forms of ordering
constraints between iterations that don’t necessarily correspond to data
dependences. For example, we can construct relations that represent which
iterations will be executed before which other iterations. We will see later
how taking the tranmsitive closure of these relations is a key element in
removing redundant synchronizations within loops. In the case of perfectly
nested loops with the entire loop body considered as an atomic statement,
doing so is not prohibitively expensive and gives us more power than any
of the previous papers on this topic. We also describe exact methods for

do2i=1,n
1 a(i,i) = 0
do2j=1,1i
2 b(i,j) = b(i,j) + a(i,3)

Fig. 1. Example program.

Transitive Closure of Infinite Graphs and Its Applications 581

removing redundant synchronization for the more general case of imper-
fectly nested loops with synchronization occurring between individual
statements. But just because our methods might be capable of computing
this exactly doesn’t mean that they can or should only be used in this way.
It is a relatively straightforward process to extend our exact method into
a framework in which accuracy can be traded off for efficiency.

As a third application of relations, we show how they can be used to
compute closed form expressions for induction variables.

The next section describes the general form of the relations that we
can handle, and the operations that we can perform on them. The remain-
der of the paper deals with the transitive closure operation. First, we
describe how transitive closure of relations leads to simple and elegant
solutions to several program analysis problems. We then describe the algo-
rithms we use to compute transitive closure.

2. TUPLE RELATIONS

The class of scientific codes that is amenable to exact analysis
generally consists of for loops with affine loop bounds, whose bodies con-
sist of accesses to scalars and arrays with affine subscripts. The following
general form of an integer tuple relation is therefore expressive enough to
represent most information derived during the analysis of such programs:

{[sl,..., Sid = [tse 13|V 31 ey iy, SL. F,}

i=1

where the F,’s are conjunctions of affine equalities and inequalities on the
input variables s, ..., 5., the output variables ¢,,.., 7,., the existentially
quantified variables «;,..., ;,, and symbolic constants. These relations can
be written equivalently as the union of a number of simpler relations, each
of which can be described using a single conjunct:

U {8150 S6] = [0 11130 5y &, 8L F i}

i=1

Table I gives a brief description of some of the operations on integer
tuple relations that we have implemented and use in our applications. The
implementation of these operations is described elsewhere!® (see also
http://www.cs.umd.edu/projects/omega or ftp://ftp.cs.umd.edu/pub/omega).

In addition to these operations we have also implemented and use in
our applications the transitive closure operator:

x—zeF*ewx=zviystx—>yeFAy—szeF*

582 Kelly, Pugh, Rosser, and Shpeisman

Table I. Operations on Tuple Relations

Operation Description Definition

FnG Intersection of Fand G x->yeFNGex—->yeFAx—>yeCG
FuG Union of Fand G x—>yeFNnGex—->yeFvx—yeCG
F-G Difference of Fand G x—=>yeF-Gox-2peFAx—-y¢C
range(F) Range of F yerange(F)<>3Ixst.x—yeF
domain(F) Domain of F xedomain(F) < 3Jyst.x—>yeF
FxG Cross product of Fand G x—->ye(FxG)=xeFAyeG
FoG Composition of Fand G x—>zeFeGeJyst.y-zeFAx—yeCG
FeG Join of Fand G x> ye(FeG)e>x—>ye(GoF)
FeG Fis subset of G x—»yeF=>x-yeCG

and positive transitive closure operator:
x—ozeFtex—ozeFviystxoyeFAy—>zeF™*

In previous work,”?’ we developed algorithms for a closely related
operation called affine closure. Affine closure is well-suited to testing the
legality of reordering transformations and is generally easier to compute
than transitive closure. But many of our applications require the full
generality of transitive closure.

Unfortunately, the exact transitive closure of an affine integer tuple
relation may not be affine. In fact, we can encode multiplication using
transitive closure:

{[x, y] = [x+1, y+z]}*is equivalent to:
{[x y]1-[x, y+2(x = x)]|x<x'}

Adding multiplication to the supported operations allows us to pose
undecidable questions. Transitive closure is therefore not computable in the
general case.

3. APPLICATIONS

This section describes a number of applications of tuple relations and
demonstrates the importance of the transitive closure operator.

3.1. Simple Redundant Synchronization Removal

A common approach to executing scientific programs on parallel
machines is to distribute the iterations of the program across the

Transitive Closure of Infinite Graphs and Its Applications 583

Original program: Dependence pattern:

doi=1, 3
do j=1, 4
a(i,j)=ali-1,j)+a(d, j-1)+a(i-1,j-1)

Program with posts and waits inserted:

doacrossi = 1, 3 2

doacrossj =1,4 ¢

if (1<i) wait 1,i-1
if (1<j) wait| 2, Ad-1
if (1<1and l<j) wait(3,i-1,j-1)
a(i,j)=a(i~1,j +a(1,)-1)+a(1 1,j-1)
xi 1< 3) post(1
f ()<4) post 2i

xf 1<3'and J<4) post(s 1,j)

Fig. 2. Example of redundant synchronization.

processors. If there are no dependences between iterations executing on dif-
ferent processors then the processors can execute completely independently.
Otherwise, the processors will have to synchronize at certain points to
preserve the orginal sequential semantics of the program. On a shared
memory system, the simplest way to achieve the necessary synchronization
is to place a post statement after the source of each dependence and a
corresponding wait statement before the sink of each dependence. Figure 2
shows the results of inserting posts and waits for the given example. As
this example demonstrates, and is often the case, many of the posts and
waits inserted by this approach are redundant. In this example, we can see
that the explicit synchronization that results from the dependence from the
write of a(i,j) to the read of a(i—1,j—1) is redundant, since the
appropriate execution ordering will always be achieved due to a chain
explicit synchronizations that result from the other two dependences.

The problem then is to identify which dependences need to be
explicitly synchronized. In this section, we restrict ourselves to a simple
case of this problem where: the loops are perfectly nested, the granularity
of synchronization is between entire iterations of the loop body (ie., all
posts occur at the end of the loop body and all waits occur at the start
of the loop body), and we assume each iteration may execute on a different
processor. This is the class of problems considered by some related work®
in this area. We will show how our approach improves on the related work
in this limited domain, then in Section 3.3, we will show how to extend the
approach to the more general problem.

We first compute a dependence relation d that represents the data
dependences between different iterations of the loop body (see Fig. 3 for an
example). Each of these dependences will have to be synchronized either
explicitly or implicitly. The transitive closure, d *, of this relation will con-
tain all pairs of iterations that are linked by a chain of synchronizations of

828/24/6-8

584 Kelly, Pugh, Rosser, and Shpeisman

doacross i ...
doacross j ...
a(i+3,j)=b(i-1,j~1)+ ...
b(i,j) =
... = b(i-2,j+1)+c(i~1,j-1)
c(i,i) = ali, i) + z(4,1)

@=Ll =li+3 ol —G+27i~1}u{lii—=+1,7+1}
a*F = (i, 5] =, Ba.best. i S3a+ 2B deriAa = —bdcFiAGTOALE0ACD DA FEFED> 1)
= {li sl =, Y Faat it mi+i'+sanitaici 4o Ae+2itin’ 4 Aivi <5+
a=a® = ([)= li+2 i~ Ul = i+ L 4]

The dependence from the write of a(i+3,j) to the read of a(i,j) is found
redundant.

Fig. 3. Example of determining dependences that must be explicitly synchronized.

length one or more. The relation d* od, which we denote d°™, therefore
contains all pairs of iterations that are linked by a chain of synchroniza-
tions of length two or more and will therefore not have to be explicitly syn-
chronized. So, the dependences that we do have to explicitly synchronize
are d—d**. Note that this is equivalent to computing the transitive reduc-
tion of d.

An example of the technique is presented in Fig. 3, an example from
Ref. 5. In simple cases such as in Fig. 3, we can compute the 2+ closure
directly (without using the general purpose techniques in Section 4), to get
a simpler form for the relation. Intuitively, a path in d* is made up of
individual arcs from d, each of which is attributable to one of the conjuncts
in d. To compute d* directly, we introduce an existentially quantified
variable for each conjunct ¢ in d, where the new variable represents the
number of arcs followed from ¢ for a path in d *. Each of these variables
is constrained to be >0 (there are no backward arcs) and their sum is con-
strained to be >0 (at least one arc from one conjunct in each path). For
d**, we constrain their sum to be >1, so at least two arcs must be
followed for a path to be included. The variables a, b, and ¢ serve this pur-
pose in Fig. 3.

In cases where complex dependence relations cause the transitive
closure calculation to be inexact, we can still produce useful results. We can
safely substract a lower bound on the 2+ closure from the dependences
and still produce correct (but perhaps conservative) synchronization.

Our approach improves on related work in the following ways:

1. We use tuple relations as an abstraction for data dependences
rather than the more traditional dependence distance representa-
tion. This allows us to handle non-constant dependences, which
previous work is not able to do (see Fig. 4).

Transitive Closure of Infinite Graphs and Its Applications 585

2. When a dependence is only partially redundant, we produce the
conditions under which it needs to be explicitly enforced, and we
can use that information to conditionally execute synchronization.

3. Dependence relations contain all conditions which must be
satisfied in order for the dependence to exist, including those con-
cerning the existence of the dependence at the edges of the itera-
tion space. Thus, we can apply the algorithm to nested loops
without having to make special checks in boundary cases.

A further discussion of related methods using transitive closure of
finite graphs helps explain the third point. These methods build an explicit
graph of a subset of the iteration space; each node represents an iteration
of the loop body, and each edge represents a dependence. Redundancy is
found either through taking the transitive closure or reduction of this
graph, or using algorithms that search a subgraph starting at the first itera-
tion. In a one-dimensional loop, provided all dependence distances are con-
stant, it is simple to find a small subgraph such that if a dependence is
redundant in the subgraph, it is redundant throughout the iteration space.
But in a nested loop, the existence of negative inner dependence distances
(such as (1, —2)) can result in nonuniformly redundant synchronizations."’
A chain of synchronizations may exist within part of the iteration space,
but at the edges of the iteration space, that chain may travel outside the
bounds of the loops, and so intermediate iterations in the chain do not

doacross 1 =1, n
doacross j =1, m
ACi,j+2%i) = A(i,3) + Z(d,3)
B(i,j) = B(i,j-4) + Y(i,3)

dyp = {li,j]l = [L,2i4+5] |1 <inA2t+i < mAatL <5}
dog = {{i il = lLi+3l 1S i<nA1< i< m)
d = dy; Udgy

at = ([, =1, 138st 5 =j+4BA1€ 1 <nn1<i<s —ani’ gm)u
(il =245 l1€i<nAi4+i<mALLj}

a2t = at o4

= {li il =[] 138stj+4B8=3i4+ A1<i<nn <mAaLt < jnaF2i45< 5)0
{lLad =it l1<i<nAadidi<mAar<u
(il = B,3'1 138 st j+48 = A1<i<nA1Ci<i ~8n;' g m)
d=-a®t = ([i,]] = [L2i4+3]11<i<3,nA2i+j<mAL1L U

(il = [6,2i+5] | B8st. 0= 141 +28A5Ki<nA1Z< A2+ m}u
{fi,il—=li.j+412<i€nA1<iS m~4}

We find that dj; does not need to be enforced when i > 3 and i is even (and
thus 21 is a multiple of 4.)

Fig. 4. Example of nonconstant dependence distances and partial redundancy.

586 Kelly, Pugh, Rosser, and Shpeisman

l<=j<=n
'
! E n+l non-redundant
! O H O dependences
‘ P e >
i 20 R \i O dependences to/from
H iterations not executed
so; ‘o —
; 4 alternate path
H
4 O E O >
H

redundant dependences

Fig. 5. Finding alternate paths at boundaries; (3,0) is redundant when n> 1.

execute; thus it is difficult to construct a small graph that finds all uniform
redundancy. Figure 5 shows an example of finding an alternate path to
handle the boundary cases. Methods that search a small graph, but which
may miss some redundancy when nesting is greater than 2 have been
developed.¥

Because we start with more precise dependence information, we do not
have the same problem. No out-of-bounds iteration is in the range or
domain of any dependence relation. Thus, we never need to worry that the
2+ closure will contain chains that are illegal at the edges of the iteration
space. At the same time, since the 2+ closure contains all chains of two or
more ordering constraints, we consider all possible alternate paths.

3.2. Testing the Legality of Iteration Reordering
Transformations

Optimizing compilers reorder the iterations of statements so as to
expose or increase parallelism and to improve data locality. An important
part of this process is determining for each statement, which orderings of
the iterations of that statement will preserve the semantics of the original
code. Before we decide which orderings will be used for other statements,
we can determine necessary conditions for the legality of an ordering for a
particular statement by considering the direct self dependences of that

doi=1,n do 2 i=1, 4
doj=t.m . oy ! a(i) = b(i)
1 a(i,j) = a(d,j) + a(i-1,j+1) 2 b(i) = a(i-1)
2 b(i,7) = b(i,j) + ali,j)
Example 1 Example 2

Fig. 6. Examples of direct and transitive self dependences.

Transitive Closure of Infinite Graphs and Its Applications 587

for each statement r
for each statement p
for each statement ¢
dpg = dpg U drg 0 (drr)* 0 dyr

Fig. 7. Modified Floyd-Warshall algorithm.

statement. For example, it is not legal to interchange the i and j loops for
statement 1 in Example 1 in Fig. 6 because of the direct self dependence
from a(i—1, j+1) to a(i, j). It is legal, however, to interchange the i and
J loops for statement 2.

We can obtain stronger legality conditions by considering transitive
self dependences, as is demonstrated by Example 2 in Fig. 6. In this exam-
ple, executing the i loop in reverse order is legal for both statements with
respect to direct self dependences (there aren’t any), but is not legal with
respect to transitive self dependences.

To compute all transitive dependences we use an adapted form of the
Floyd-Warshall algorithm for transitive closure. The algorithm is modified
because we need to characterize each edge, not simply determine its exist-
ence. We denote by d,, the data dependences from statement s, to state-
ment s,. The algorithm is shown in Fig. 7. In an iteration of the k loop,
we update all dependences to incorporate all transitive dependences
through statements 1..k. The key expression in the algorithm is
d,o(d,)*d,. We include the (d,,)* term because we want to infer trans-
itive dependences of the following form:

If there is a dependence from iteration 7, of statement s, to iteration #, of state-
ment s, and a chain of self dependences from iteration i, to iteration i; and
finally a dependence from iteration i; to iteration i, of statement s, then there
is a transitive self dependence from iteration i, to iteration iy.

In Ref. 6 we describe a framework for unifying iteration reordering
transformations that uses a legality test similar to those described earlier.

3.3. General Redundant Synchronization Removal

In this section, we consider a more general form of the problem
described in Section 3.1. We no longer require the loops to be perfectly
nested, the granularity of synchronization is now between iterations of par-
ticular statements (i.e., posts and waits occur immediately before and after
the statements they are associated with) and we know how iterations will
be distributed to the physical processors. For example, we might know that
iterations are distributed to a virtual processor array via a data distribution

588 Kelly, Pugh, Rosser, and Shpeisman

and the owner computes rule, and the virtual processor array is folded
onto the physical processor array in a blocked fashion.

For each pair of statements p and ¢, we construct a relation c,, that
represents all ordering constraints on the iterations that are guaranteed to
be satisfied in the distributed program. Such ordering constraints come
from two sources:

1. If there is a data dependence from iteration i of statement p to
iteration j of statement g (denoted i — jed,,), then i is guaranteed
to be executed before j in any semantically equivalent distributed
version of the program.

2. If iteration i of statement p and iteration j of statement g will be
executed on the same physical processor (denoted s,(i)=s,(/)),
and iteration i is executed before iteration j in the original execu-
tion order of the program (denoted i<, j), then i is guaranteed
to be executed before j in the distributed program.

Combining these ordering constraints gives:
CP‘I = dl’ll Y {i—) J | l..<pt/j A Sp(i) = Sq(j)}

Unlike in Section 3.1, we cannot determine which dependences need not be
explicitly synchronized simply by computing (c,,q)“. A synchronization
may be redundant because of a chain of synchronizations through other
statements. To determine such chains of ordering constraints, we first apply
the algorithm in Figure 7 subtituting ¢, for d,, and producing c/,,. This
gives us all chains of ordering constraints of length one or more. We then
find all chains of ordering constraints of length two or more using:

"o '
Cpq = U Crg®Cpr

re {statements}

We do not need to explicitly synchronize iterations if they will be
executed on the same physical processor, or if there is a chain of ordering
constraints of length two or more. Therefore the only dependences that we
have to synchronize explicitly are:

dpq" {i_’jlsp(i) =Sr1(j)} _ch/

If the number of physical processors is not known at compile time, the

expression s,(i) =s,(j) may not be affine. In such cases, we can instead use

the stricter requirement that the two iterations will execute on the same vir-
tual processor. This expression is always affine for the class of programs

Transitive Closure of Infinite Graphs and Its Applications 589

and distribution methods that we are able to handle and is a sufficient con-
dition for the two iterations to be executed on the same physical processor.
So, any redundancy that we find based on this stronger requirement can be
safely eliminated.

Related work!> 78 addresses the case of synchronization between
statements using methods similar to those used for the simple case. Most
of the methods build an explicit graph of a subset of the iteration space,
with each node representing an iteration of a statement. Redundancy is
found either by searching the graph'®’ or using transitive closure of the
graph!”®); dependences are restricted to constant distances; and the
problem regarding boundary cases still exists. These methods search a
small graph which finds all redundancy when nesting level is 2, but may
miss some redundancy when the nesting level is greater.”) None of these
methods consider imperfectly nested loops, and they do not use infor-
mation regarding distribution. One previous technique has the ability
to generate the conditions under which a nonuniformly redundant
dependence must be enforced'®, but the authors indicate that their techni-
que may require taking transitive closure of a large subset of the iteration
space.

Another method removes synchronization for a regular pattern of
communication between processors when using put communication
instead of send and receive, and in some cases can remove all syn-
chronization even when communication exists.””” Our framework can be
extended to incorporate the information that all flow dependences will be
implicitly synchronized by a put, and use that to eliminate other types
of dependences. We can also incorporate information about barrier
synchronization in our relations to remove redundant point-to-point
synchronization in their presence.”*?

3.4. Induction Variables

Tuple relations and the transitive closure operation can also be used
to compute closed form expressions for induction variables. We will use the
program in Fig. 8 as an example. In this example, we will be using 4-tuples
because there are four scalar variables of interest in this program: i, j, p,
and ¢. For each edge in the control flow graph, we create a state transition
relation which summarizes the change in value of the scalars as a result of
executing the code in the control flow node corresponding to that edge and
the conditions under which execution occurs (see Fig. 8). To investigate the
state of the scalar variables at statement 6, we could use the algorithm in
Fig. 7 to compute (along with other things) all transitive edges from the

590 Kelly, Pugh, Rosser, and Shpeisman

1 q=0
2 P=n
3 for i =1ton
4 for j =1 to 10
5 q=q+2
6 x[q] = ylpl
7 p=i
Rl ={[i,j,p,q] = [1,4,n,0]}
R2={[i,5,p,q| = [i.1,p, 4] | i < n}
R3={li,7,p,q] — l:,J.P,Q'f'ZFJ' < 10}
R4 ={[i.5,p, 9] = [i,J +1.p, ?
R ={li,7,p,q| = z_+1.j.=.,q% i> 10}
R6 = {li,7,p,q] = li,5,p,ql i > n}

Fig. 8. Induction variable example.

start node to the node containing statement 6. Alternatively, we can
directly calculate:

Ry o(Ry *(R3eR,)*eRs)* e R, ¢(R3 *Ry)* ¢ Ry
Which in this case evaluates to:
{[i, , p,q] = [, j,i'—1,20i" +2j' —20]]2<i'<n A 1 <’ < 10}
u{li P, gl =11, 7,0 2" NI1 </ <10 A 1<n}

From this result, we can deduce that at line 6 we can replace the
induction variable p with the expression (i= 1?n:i— 1) and the induction
variable ¢ with 20i + 2j — 20.

This general approach has uses other than induction variable recogni-
tion, such as deriving or proving assertions about scalar variables. The fact
that we could use transitive closure to potentially completely describe the
effect of arbitrary programs consisting of loops and conditionals with affine
bounds and conditions and assignment statements involving affine expres-
sions further demonstrates that transitive closure cannot always be com-
puted exactly, since such analysis is known to be uncomputable.

4. COMPUTING THE TRANSITIVE CLOSURE OF A SINGLE
RELATION

In this section we describe techniques for computing the positive trans-
itive closure of a relation. The transitive closure R* can be computed from
the positive transitive closure R* as R* U I, where [is the identity relation.
In the following text we will use the term transitive closure for both R*
and R*. The difference will be evident from the context.

Transitive Closure of Infinite Graphs and Its Applications 591

The exact transitive closure R* of a relation R can be equivalently
defined as R*=()® R*, where R¥=RoRo...oR. We will shortly
——————

k=1
k times
describe techniques that will often compute R* exactly. In situations where
they do not apply, we can produce increasingly accurate lower bounds
using the following formula:

R23<n>= U R* (1)
k=1

In some cases R},,,=R™ for all n greater than some small value. The
following theorem allows us to determine when a lower bound is equal to
the exact transitive closure:

Theorem 1. For all relations P and R such that R PSR the
following holds: P=R™ if and only if PoR< P.

Proof. The “only if” part is trivial. To prove the “if” part we will
prove by induction on k that R*< P. The assumption R< P proves the
base case. If R*< P then R“*'=(R*R)=(P-R)SP. Since R* =
U ,R* and Vk>1, R*< P, we know that R* < P. Thus P=R*. O

+ — R+ i + +
Corollary 2. R}y, =R* iff R}, RS R},

Thus, one approach to computing transitive closure would be to com-
pute more and more accurate lower bounds until the result becomes exact.
Although this technique works in some cases, there is no guarantee of ter-
mination. For example, the exact transitive closure of R= {[i]— [i+ 11}
cannot be computed using this approach. Thus more sophisticated techni-
ques are required. Section 4.1 describes techniques that work in the special
case of relations that can be described by a single conjunct. Section 4.2
describes techniques for the general case, making use of the techniques used
for the single conjunct case.

4.1. Single Conjunct Relations

4.1.1. Computing the Upper Bound on the Transitive Closure

For a certain class of single conjunct relations, the transitive closure
can be calculated straightforwardly. Consider the following example:

R={[in L= R =022 Aj—i=2 A Jast. j —i =20}
For any k >1 the relation R can be calculated as:

Rk:{[il,iz]—)[jlyjz]ljl_iIZZk /\j2—12=2k/\ Has.t.jl—i1=2a}

592 Kelly, Pugh, Rosser, and Shpeisman

By making k in this expression existentially quantified, we get the union of
R* for all k> 0; that is, R™:

(Liv, i1 = [0, J213k > 0 st ji =iy 2 2k A jp—ip =2k A Jast.j,—i; =2a)}

This method can be used for any relation that only contains constraints on
the differences between the corresponding elements of the input and output
tuples. We call such relations d-form relations.

Definition 3. A relation R is said to be in d-form iff it can be
written as:

{[ils i27~--’ im] - [jh jZ""’ jm] va’ a<p$m,
Lp Sjp"lp< Up /\‘30(.]) s.t. jP~iP=A1pap}

where L, is an integer or —oco, U, is an integer or +o0 and M, is an
integer.
The transitive closure of a d-form relation is:

{[il’ i?_vmv Z.m] nd [jl’jZ’---7 jm] | 3k>0 s.t. Vp, 1 Sp gn‘l:
L;pksjp-—iﬁ< Ul’k A 3a':" s.t. j[’_i”__—]v[’}a‘”} (2)

For any relation R that is not in d-form, it is relatively easy to com-
pute a d-form relation d such that R<d. For each pe {l,.., m}, we intro-
duce a new variable equal to j,—i, and project away all other variables.
We then look for upper and lower bounds and stride constraints on this
variable. So, it is always possible to compute a d-form relation that is a
superset of R, since in the worst case we can set M, to 1, L, to — oo and
U, to +o0. We can then use d* as an upper bound on R™ since for any
two relations R, and R,, if R, € R, then R;" € RS . To improve this upper
bound we can restrict the domain and range of d * to those of R by com-
puting D =d* nh, where h= Domain(R) x Range(R).

4.1.2 Checking Whether the Upper Bound is an Exact Transitive
Closure

We want to be able to check to see if D, (an upper bound) is an exact
transitive closure.

Lemma 4. If P=P* and PnI=(J then P is acyclic.

Proof. 1If there is a path from x to x in P, then since P is transitively
closed, x — xeP.

Theorem 5. For any relations R and P such that P is acyclic and
R P RUPSR, we prove PSR,

Transitive Closure of Infinite Graphs and Its Applications 593

Proof. For any x—zeP, well prove x—zeR*. We know
x—>zeRUP-R

The inductive proof is based on the length of the longest path from x
to z through P. Because P is acyclic this is a finite number for each given
x and z. Since x — z € P, there exists at least one path of length 1.

Base case: When x — z has a maximum path length of 1, x > z¢ Po P.
Since R< P, we know PoR< P P and therefore x — z ¢ Po R. Therefore,
x—->zeRER™.

Inductive case: (x — z has a maximum path length greater than 1) We
consider two cases:

1. If x> zeR, then x—>zeR™.

2. If x—zePoR, then there exists a y such that x> ye R€ P and
y — z€ P. The maximum length from x to z in P must be at least
one more than the maximum path length from y to z in P. There-
fore, by our inductive hypothesis, y—zeR* and therefore
x—zeR*. O

Theorem 6. For any relations R and P such that P is acyclic and
R* < P, we prove R* =P if and only if PERU P-R.

Proof. The proof that P=R* = P<(Ru PoR) is trivial. We need
to prove that P€ Ru Po R implies R* =P. Since RS R* = P, we satisfy
the conditions of Theorem 5 and we derive that P< R™. Since we also
know that R* < P, we prove R* =P,

Corollary 7. If D, nI=(, then
D,=R*i{ff D, S(RUR-D,) (3)

We collected statistics for all of the examples given in this paper, plus
about 2000 other real-life examples of transitive closure that arose from
our applications (primarily dependence analysis). This test showed that
97% of single conjunct closures performed in these examples were com-
puted exactly.

4.2. Mulitiple Conjunct Relations

Computing a lower bound on the transitive closure of a relation with
more than one conjunct via a naive application of Eq. 1 is prohibitively
expensive due to the possible exponential growth in the number of the con-
Jjuncts. We have developed techniques that try to limit this growth. We first
describe how to compute the transitive closure of a two conjunct relation;
then we show how to generalize this technique for relations with an
arbitrary number of conjuncts.

594 Kelly, Pugh, Rosser, and Shpeisman

4.2.1. Computing the Transitive Closure of Two-Conjunct Relations

Let R be a two-conjunct relation, R= C, u C,. The transitive closure
of R is:
(CLuCy) T =Cl-u(CteCoCh” (4)

If C¥oC,oC}is a single conjunct relation, its closure can be calculated
using the techniques described in the Section 4.1. C§oC, o C¥ will be a
single conjunct relation provided that C¥is a single conjunct relation, since
the composition of two single conjunct relations is always a single conjunct
relation. Unfortunately, C¥ is often not a single conjunct relation even if
C; is. To overcome this difficulty, we use a single conjunct approximation
of C¥, that we will denote C and call ?-closure. We try to select a C| that
has the following desirable property

C?‘°C2°CTEC";°C2°CE (5)

Our choice of C? will not depend on C,, so there is only hope, not a
guarantee, of satisfying this property. If this hope is realized then we can
use C? instead of C#¥in Eq. 4. If not, it may still be possible to limit the
number of conjuncts in (C, U C,)* through the use of C} if C¥-C,=
CloCyor C,0C¥=C,-C1.

Testing the property described in Eq. 5 directly is rather expensive, so
we instead use the following cheaper but possibly conservative test. If
(Ci—C) is convex (which is often the case) and (C]—C{)oCyo
(C3—C;)=C, then we know that the property described in Eq. 5 holds;
otherwise we assume it doesn’t. This test succeeded in all of the 2000-plus
examples described earlier.

4.2.2. Heuristics for Computing ?-Closure

We try to compute ?-closure for a relation R only if R™ is an exact
single conjunct relation. We do it by using a d-form relation (see Section
4.1).

For a d-form relation 4 we can compute d* as:

{[il: i29'--: im] - [jla j2’~-"jm] [3k>0 s.t. Vp’ 1 <P sm
Lk<j,—i,<UkA3a,st. j,—i,=M,a,)} (6)

For a relation R st. R*=D,, we use R'=d*nk, where I =
(Domain(R) L Range(R)) x (Domain(R) U Range(R)). Thus

R'=R*u(Ink)u(d* n(h —h)) (7)

Transitive Closure of Infinite Graphs and Its Applications 595

Although under certain conditions R’ = R*, in general this is not the case.
Note, that any relation R* includes identity while R’ includes just some
elements of it unless 4’ is a total set. Still, property 5 will often hold, since
the missing elements from 7 are often not in the domain or range of C,.
The additional elements in R’ (third term of 7) may not exist or may not
affect the result of the composition.

If a relation R is s.t. R* # D, we assume that ?-closure cannot be
computed and let R’ be the empty relation.

4.2.3. Computing the Transitive Closure of Multiple Conjunct Relations

The transitive closure of a relation with an arbitrary number of con-
juncts can be computed similarly to the transitive closure of a relation with
two conjuncts. Let R be an m-conjunct relation R=)7, C,. Its transitive
closure is:

m + m +
R+=Cl+u< ToUC,-oC?‘) =c,+u<U c;*oc,.oc;"> (8)
i=2 i=2

For ie{2,.,m},C}-C;oC} can be computed using the techniques
described in the two conjunct case. After all these terms are computed, the
same algorithm can be applied recursively to compute the transitive closure
of their union. The algorithm is shown in Fig. 10. The algorithm will ter-
minate when the transitive closure has been computed exactly or when we
are willing to accept the current approximation as a lower bound. In many
cases, what we accept as a lower bound turns out to be exact after all, and
can be proved to be so using Theorem 1. We computed the exact transitive
closure in 99% of the examples described earlier. An example of a trans-
itive calculation using this algorithm is shown in Fig. 12.

The order in which we consider the conjuncts in a relation can
significantly affect the performance of our algorithm. One heuristic that we
use is to consider first those conjuncts C; for which we can find a C’ that
satisfies Eq. 5. In some cases, pre-computing the positive transitive closure

R = {li1,42] = ff1.d2] | j1 —d1 = 1Aj2 = i2 2 2A1 < d1,41,52 S nA
i1 Sig<n} _

d ={111,'2]—'[J1111]|.71—¢1=1/\J2—1222}

a* = {[i1,i2] = L, d2] | i1 < 1A ja =iz 2 201 = 1)}

Domain(R) = {[i1,i2] | 1 € i1 <iz <n -2}

Range(R) ={[j1,j2]|2<j1<Jj2<n} | .)

) = {[i1,42] = [71,72] |1 i1 Si2 < n~2A2<7j; <j2 <n}

Dy ={[—[1,J2] [1 €41 iz Adp <j1Ajz <nA

{li1 iz} = L., 7]
J2 —d2 2 2(j1 - 41)

D, NI isempty and Dy C Ro Dy UR, thus Rt = D,

Fig. 9. Example of calculating transitive closure of a single conjunct relation.

596 Kelly, Pugh, Rosser, and Shpeisman

Input: R = U;:l C.
Qutput: R* or R'{B
Invariant: (RT 2 Tu W¥)A (ezact > Rt =Tuwt)
T =0; W = R; exact= true
while not (W = 0 or “accept W as W},") do
choose a conjunct A € W; remove A from W
//Set T, W =Tu AT A" o Wo A°
if we can determine AT exactly then
T=Tuat
Whew =0
for all conjuncts C; € W do
/] Whew = Waew UA" 0 C; 0 A*
// See Section 4.2
if (A" —AT)oCio(A” - A1) = C, then Waew = Waeu (A 0 Ci047)
else if C,0(A" =A%) = C, then Wpew = Waew U(CioA")U(AT 0Ci047)
else if(A7 —A+)oC, = C,; then W, ,, = W,.,,,,U(A? oC,)U(A? oCloA+)
else Woew = Whaw U (CioaT)u(atoC)u(at o Cioat)uC,
endfor
W = Waew
else
T=TUA},
W= (Woal)u(afgoWual)oWoaf)uw
exact = false
endwhile
{/ Use Corollary 2 to see if exact
if (W = 0 and exact = true) or (TUW)o (TUW) C (TU W) then
R*=Tuw
else +
Rig=TuWwW

Fig. 10. The algorithm for computing transitive closure.

of some of the conjuncts in the original relation (i.e., replacing C; by C}')
can also simplify the calculations.

The algorithm in Fig. 10 allows us to compute the exact transitive
closure of a multiple conjunct relation or its lower bound. If an upper
bound is required, it can be calculated in a manner similar to that of a
single conjunct relation.

14 ——— T

]
12 1 1
(2}
e 10 1
8 8]
a 1
£ 6 t "]
g]
E ar ' 1
2t [" .
] . = .
0 PR SO T Y S T S S SO TN TS ST S WS TN TUNI S TS ST A S S S |
128345678 910111213141516171819202122232425

Number of conjuncts

Fig. 11. Relationship between number of conjuncts and computation time.

Transitive Closure of Infinite Graphs and Its Applications 597

R ={[i,j] -, i+1]|1<45,i+1<nAéd =i}U
{iLn] = [+ 1,11 <4,i+1<n}
cy ={[i,j] = (7] | 1<i<j <nAl<i<n)
¢y ={[i,j] =[] 11<j<j<nAl<i<n}
C{oCaoC] ={,j]l=[i+1,77]|1<i<nAl<j<nAl<j <n}
Since, CloCr0Ci=CtoCr0Ct
(C1oCy0CH)t =(CioCyoC)*
=$[i,1 =[] 11<i<é¥ <nAl<j,j < n}
R* =CFU(CloCyoCy)*
={[j] =[] (1<ji<i<nanl<i<nAi=#)U
L =71 (1<i<? <nAl<i<nAl< <n)}

Fig. 12. Example of transitive closure calculation.

The time required to compute transitive closure obviously increases
with the number of conjuncts in the original. Figure 11 shows the time
taken by our algorithm, as implemented in C++ as part of the Omega
Library, for the entire set of examples described earlier. Experiments were
performed on a Sparc 10/51 with 64MB of main memory.

5. CONCLUSIONS

We have presented a number of applications for the transitive closure
of tuple relations:

— Avoiding redundant synchronization of iterations executing on dif-
ferent processors.

— Precisely describing which iterations of a statement are data
dependent on which other iterations, and using this information to
determine which iteration reordering transformations are legal.

— Computing closed form expressions for induction variables.

While problems such as induction variable recognition and redundant
synchronization elimination might be better handled in practice by other
more specific methods, we include them here to demonstrate that in both
cases, the fundamental problem to be solved is transitive closure. Once we
have discovered this, we can develop specific algorithms, or apply transitive
closure in a controlled way.

We have also presented algorithms for transitive closure that produce
exact results in most commonly occuring cases and produce upper or lower
bounds (as necessary) in the other cases. Our experiments show that we
produce exact results for most of the programs we have considered. Future
work is needed to ensure that we can efficiently generate concise results in
more cases.

598 Kelly, Pugh, Rosser, and Shpeisman

Tuple relations are a useful, general purpose program abstraction, and
transitive closure is a particularly powerful operation that can lend insight
into the nature of these problems, as well as be a useful tool for their
solution. We believe that the applications described here are only a small
subset of what is possible.

6. AVAILABILITY

The transitive closure algorithms are implemented in the Omega
Library, which is available from ftp://ftp.cs.umd.edu/pub/omega.

REFERENCES

1. Wayne Kelly, and William Pugh, A Framework for Unitymng Reordering Transforma-
tions. Technical Report CS-TR-3193, Department of Computer Science, University of
Maryland, College Park (April 1993).

2. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott, The Omega Library Interface Guide. Technical Report CS-TR-3445,
Department of Computer Science, University of Maryland, College Park (March 1995).

3. Wayne Kelly and William Pugh, Finding Legal Reordering Transformations Using Map-
pings. Seventh Int’l. Workshop on Languages und Compilers for Parallel Computing Lecture
Notes in Computer Science, Vol. 892 Ithaca, New York Springer-Verlag. (August 1994).

4. V. P. Krothapalli and P. Sadayappan, Removal of Redundant Dependences in
DOACROSS Loops with Constant Dependences. Proc. of the Third ACM SIGPLAN
Symp. on PPPP, pp. 51-60 (July 1991).

5. Ding-Kai Chen, Compiler Optimizations for Parallel Loops With Fine-Grained Syn-
chronization, Ph.D. Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1994. Also available as CSRD Report 1374.

6. Wayne Kelly and William Pugh, A Unifying Framework for Iteration Reordering Trans-
formations. Proc. of the IEEE First Int’l. Conf. on Algorithms and Architectures for Parallel
Processing, Brisbane, Australia (April 1995).

7. S. P. Midkiff and D. A. Padua, Compiler Algorithms for Synchronization. I[EEE Trans. on
Computers, C-36(12):1485-1495 (1987).

8. S. P. Midkiff and D. A. Padua, A Comparison of Four Synchronization Optimization
Techniques. Proc. IEEE Int’l Conf. on Parallel Processing, pp. I1-9-11-16 (August 1991).

9. M. Gupta and E. Schonberg, Static Analysis to Reduce Synchronization Costs in Data-
Parallel Programs. Conference Record of POPL *96: The 23RD ACM SIGPLAN-SIGACT
Symp. on PPL (January 1996).

10. Chau-Wen Tseng. Compiler Optimizations for Eliminating Barrier Synchronization. Proc.
of the Fifth ACM SIGPLAN Symp. on PPPP, pp. 144-155 (July 1995).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

