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Connection Analysis: A Practical 

Interprocedural Heap Analysis for C 1 

Rakesh Ghiya 2 and Laurie J. Hendren 2 

This paper presents a practical heap analysis technique, connection analysis, that 
can be used to disambiguate heap accesses in C pro grams. The technique is 
designed for analyzing programs that allocate many disjoint objects in the heap 
such as dynamically-allocated arrays in scientific programs. The method stat­
ically estimates connection matrices which encode the connection relationships 
between all heap-directed pointers at each program point. The results of the 
analysis can be used by parallelizing compilers to determine when two heap­
allocated objects are guaranteed to be disjoint, and thus can be used to improve 
array dependence and interference analysis. The method has been implemented 
as a context-sensitive interprocedural analysis in the McCAT optimizingjparal­
lelizing C compiler. Experimental results are given to compare the accuracy of 
connection analysis versus a conservative estimate based on points-to analysis. 

KEV WORDS: Pointer analysis; heap analysis; pointer disambiguation. 

1. INTRODUCTION AND BACKGROUND 

Optimizing and parallelizing compilers rely upon accurate static disam­
biguation of memory references, i.e., determining at compile-time, if two 
given memory references always access disjoint memory locations. 
Although there has been a long history of developing methods for disam­
biguating array references, there has been an increasing interest in a variety 
of methods for disambiguating pointer references. This is becoming more 
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important as optimizing and parallelizing compilers are being developed 
for languages supporting pointers such as C and FORTRAN90. 

The pointer analysis problem can be divided into 2 distinct sub­
problems: (1) disambiguating pointers that point to objects on the stack, 
and (2) disambiguating pointers that point to objects on the heap. There 
has been a considerable amount of work in both of these areas, (I-17) 

although more attention has been paid to actually implementing methods 
that work weIl for stack-allocated objects.(IQ· 11, 15-17) A complete discussion 
and comparison of these methods can be found in Ref. 18. 

Stack-directed pointers exhibit the important property that their 
targets always possess a name (the name of the variable allocated to that 
location on the stack). Using this property, pointer relationships can be 
conveniently captured in the form of points-to pairs where the points-to 
pair (p, x) denotes that pointer variable p points to the data object x. 

Unfortunately this ni ce property of having a static name for all targets 
does not hold for heap-allocated data items, In fact, all the objects in the 
heap are allocated via a memory allocation function and are anonymous. 
Heap objects cannot be referenced by their name, they can only be accessed 
through point dereferences like *r, r -;. item and a[i], where rand aare 
heap-directed pointers. One might imagine that one could genera te sym­
bolic names for heap objects, but this is also difficult as a potentially 
infinite number of them can be created. To further complicate the problem, 
objects in the heap are dynamically linked, and more importantly delinked. 
Hence, there is no natural way of naming even collections of objects (e.g., 
linked structures). Unlike arrays, both the number of linked structures and 
the number of objects belonging to a given linked structure, vary dynam­
ically. Thus, in order to estimate more accurate information about heap­
directed pointers, a different approach is required. 

In addition to designing the heap analysis itself, it is also important to 
determine how the heap analysis interacts with the stack analysis, and to 
design an analysis that can be effectively implemented in real C or FOR­
TRAN 90 compilers. It is interesting to ex amine three recently implemented 
strategies. Landi and Ryder have reported on an implementation of an 
interprocedural strategy for C that estimates alias information in terms of 
pairs of object names. (10) An object name consists of a variable and a 
(possibly empty) sequence of dereferences and field accesses. Typical alias 
pairs are: (**a, *b), (* (a -;. next), * ( b -;. next) ). In the presence of recur­
sive data structures, the number of object names is infinite. To avoid this, 
they k-limit object names. Choi et al. (11) have been implementing a method 
for FORTRAN90, and they also compute aliases of pairs of access 
paths. Their access paths are similar to object names. (10) However, they do 
not use access paths to name heap objects. Instead, they use the place 
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(statement) in the pro gram, where an anonymous heap object is created, to 
name it, as in Ref. 8. To avoid giving the same name to heap objects 
created at the same statement, but along different call-chains, they qualify 
the names with procedure strings. Arecent approach for C is the 
implementation of a context-sensitive method for the SUIF compiler 
system.(16) In this approach, a points-to representation is used, however, 
they use the concept of location sets to specify both a block of memory, and 
a set of positions within that block. Blocks of memory that are heap­
allocated are labeled by their allocation context. 

In all three of these approaches the stack-directed and heap-directed 
pointer problems are solved together. In contrast, our approach is to 
decouple the problems and to first solve the stack-directed pointer problem 
using points-to analysis, (15,19) and then use the result of points-to analysis 
as a starting point to solve the heap-directed pointer problem. The motiva­
tion for decoupling the problems is that the solutions for the two problems 
are quite different, and by concentrating on each problem separately we 
can design appropriate abstractions and analysis rules. For the stack­
directed pointer problem we calculate direct pointer relationships between 
named locations, whereas for the heap-directed pointer problem we need to 
collect more general relationships (such as which heap-directed pointers 
possibly lead to a common node). This decoupling is also beneficial from 
a software development point of view. By using a simple model for the 
heap in points-to analysis, we can simplify the points-to analysis rules, and 
reduce the number of objects that must be abstracted (we have only one 
object called heap, whereas the other combined approaches must use many 
names for objects in the heap). This leads to a faster and more space­
efficient points-to analysis. Similarly, our heap analysis is simplified and 
faster because we can use the result of points-to analysis to locate only 
those pointers that point to the heap, and those functions which access 
heap-directed pointers (heap functions). We then evaluate the heap rela­
tionships only for this sub set of heap-directed pointers, and only need to 
analyze the heap functions in the pro gram. 

In fact, we have a hierarchy of analyses that abstract relationships 
between heap-directed pointers. As one goes up the hierarchy, a more 
precise solution is obtained, hut at the cost of a more complex and expen­
sive analysis. The level-O analysis is simply the points-to analysis that treats 
the entire heap as one named location, and focuses on resolving stack 
points-to relationships. This paper focuses on the level-l heap analysis: con­
nection analysis. Connection analysis is targeted towards pro grams that 
allocate a number of disjoint data structures in the heap. Scientific applica­
tions written in C typically exhibit this feature, as they use a number of dis­
joint dynamically allocated arrays. Connection analysis can also be used to 
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distinguish between different linked data structures. The analysis was 
designed to provide a simple, but useful, analysis that would provide 
accurate results for its intended domain of applications. The rest of the 
paper is organized as folIows. In Section 2, we introduce the analysis and 
give some high-level analysis rules assuming a simple model where stack­
directed pointers and heap-directed pointers are clearly separated. The 
method has been fully implemented in the McCAT compiler as a context­
sensitive interprocedural analysis. In Section 3 we give abrief overview of 
our implementation of this method and we discuss the most pertinent 
features. We present some empirical data in Section 4, to demonstrate the 
cost and effectiveness of this abstraction for its intended domain of applica­
tions. We further discuss related work in Section 5. Section 6 gives our 
conclusions and briefly describes future work. 

2. CONNECTION ANALYSIS 

Connection analysis uses a simple, storeless, (12) abstraction designed to 
disambiguate heap accesses at a coarse level, but in an efficient and cost­
effective manner. For each program point the analysis computes a connec­
tion matrix, which is a boolean matrix summarizing the connectivity of 
heap objects. A heap object is defined as an object allocated in the heap 
memory. Our connection analysis is performed with respect to a connec­
tion matrix abstraction that is designed to disambiguate heap accesses at 
the data structure level. The term data structure in this context represents 
a connected region in the heap, i.e., if the heap is viewed as an undirected 
graph with heap objects as nodes and links between them as edges, each 
connected component forms aseparate data structure. Two disjoint data 
structures contain no common heap objects. For example in Fig. I, the 
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(a) Stack and Heap 

I IiPlqlrlsltl 
p 1 1 0 0 0 
q 1 1 0 0 0 
r 0 0 1 1 1 
s 0 0 1 1 1 
t 0 0 1 1 1 

(b) Connection Matrix 

Fig. I. An example connection matrix: (al stack and heap; (bl connection matrix. 
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heap consists of two da ta structures: one pointed to by pointers p and q 
and the other pointed to by pointers r, S, and t. Note that we cannot give 
names to these data structures, we can only refer to them as being pointed 
to by a given set of pointers. 

With these definitions, given any two heap-directed pointers say p and 
q, connection matrix abstracts the following program-point-specijic rela­
tionships: 

C[p, q] = 1: Pointers p and q possibly point to heap objects belonging to 
the same data structure. In our terminology, pointers p and q are con­
sidered to be connected, or to have a connection relationship. 

C[p, q] = 0: The heap objects pointed to by pointers p and q definitely 
belong to different data structures. In other words, pointers p and q 
are not connected. 

The useful information is the negative information. If pointers p and q are 
not connected, then heap accesses originating from them will always lead 
to disjoint heap locations, and thus not interfere. It is safe to report two 
heap-directed pointers to be connected, when they are not. However, if 
they can point to the same data structure, they should always be reported 
to be connected. 

We illustrate the abstraction in Fig. 1. Part (a) shows the structure of 
heap at a program point, while part (b) shows its abstraction as a connec­
tion matrix. The zero in entry C[p, r] indicates that pointers p and r point 
to disjoint data structures in the heap. The one in the entry C[ s, r] 
indicates that sand r point to objects belonging to the same data structure. 
Note that the entry CEr, t] is set to one, despite the fact that pointers rand 
t point to disjoint subpieces of the same data structure. This is because con­
nection matrix is designed to disambiguate heap accesses at the data struc­
ture level. More sophisticated abstractions, which can distinguish between 
subpieces of a data structure itself, are defined in higher levels in the 
hierarchy of heap analyses. 

The following are some other important characteristics of the connec­
tion matrix abstraction: 

• lt abstracts relationships only between stack-resident heap-directed 
pointers. As all heap accesses originate from these pointers, their 
relationships effectively capture the structure of the heap. For exam­
pIe in Fig. 1 b, the information that pointers p and S point to disjoint 
data structures also simultaneously implies that pointers p -+ N and 
S -+ L point to disjoint structures . 

• For each function in the pro gram, the connection matrix abstracts 
relationships between all stack-resident pointers which can be heap­
directed at some point in the pro gram and are direct1y or indirect1y 
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(through an indirect reference) accessible from the function. Names 
are naturally available from the program, for directly-accessible 
pointers. For indirectly-accessible pointers, special symbolic names 
are genera ted by points-to analysis and these names are reused by 
connection analysis. To know which pointers ever point to heap, the 
existing points-to information is used. If p points-to the heap, then 
the entry (p, heap) will appear in the points-to set. 

• If apointer, say p, does not point to a heap Iocation at a given 
program point, the conneetion matrix entry C[p, p] is set to zero at 
that program point. In this ease the pointer points to NULL or to 
a staek Ioeation . 

• The eonneetion matrix relationship is symmetrie, i.e., for any two 
heap-direeted pointers say p and q, we always have C[p, q] = 
C[ q, p J. The eonneetion relationships shown in Fig. 1 b illustrate 
tbis property. It is used in the aetual implementation to reduee the 
storage requirement by half. 

The eomplete list of the basie statements that can afTeet heap rela­
tionships is given in Fig. 2a. Variables p and q and the field f are of pointer 
type, variable k is of integer type, and op denotes the + and - operations. 
In this seetion we give the analysis rules for these eight basic heap 
statements with the restrietion that pointers p and q ean only point to heap 
objeets. These rules are simple to deseribe and clearly illustrate the basie 
principles of eonneetion analysis. In the next seetion we disellss the exten­
sions that must be made to handle eomplete C programs where the efTeet 
of staek-based points-to relationships must also be taken into aeeount. The 
overall strueture of the analysis is shown in Fig. 2b. We have the eonnee­
tion matrix C at pro gram point x before the given statement, and we wish 
to eompute the eonneetion matrix C n at program point y. To this end, we 
define an analysis rule for eaeh of the eight statements shown in Fig. 2a. 
Eaeh rule eomputes the following sets of relationships: 

kilLset: Set of eonneetion relationships killed by the given statement, i.e., 
the set of relationships whieh where valid before the statement 
(program point x), but are not valid after proeessing it (program point 
V). The entries eorresponding to these relationships should be set to 
zero in the eonneetion matrix Cn-

gen...set: Set of eonneetion relationships genera ted by the given statement. 
The entries eorresponding to these relationships should be set to one 
in the new matrix Cn . 

Let H be the set of pointers whose relationships are abstraeted by the 
eonneetion matrix C. Let p, q, r, and s represent pointers in this set. 
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1. P = malloc () ; 

x1 
Build the new Connection Matrix 

2. p = q; V r,s E H, Cn[r,s] = C[r,s] 
3. p = q->f; 
4. p = &(q->f); [ Statement) Delete killed relationships 
5. p = q op k; V entries C(r,s) E kill--Bet, Cn[r,s] = 0 
6. P = NULL; Y t 
7. p->f = q; Add generated relationships 
8. p->f = NULL; Cn V entries C(r,s) E gen.--Bet, Cn[r,s] = 1 

(a) (b) (c) 

Fig. 2. Computing connection matrix Cn from C for basic statements. 

Assume that pointers can only point to heap objects or to NU L L. Further, 
assume that updating an entry C[p, q] also implies identically updating 
the entry C[ q, p]. This assumption is required due to the symmetric nature 
of connection relationships. The new connection matrix C n is computed as 
shown in Fig. 2c. First, the old connection matrix C is copied over to Cn­
Next, the entries in the kilLset are set to zero in the matrix C". Finally, the 
entries in the geILset are set to one in the matrix C", to get the complete 
new connection matrix. 

We now present the analysis rules for the eight basic statements. For 
each statement, we give the rules for computing their kill and gen sets. The 
new connection matrix can then be computed as shown in Fig. 2c. 

2.1. Allocating New Heap Cells 

p = malloc(): In this ca se pointer p points to a newly allocated heap 
object. All the existing connection relationships of p get killed. Also as no 
other pointer can point to this object, p will only have connection rela­
tionship with itself. This is stated with the foUowing rule. 

kiILset={C(p,s)lsEH 1\ C[p,s]} 

gen-set = {C(p, p)} 

The rule is illustrated in Fig. 3. Note that after executing the 
p = malloe () statement, p is only connected with itself. 

~a~:~\ ~a::~ km{~~"),C(",),C(,,,)) 
q '<=:>I p = malloc() i=:> q - - , 

gen--"et = 
s s {C(p,p)} 

Fig. 3. Example of analyzing p = malloc ( ). 
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2.2. Pointer Assignments 

Basic heap statements 2 through 5 in Fig. 2a (p = q, p = q ...... f, 
p=&(q ...... f) and p=NULL), have a common attribute: all of them 
update the stack-resident pointer p, and make it point to a new data struc­
ture. They do not modify the structure of the heap itself. Their effect on 
connection matrix information can be summarized using a general rule, as 
discussed below. 

p = q: Pointer p now points to the same heap object as q, and hence 
to the same data structure as q. All the existing relationships of p get killed, 
and p gets connected to all pointers connected to q. If q is presently heap­
directed (C[ q, q] = 1), then p is also heap-directed after the statement. So 
the entry C(p, p) is added to the gen....set, if we have C[q, q] = 1. We 
present the overall rule for this statement here. 

kilLset = {C(p, s) I s e H /\ C[p, sJ} 

getLset = {C(P, s) IseH /\ C[q, s]} U {C(p, p) I C[q, q]} 

This rule is illustrated in Fig. 4. Note that after executing the state­
ment p = q, p is connected with everything that q was connected with 
before the statement. 

Note that if q presently points to NULL, p should also point to NULL 
after the statement. In this case all entries C[ q, s] will be zero, resulting in 
an empty geILset. Consequently all entries Cn[p, s] will also be zero after 
the statement, indicating p to be pointing to NULL, as desired. Similarly 
if q happens to be pointer p itself, resulting in the statement p = p, the gen 
and kill sets would be identical. In this case the connection matrix would 
remain unchanged, as required. Thus, this rule is general enough to take 
into account various special cases. 

p = q ...... f: Pointer p now points to the heap object connected to 
the object pointed to by q through the pointer fie1d f. Thus it points to the 
same da ta structure as q, even if not to the same heap object as q. So 

kill..set = 
{ C(p,p), C(p,r) } 

gen-set = 
{ C(p,p), C(p,q), C(p,s) } 

Fig. 4. Example of analyzing p = q. 
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kilLset = 
{ C(p,p), C(p,r) } 

gen..set = 
{ C(p,p), C(p,q), C(p,s) } 

Fig. 5. Exarnple of analyzing p = q -> f. 

the analysis rule for this statement is same as that for the statement p = q. 
The effect of this statement on connection relationships is demonstrated in 
Fig.5. 

This rule incurs some imprecision, when the pointer q -+ f points to 
NULL. In this case, pointer p should also point to NULL after the state­
ment. However we would report it to be pointing to the same data struc­
ture as q. This information is safe but less precise. This happens because we 
cannot determine if q -+ f presently points to NU L L, and not to a heap 
object. In other words, q -+ f is a heap-resident pointer, while connection 
matrix only abstracts the relationships (and nilness) of stack-resident 
pointers. 

If pointers p and q are not distinct, the statement can be of the form 
p = p -+ f. The rule for this case is same as for the statement p = p, which 
does not change any connection relationships, as required. 

p = & ( q -+ f): Pointer p now points to the field f of the heap object 
pointed to by q, as shown in Fig. 6. For the purpose of our analysis we 
consider apointer pointing to a specific field of a heap object, to be 
pointing to the object itself. Thus, this statement is equivalent to the state­
ment p = q for connection analysis. 

p = q op k: This rule represents pointer arithmetic. After the 
arithmetic operation, q continues to point to the same heap-object, though 
at a different offset, as shown in Fig. 7. We assurne that a heap-directed 
pointer does not cross the boundary of the heap object, when pointer 

~1~=2. ~1~,-2 : -2 ~ p·&(,>o p : -~ 
a f 9 a f 9 

kill..set = 
{ C(p,p), C(p,r) } 

gen..set = 
{ C(p,p), C(p,q) } 

Fig. 6. Exarnple of analyzing p = & (q -> f I. 
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kilLset = 
{ C(p,p), C(p,r) } 

gen..set = 
{ C(p,p), C(p,q) } 

Fig. 7. Example of analyzing p = q + k. 

arithmetic is performed on it. Otherwise, it can potentially point to 
memory not allocated by the program, and cause an execution error on 
being dereferenced. With this assumption about pointer arithmetic, this 
statement is equivalent to the statement p = q for connection analysis. 

p = NULL: Pointer p now does not point to any heap object 
allocated by the program, as shown in Fig. 8. It does not have any connec­
tion relationship with any pointer, including itself. Thus the efTect of this 
statement is to simply kill all the relationships of p, as presented here: 

kilLset = {C(p, s) I S EH 1\ C[p, sJ} 

gen-set = {} 

As illustrated in Fig. 8, after executing the statement p = NULL we 
have C[p, pJ = 0, indicating that p presently points to NULL. 

2.3. Structure Updates 

The statements discussed so far update a stack-resident heap-directed 
pointer. The following two statements update apointer field residing in a 
heap object, and hence modify the structure of the heap itself. 

p ~ f = NULL: This statement sets the field f to NULL. Consequently 
the sub piece pointed to by the pointer p gets disconnected from the 
remaining data structure. For example in Fig. 9, after the statement 
p -7 f = NULL, pointer p does not have connection relationship with 

~I: :~\ ~I------~ kill{~~,,), er".), er",) ) 
q ,c:::>jP=NULLpq "', 

gen..set = 
s s { } 

Fig. 8. Example of analyzing p = NULL. 



A Practical Interprocedural Heap Analysis for C 557 

kilLset = { } 

gen-set = { } 

Fig. 9. Example of analyzing p -+ f = NULL. 

pointers r, q, and s. However, to obtain this kill information we need to 
know the following: 

• Does setting the field f to NULL, really disconnect a subpiece from 
the data structure? It is possible that the data structure still remains 
connected due to other links. For example in Fig. 9, if pointers p 
and r are also connected through a 9 link, the sub piece pointed to 
by r would not get disconnected by the statement p --+ f = NU L L. 

• In case a sub piece gets disconnected, which pointers point to it? 

Unfortunately, connection matrix information is not sufficient to 
answer these questions. To answer the first question we need to have some 
approximation for the shape of the underlying data structure. The second 
question requires knowledge about the possible path relationships between 
the various pointers pointing to the data structure. As such information is 
expensive to abstract, we do not collect it for level-l heap analysis. 

In the absence of precise kill information we err conservatively, and do 
not kill any connection relationships for this statement. Further, this state­
ment does not generate any new relationships. Thus both the kill and gen 
sets are empty for this statement, and it does not affect connection rela­
tionships. This means that even though the real data structure is broken 
into two disjoint pieces (as illustrated in Fig. 9), our connection analysis 
cannot recognize this and will not be able to kill any connection rela­
tionships. 

p --+ f = q: This statement has two efIects. First it potentially discon­
nects a subpiece of the data structure pointed to by p, like the previous 
statement p --+ f = NULL. Next, it connects the data structures pointed to 
by p and q. As al ready discussed, precise kill information due to potential 
disconnection cannot be obtained. However new connection relationships 
are generated due to the interlinking of data structures pointed to by p and 
q. All pointers connected to p now get connected to all pointers connected 
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kilLset = { } 

gen..set = 
{ C(p,q), C(p,s), 

C(r,q), C(r,s) } 

to q (which include q itself). So we have the following analysis rule for this 
statement: 

kilLset = {} 

gen-set={C(r,s)/r,sEH 1\ C[p,rJ 1\ C[q,s]} 

This rule is illustrated in Fig. 10. In the real data structure, before the 
statement, pointers p and rare connected to p. After the assignment p is 
no longer connected to r, but it is now connected to q and s. However, 
note that the gen and kill sets for connection analysis cannot model this 
precisely. We cannot kill the connection between p and rand we also will 
generate a spurious connection between rand s. This happens because the 
disconnection of r from p cannot be infered from the information available. 

2.4. Pointers from Heap To Stack 

While defining the basic analysis rules, we had assumed that heap-resi­
dent pointers do not point to locations on the stack. With this assumption, 
if p points to a heap data structure, p ~ f should also point to anode in 
the same data structure. Without this assumption, p ~ f can also point to 
a stack location. The two cases are shown in Fig. 11 (with N denoting the 
field f). In part (b) of the figure, pointers p and q point to disjoint heap 
data structures from connection matrix point of view, as they are not 
linked by a heap-resident pointer. However, starting from pointer p one 
can access pointer q, and hence the da ta structure pointed to by q. On the 
contrary, we want that when p and q are not connected, p should not be 
able to access any heap location accessible from q, and vice versa. 

Note that heap-resident pointers pointing to stack locations (hence­
forth we term these stack locations as heap-pointed locations), as such do 
not affect the correctness of connection analysis. Their presence just 
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J---i ' - -D-_r:: ~ N -0 --->-
P I----i -------

q 1----1 ------~ 
L R 

22, 
(a) 

(b) 

Fig. 11. Handling stack-connection relationships. 

requires more careful interpretation of connection matrix information. 
Presently, we detect all heap-pointed locations by using points-to informa­
tion: any pointer x, involved in points-to relationships of the form 
(heap, x, P), falls into this category. In the presence of heap-pointed 
pointers, we ensure that any analysis or transformation using connection 
matrix information, makes the following conservative assumption: if a 
heap-pointed pointer is also heap-directed, the data structure pointed to by 
it can also be potentially accessed by any other heap-directed pointer. 

To enable more accurate assumptions, we plan to abstract another 
relationship called stack-connection. Pointer p is considered to be stack­
connected with pointer q, if some heap object belonging to the data struc­
ture pointed to by p, has apointer field pointing to q, i.e., the pointer field 
contains the address of q. Thus, in Fig. llb, pointer p is stack-connected 
with pointer q. With this abstraction, we can state the following: Two 
heap-directed pointers cannot access a common heap location, if they are 
neither connected nor stack-connected. 

828;24/6-6 
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To accurately capture stack-connection relationships, we need to build 
a stack-connection matrix for each function. This matrix abstracts rela­
tionships between heap-directed pointers and pointers which are reported 
to be heap-pointed by points-to analysis. Apointer becomes explicitly 
stack-connected with another pointer due to the statement p -> link = &q. 
Further if apointer p is stack-connected with another pointer q, all 
pointers connected with p also get stack-connected with q. Using these two 
basic rules, stack-connections can be computed in the same fashion as con­
nection relationships, both intraprocedurally and interproceduraIly. 

In our experimental study of a collection of 12 C programs presented 
in Section 4, we found some pro grams to have heap-pointed stack loca­
tions. However, none of these locations turned out to be of pointer type. 
We plan to analyze a larger set of pro grams to evaluate, if it is worthwhile 
to separateIy abstract stack-connection relationships. 

3. IMPLEMENTING CONNECTION ANALYSIS IN THE 
McCAT C COMPILER 

Connection analysis has been implemented as a context-sensitive inter­
procedural analysis in the McCA T optimizing/parallelizing C compiler. 
The analysis is performed on the SIMPLE intermediate representation 
which is a simplified, compositional sub set of C. (20-22) The analysis is 
performed after points-to analysis and is implemented in a similar 
framework. (15. 19) 

The implementation of connection analysis is structured as a simple 
analysis for each basic statement of the form presented in Section 2, a com­
positional rule for each control construct, and an interprocedural strategy 
that uses an unfolded invocation graph to capture all calling contexts. 
Recursion is handled via special recursive and approximate nodes in the 
invocation graph, and an interprocedural fixed-point computation is per­
formed at each recursive node. Recursive nodes correspond to each point 
in the program where a recursive function is first called, and the 
approximate nodes correspond to all recursive calls that follow. 

There are several important points in actually implementing this 
analysis. Firstly, one must be careful about how to apply the simple 
analysis rules presented in Section 2. The subtle point is that references of 
the form p -> f may refer to the stack, the heap, or to both the stack and 
heap. For example, in one calling context, p may point to a stack-allocated 
object that has a name, while in another calling context p may point to a 
heap-allocated object. Consider a statement of the form p -> f = q. If P 
points-to a stack-allocated object with the name x, then the appropriate 
connection analysis rule is x. f = q, whereas if p points-to a heap-allocated 
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object, the appropriate rule is p -4 f = q. Thus, the actual implementation 
first uses the points-to information to resolve all references of the form 
p -4 f into a set of possible stack and heap locations, and then applies the 
appropriate simple connection analysis rules, merging the results of all the 
outputs. 

The second important point is that a function f may change the con­
nection relationships between variables that are not visible inside f. Thus, 
symbolic names must be generated to capture all such invisible locations. 
A methodsimilar to the one used in the points-to analysis is used for this 
purpose. 

The final important point relates to minimizing the overhead in getting 
an efficient context-sensitive analysis. We have currently implemented two 
optimizations to this end. First, we do apre-pass over the program to iden­
tify functions that do not access any heap Iocation, and hence cannot affect 
connection relationships. We use points-to information to detect if any 
indirect access in a given function (and in any function called from it), can 
lead to the heap: if not, the function is flagged as a nonheap function. 
Connection analysis then analyzes the sparser program which contains only 
the heap functions. The second optimization consists of a powerful 
memoization scheme that stores pairs of previously computed input and 
output connection matrices for each heap function, and avoids re-analyzing 
the function body when the current matrix matches a previously computed 
input matrix, by simply re-using the corresponding output matrix al ready 
stored. In Section 4, we provide concrete empirical data to demonstrate the 
effectiveness of these optimizations in improving the efficiency of the 
analysis without compromising its accuracy. 

4. EXPERIMENTAL RESULTS 

In this section, we present the experimental results obtained from con­
nection analysis of a set of 12 C programs. We chose programs that use a 
significant amount of dynamic allocation, as benchmarks for our study. 
Next, we give abrief description of each benchmark program, and the 
principal data structures it uses: 

• genetic: It implements a genetic algorithm to test sorting. The prin­
cipal data structures used by this pro gram are three global dyn am­
ically-allocated arrays of type int, which are also passed as 
parameters to various functions. Henceforth, we will refer to 
dynamically-allocated arrays as simply dynamic arrays . 

• sim: This is a benchmark from computational biology that com­
putes k-best nonintersecting alignments within a single DNA 
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sequence or between two DNA sequences, using dynamic pro gram­
ming. The main data structures used by this pro gram are dynamic 
arrays of type long. It also uses dynamic arrays of pointers to struc­
tures. It allocates two types of structures: one with no pointer fields 
and one with a recursive pointer field. 

• blocks2: This is another benchmark from computational biology 
that computes multiple aligned blocks from a given family of 
pairwise alignments for DNA sequences. It mainly uses dynamic 
arrays of type long. It also builds a constraint graph data structure 
using dynamic arrays of pointers to recursive structures. 

• ear: This is a SPECINT92 benchmark that implements a model of 
acoustic propagation and detection in the human cochlea. It uses 
dynamic arrays and structures with nonrecursive pointer fields. 

• assembler: It implements an assembler and its principal data struc­
tures include: dynamic arrays and a linked list implementation for 
the symbol table. 

• loader: It implements a loader, and used the same data structures 
as the benchmark assembler. Both of these benchmarks are part of 
William Landi's test suite, (10) and have been obtained from hirn. 

• cholesky: It performs Cholesky factorization of a sparse positive 
definite matrix. It is part of the SPLASH(23) benchmark suite from 
Stanford. lt implements the sparse matrix using structures with non­
recursive pointer fields. These pointers point to dynamic arrays of 
type int. 

• mp3d: This is another benchmark from the SPLASH suite related 
to rarefied fluid flow simulation used in aerospace research. It 
dynamically allocates structures with no pointer fields or with one 
nonrecursive pointer field, and arrays of type int and float. 

• water: lt solves the molecular dynamics N-body problem to 
evaluate forces and potentials in a system of water molecules in the 
liquid state, using spatial data structures. It is part of the new 
SPLASH benchmark suite called SPLASH-2, (24) and we use the 
sequential version. The primary data structures used by this 
program are linked lists and dynamically-allocated arrays of 
pointers pointing to linked lists. 

• volrend: This benchmark renders a three-dimensional volume onto 
a two-dimensional plane using an optimized ray casting technique. It 
is also apart of the SPLASH-2 benchmark suite, and we analyze its 
sequential version. It dynamically allocates a number of bit vectors 
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Table I. Benchmark Characteristics 

Source SIMPLE Min Max Avg Ind To To Stack/ 
Program Lines stmts vars vars vars Refs Stack Heap Heap 

genetic 506 481 6 14 7 54 27 30 3 
sim 1422 1754 38 69 43 432 92 340 0 
blocks2 876 1071 28 54 33 378 97 281 0 
ear 4953 3485 38 51 39 292 147 147 2 
assembler 3361 3071 12 26 14 718 666 52 0 
loader 1539 1058 7 20 10 170 105 65 0 
cholesky 1899 2218 76 114 88 508 22 486 0 
mp3d 1687 1871 18 47 21 531 46 506 21 
water 2703 2418 8 62 26 601 32 569 0 
volrend 4207 4910 18 45 20 190 63 128 I 
chomp 430 478 20 27 22 129 47 82 0 
sparse 2859 1495 12 40 18 387 3 384 0 

to store, manipulate and render the image. Its principal data struc-
ture is an array of pointers on the stack, which point to bit vectors 
allocated in the heap. 

• chomp: It implements agame tree and uses two recUfsive data 
structures: a binary tree and a linked list, besides dynamic arrays. 

• sparse: It builds a large and random sparse matrix using two­
dimensional linked lists, then scales, factors and solves it. The sparse 
matrix data structure is a cyclic structure with nodes having links to 
nodes in the previous and next rows as weIl as columns. 

In Table I, we further summarize the foIIowing characteristics for each 
program: 

• Source lines including comments, counted using the wc utility. 

• Number of statements in the SIMPLE intermediate representation. 
This number gives a good estimate of pro gram size from the analysis 
point of view. 

• Minimum, maximum and average number of variables abstracted by 
the connection matrices over all functions in the program (this 
includes symbolic variables introduced by oUf analysis). These 
numbers indicate the size of the abstraction and the memory 
requirements of the analysis for a given pro gram. 

• Total number of indirect references in the program, and the number 
of indirect references where the dereferenced pointer can point to a 
stack location, to a heap location and to both a stack and a heap 
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Iocation. The number of indirect references in a program, provides 
a measure for the relevance of pointer analysis to its optimization. 
The number of indirect references referring to stack and heap Ioca­
tions, respectively represent the significance of stack-based points-to 
analysis and heap-based data structure analyses for the given 
program. 

The number of SIMPLE statements for the given benchmark set varies 
from 478 for chomp to 4910 for volrend, with an overall average of 2025 
statements per program. The maximum number of variables abstracted by 
the connection matrix of a function is 114 for cholesky, followed by 69 for 
sim. The maximum of the average number of variables abstracted, is 88 for 
cholesky followed by 43 for sim. All the benchmarks have substantial 
number of indirect references, with maximum 718 for assembler followed by 
601 for water. Further all of them have indirect references referring to both 
stack and heap locations, with the majority of indirect references referring 
to heap locations (except for the two benchmarks: assembler and loader). 
This makes the given benchmark set well-suited for evaluating a heap 
analysis. 

As the analysis may become conservative when apointer can point to 
both a stack and a heap location, it is interesting to note that the right­
most column indicates that this situation does not happen very often. We 
inspected the analysis output for programs genetic, ear, mp3d, and volrend, 
to detect the indirect references where this happens. We found that these 
indirect references mostly dereference formal parameters (of pointer type), 
to which both heap-directed and stack-directed pointers are passed as 
actuals, in different invocations of the given function. 

4.1. Measurements for Heap Related Indirect References 

In Tables II and III, we present empirical measurements for connec­
tion analysis of these benchmarks. Our measurements focus on indirect 
references in the pro gram that refer to heap locations. We motivate our 
measurements using the following example program: 

main() 
{ p = my_malloc(N); q = my_malloc(M); 

S: *p = INIT_VAL; 
T: *q = INIT_VAL; 

} 
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Table 11. Empirical Measurements for Connection Analysis Results 

*a/( *a). b a[i] 

Program refs cavg havg % decr refs cavg havg ''/0 decr 

genetic 0 0.0 0.0 0.00 30 1.7 5.2 67.74 
sim 96 3.4 23.2 85.55 244 1.5 20.4 92.41 
blocks2 125 8.6 22.7 61.83 156 5.3 22.4 76.43 
ear 42 2.7 3.8 27.22 105 2.4 7.1 66.26 
assembler 45 4.4 7.8 42.98 7 6.0 9.4 36.36 
loader 56 5.2 6.5 20.82 9 1.0 4.1 75.68 
cholesky 102 13.6 32.0 57.64 384 3.7 20.7 82.24 
mp3d 432 3.9 10.4 62.91 74 10.1 16.0 36.49 
water 270 15.8 31.1 49.11 299 14.8 24.1 38.68 
volrend 96 7.4 22.2 66.73 32 9.8 18.8 47.59 
chomp 56 5.2 7.2 27.65 26 1.6 3.8 59.00 
sparse 384 9.3 10.0 7.23 0 0.0 0.0 0.00 

This program alloeates two disjoint heap struetures and then initializes 
them. Before eonneetion analysis, the only information available from 
points-to analysis is: both the indireet referenees *p and *q (at statements 
Sand T respeetively) refer to the loeation heap, and thus the statements S 
and T interfere. After connection analysis, we know that the data struetures 
pointed to by p and q are never eonneeted (are disjoint), and henee the 
statements Sand T do not interfere. 

Table 111. Overall Empirical Measurements for Connection Analysis 

.a/( .a) .b/a[i] 

Program reis cavg havg % dccr 

genetic 30 1.7 5.2 67.74 
slm 340 2.1 21.2 90.29 
blocks2 281 6.8 22.5 69.89 
ear 147 2.5 6.1 59.40 
assembler 52 4.6 8.0 41.93 
loader 65 4.6 6.2 25.87 
cholesky 486 5.8 23.1 75.08 
mp3d 506 4.8 11.2 57.41 
water 569 15.3 27.4 44.29 
volrend 128 8.0 2\.3 62.52 
chomp 82 4.1 6.2 33.86 
sparse 384 9.3 10.0 7.23 
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Our experimental measurements attempt to quantify the improvement 
in resolution of heap data structures provided by connection information 
over that obtained from the conservative approximation of points-to 
analysis. With only points-to analysis one must assurne that each heap­
directed pointer is possibly connected with all other heap-directed pointers, 
while with connection analysis one can identify a more precise set. Thus, 
the effectiveness of connection analysis can be evaluated by comparing the 
total number of heap-directed pointers at an indirect reference (the conser­
vative estimate provided by points-to analysis), with the total number of 
pointers connected with the dereferenced pointer (the more precise estimate 
available from connection analysis). For example, in the above program, at 
statement S, the total number of heap-directed pointers is two (both p and 
q are heap-directed), while the number of pointers connected with the 
dereferenced pointer p is only one (p itself). The same situation holds at 
statement T. 

Following this strategy, we have calculated the following metrics for 
each benchmark pro gram (presented in Tables II and III): 

refs: Total number of indirect references in the program that can 
refer to heap locations. 

cavg: Average number of pointers that are connected with the 
dereferenced pointer at an indirect reference. This average is 
calculated as follows. At each indirect reference we determine 
the total number of pointers connected with the dereferenced 
pointer. Let us call this number cn_toLi for the ith indirect 
reference in the pro gram (as per lexical order). We do not 
include symbolic variables in this count as we genera te them 
only to facilitate interprocedural mapping, and they cannot be 
accessed or dereferenced by the program. Further if the 
dereferenced pointer is only connected with itself, the count 
cn_toLi will be one for the given indirect reference. We then 
sum the numbers cn_toLi for all indirect references, and divide 
this sum total denoted as cn_sum_tot by the total number of 
heap related indirect references in the program (refs), to obtain 
the average cavg. 

havg: Average number of pointers that are heap-directed at an 
indirect reference. This average is calculated in the same 
fashion as cavg. First, at each indirect reference the total 
number of heap-directed pointers is calculated as heap_toLi. 
Next, this number is summed for all indirect references, and the 
sum total heap-sum_tot is divided by refs to obtain the 
average havg. 
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decr: A measure to approximate the percentage decrease in the 
number of connection relationships provided by connection 
information over points-to information. It is calculated using 
the following formula: ( ( heap_sum_tot - en_suffi-tot) * 
100.0) / ( heap_suffi-tot). 

Without eonnection analysis, the conservative approximation for the 
number en-sum_tot would be simply heap_sum_tot, resulting in zero per­
eentage deerease. With connection analysis, the more precise the analysis, 
the fewer the number of connection relationships reported, and the larger 
is the decrease. Thus, the metric decr provides a reasonable measure for the 
effectiveness of connection analysis. For our small example program (given 
above): refs is 2, en_sum_tot is 2 and hence cavg is 1.0; heap-sum_tot is 
4, havg is 2.0 and decr is (((4-2) * 100.0)/4) or 50%. 

In Table II, the left and right parts present these measurements 
separately for indirect references of the type *a/ ( *a) . b, and of the type 
a[i] where a is of pointer type. Overall results are presented in Table III. 
We discuss each case. 

Indirect References of type a [i]: The percentage decrease (decr) is, in 
general, higher for indirect references of this type. This happens because 
most of these references represent stack-based pointers that point to 
dynamically-alloeated memory and access it as an array (of non pointer 
type). For example, the statement a = (int *) malloe (8 * sizeof (int) ) 
dynamically allocates an array of eight integers. Such array structures are, 
in general, not po in ted to by many other pointers. In SIMPLE, this statement 
is simplified as temp_O = malloe (8 * sizeof( int) ); a = (int *) temp_O, 
resulting in both a and temp_O pointing to the allocated structure. In 
case the allocation is done through a user-defined routine (for example 
a = my_malloe (size )) where type casting is not performed, the temporary 
variable is not generated, and pointer a alone points to the allocated struc­
ture. So the number of connection relationships of pointers like a tends to 
be elose to 2.0 on an average. In Table II, cavg for indirect array references 
is in the range of 1.0-3.7 for most of the benchmarks. 

For some benchmarks cavg tends to be much larger. The benchmarks 
volrend and blocks2 use arrays of pointers. Since we represent the entire 
array by the array name, connection relationships of pointers representing 
different indices of the array get merged. This results in large number of 
relationships for the single name representing them in the connection 
matrix. The benchmarks assembler and water have pointers to arrays as 
fields of dynamically-allocated structures (as opposed to being located on 
the stack). These pointers are reported to be connected with all other 
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pointers that point to the given data structure. This results in larger overall 
cavg for these benchmarks. 

Indirect References of type *a/( *a) . b: For indirect references of this 
form, the percentage decrease is, in general, not as high as for indirect 
array references. Such indirect references commonly access big aggregate 
data structures that consist of a large number of heap objects, specially if 
the data structure is recursive. Several pointers point to any such data 
structure, and all of them have connection relationships with each other. 

In our benchmark set, sim and mp3d primarily use structures with no 
pointer fields. The percentage decrease for them is quite high, as these 
structures are also stand-alone entities in the heap, like dynamic arrays of 
nonpointer type. 

The benchmarks ear and cholesky primarily allocate structures with 
nonrecursive pointer fields. For ear, cavg is quite small, though the per­
centage decrease is not very high as not many pointers are heap-directed 
in this program. For cholesky we have more than 50 percent decrease. 

The benchmark volrend allocates integers and floats in the heap and 
accesses them through indirect references of the form *a. The percentage 
decrease for it could be even higher, but it uses arrays of pointers to point 
to heap-allocated integers and floats. The benchmark blocks2 allocates 
several disjoint arrays of pointers to dynamically-allocated objects of type 
long and user-defined structure types with both recursive and nonrecursive 
pointer fields. So it has higher cavg, but still shows substantial percentage 
decrease. 

The benchmarks assembler and loader use two disjoint linked list data 
structures, chomp uses a linked list and a tree structure, while water uses 
arrays of linked lists several of which are disjoint at different points in the 
program. The percentage decrease statistics for these benchmarks show 
that connection analysis is also effective for benchmarks that use a nu mb er 
of disjoint recursive data structures. 

Finally, the program sparse uses a single complex recursive data struc­
ture, and all heap-directed pointers point to it. Consequently, connection 
analysis provides negligible improvement for it. 

Overall results: We now discuss the overall results presented in 
Table III. The percentage decrease is highest for pro grams that primarily 
use dynamic arrays (of nonpointer type) and structures without pointer 
fields or with nonrecursive pointer fields (sim, cholesky, and mp3d). For 
some pro grams (genetic and ear) the percentage decrease is not very high, 
but cavg is quite small which indicates that connection analysis provides 
effective information for them. Overall, the results show that if the given 
program uses disjoint data structures, connection analysis can always 
provide more accurate information for resolving heap related indirect 
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references (as compared to the information provided by points-to analysis). 
Thus, the connection matrix abstraction works well for its target domain 
of applications, and more powerful and more costly analyses are required 
for other applications. 

4.2. Interprocedural Measurements 

As reported in Section 3 connection analysis is a context-sensltlve 
interprocedural analysis. In Tables IV and V, we present some 
measurements for the interprocedural cost of the analysis, and the 
cost-reduction brought by the two interprocedural optimizations: (i) exclu­
si on of nonheap functions, and (ii) memoization. In Table IV, statistics are 
presented both for the source and the sparse (excluding nonheap functions) 
versions of the program, by columns labeled respectively as "src" and "sps." 
The left part of the table gives the number of functions and the number of 
call-sites in the program. For the sparse version, only call-sites within heap 
functions are counted. Call-sites within heap functions which call nonheap 
functions are not counted. The right part of the table gives the number of 
procedure calls analyzed. Analyzing a procedure call involves analyzing the 
body of the called function in the given invocation context. The columns 
labeled "Basic" and "Memo" respectively give the number of procedure 
calls analyzed without and with the memoization optimization. The main 
observations from this table are as follows: 

• A substantial number of functions (and hence call-sites) can be 
excluded from the analysis by identifying nonheap functions using 
the points-to information. For example, for benchmarks ear, 
assembler, and volrend more than 50 % functions can be excluded 
resulting in a much sparser program to analyze. The actual number 
of procedure calls analyzed also shows a significant reduction for the 
sparse pro gram, for both the Basic and Memo analysis models. For 
assembler we see a reduction from 1642 to 406 for the Basic model 
and from 80 to 38 for the Memo model. These statistics indicate that 
separating stack (points-to) and heap analyses, enables a consider­
ably more efficient heap analysis. 

• The memoization optimization significantly reduces the inter­
procedural cost (due to context-sensitivity) of the analysis. For 
example, for the sparse version, the number of calls analyzed for 
cholesky go es down from 181 to 59, and for water from 145 to 12. 
This indicates that the actual number of different contexts with 
respect to an analysis, is much smaller than the number of static 
invocation contexts in the pro gram. 
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Table IV. Interprocedural Analysis Statistics 

Calls analyzed 
Funcs Call sites Basic Memo 

Program src sps src sps src· sps src sps 

genetic 17 11 33 19 70 31 22 14 
sim 14 II 27 17 56 40 25 20 
blocks2 20 16 29 22 288 274 51 46 
ear 64 30 136 59 271 79 83 38 
assembler 52 26 264 96 1642 406 80 38 
loader 30 19 83 30 489 137 54 34 
cholesky 48 45 73 65 189 181 62 59 
mp3d 23 20 29 26 48 45 38 35 
water 15 12 22 19 148 145 15 12 
volrend 53 26 109 41 394 160 83 32 
chomp 20 20 48 48 398 398 56 56 
sparse 28 24 77 48 227 146 31 27 

In Table V, we provide more detailed interprocedural measurements 
for the case when both the sparse and the memoization optimizations are 
tumed on. The first two columns in this table gives the number of functions 
and the number of call-sites in the sparse version of the program (also 
given in Table IV). The third column labeled Total gives the number of 
procedure calls analyzed without memoization (same as the column "sps" 
of the multicolumn "Basic" in Table IV). The multicolumn labeled 

Table V. Interprocedural Analysis Statistics with Memoization 

Memoized 
eall 

Program [unes sites Total Paid Free Net Avgf Avge 

genetie 11 19 31 9 8 14 1.27 0.74 
sim 11 17 40 16 4 20 1.82 1.18 
blocks2 16 22 274 149 79 46 2.88 2.09 
ear 30 59 79 30 11 38 1.27 0.64 
assembler 26 96 406 94 274 38 1.46 0.40 
loader 19 30 137 57 46 34 1.79 1.13 
cholesky 45 65 181 46 76 59 1.31 0.91 
mp3d 20 26 45 4 6 35 1.75 1.35 
water 12 19 145 56 77 12 1.00 0.63 
volrend 26 41 160 26 102 32 1.23 0.78 
ehomp 20 48 398 98 244 56 2.80 1.17 
sparse 24 48 146 54 65 27 1.12 0.56 
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Memoized gives the number of procedure calls that benefit from memoiza­
tion. These calls fall into two categories: 

• Paid calls: When a procedure call is memoized, it involves the 
following check: if a precomputed input matrix matching the current 
input matrix exists for the called procedure. As there is so me over­
head involved in memoizing them, we term these calls as paid­
memoized calls . 

• Free calls: When a procedure call is paid-memoized, all the calls 
inside the called procedure get memoized for free, as the procedure 
body is not analyzed for the given context. These calls fall in the 
category of free-memoized calls. 

The column Net gives the net number of calls for which the body of 
the called procedure is actually analyzed (same as the column "Memo + 
sps" in Table IV). Finally, the columns Avgf and Avgc give the average 
number of calls actually analyzed (given in the column labeled Net) per 
function and per call-site. These averages are calculated by dividing the 
number in the Net column, with the appropriate number from the first two 
columns in the table. 

In other words, Avgf gives the average number of times a function 
body gets analyzed, and Avgc gives the average number of times body of 
the called function is analyzed for a given call-site. An intraprocedural 
analysis analyzes each function body exactly once. So Avgf for it will be 1.0. 
Thus the deviation of Avgf from the value 1.0, indicates the extra cost 
incurred due to the interprocedural nature of an analysis. The Avgf for six 
of the benchmarks in Table V is less than 1.5, and only for two benchmarks 
it is greater than 2.0. The average value for Avgf over all the benchmarks 
is 1.64. These figures indicate that memoization brings the benefits of a 
context-sensitive interprocedural analysis with minimal overhead (for the 
given benchmark suite). 

Another important observation from Table V is that Avgc for the 
majority of benchmarks is less than one. This happens because for some 
call-sites, the output matrix is already available from input/output matrix 
pairs stored (for memoization) during visits to the called function from 
previously processed call-sites. So the body of the called function is never 
analyzed with respect to these memoized call-sites. 

Finally in Table VI we give the actual time (in seconds) taken by con­
nection analysis when run on a Sun Sparestation 10. It includes the time 
required for the pre-pass to identify nonheap functions (when applicable). 
The table gives timing data for all four varieties of connection analysis: 
without and with memoization (Basic and Memo), and without and with 



572 Ghiya and Hendren 

Table VI. Analysis Time in Seconds 

Basic Memo 

Program src sps src sps 

genetic 0.10 0.06 0.06 0.05 
sim 3.37 3.06 1.74 1.66 
blocks2 5.82 5.61 3.62 3.61 
ear 1.55 0.78 1.0 I 0.64 
assembler 6.05 3.43 0.90 0.62 
loader 1.17 0.53 0.46 0.36 
cholesky 6.26 5.68 3.49 3.46 
mp3d 0.39 0.37 0.36 0.34 
water 3.51 3.41 1.72 1.69 
volrend 33.75 30.96 1.02 0.89 
chomp 1.54 1.49 0.50 0.45 
sparsc 1.48 1.33 0.69 0.60 

exclusion of nonheap functions (src and SpS). The important observations 
from this table are: 

• For the most efficient version of connection analysis (Memo + sps), 
it takes less than one second to analyze the majority of the 
benchmarks. 

• Our study of the benchmarks suggests that analysis time is more 
dependent on program structure than program size. For example, 
the benchmarks blocks2 (3.61 sec) and cholesky (3.46 sec) require 
more time than other larger benchmarks like ear and water, because 
they have calls to heap functions embedded in doubly nested loops 
(rendering the loop fix-point computation more expensive). 

• For some benchmarks we see a significant decrease in analysis time 
when we shift from Basic to Memo model of the analysis, most 
notably for assembler and volrend. This happens because a large 
number of procedure calls get memoized for these benchmarks 
(Table V). Further for volrend, calls to a recursive function (em­
bedded insided a doubly nested loop) get memoized, which brings 
added benefit as a fix-point iteration is also required to estimate the 
output for a recursive function. 

• For the ear benchmark, analysis with only sparse optimization 
(Basic + sps) takes less time than analysis with only memoization 
optimization (Memo + src). This happens because the sparse 
optimization for ear excludes 34 out of 64 functions, requiring only 
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79 calls to be analyzed as opposed to 83 for the only memoization 
option (Table IV). Thus both optimizations are important for 
reducing the interprocedural overhead of the analysis. 

In this section, we have provided concrete data to demonstrate the 
effectiveness and efficiency of connection analysis, and to justify the 
strategy of separating stack and heap analyses. We are presently imple­
menting dependence tests using connection information. Once this is 
achieved, we plan to measure the speed-up for these benchmarks, due to 
the improved dependence information enabled by connection analysis. 

5. RElATED WORK 

Our approach basically differs from other related work in three 
aspects: (i) decoupling of stack and heap analyses, (ii) design of a hierarchy 
of abstractions that suit different pointer analyses, and (iii) the use of stack 
points-to information to ron a more efficient heap analysis (as evidenced by 
the data presented in Section 4). 

Earlier work on pointer analysis focused solelyon the analysis of 
heap-directed pointers (for languages like Lisp and Scheme). The basic 
approach was to approximate the structure of the heap in the form of a 
directed graph (with nodes as heap objects, and edges as links between the 
objects). To keep the size of the graph finite, Jones and Muchnick( I) 

proposed the idea of k-limiting whereby all the nodes in the heap accessible 
from a variable after traversing k or more links, are coalesced into one 
summary node. Larus and Hilfinger(3) additionally labeled the nodes with 
access paths for dependence testing. Chase et al. (8l proposed the storage 
shape graph (SSG) which contains anode for each (heap-directed) pointer 
variable, and anode for each allocation site in the program. An allocation­
si te node in the SSG represents all the heap objects that can be allocated 
at that allocation site. 

Hendren and Nicolau(9) departed from the graph-based approach, and 
proposed the path matrix abstraction, which captures the heap strocture as 
path relationships between pointer variables (handles). Deutsch(12.13) 
proposed a more powerful storeless model using pairs of symbolic access 
paths qualified by constraints that make them aliased. Recently, Sagiv 
et al.(2S) have presented abstract storage graphs (ASGs) to accurately 
capture the heap structure in the presence of destructive updates. 

These approaches can provide a more refined estimation of heap 
structure as compared to connection analysis. For example, they can help 
identify "treeness" or "listness" of data structures. However, they are also 
considerably more complex and difficult to implement in areal C compiler. 
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On the contrary, connection analysis is the simplest analysis in a hierarchy 
of efficient heap analyses, specifically designed (and implemented) to dis­
ambiguate heap accesses at the data structure level. It also differs from the 
previously discussed methods, in being a heap analysis that also needs to 
take into account the presence of stack-directed pointers (using points-to 
information ). 

The recently proposed and implemented approaches for pointer 
analysis have mostly focused on the staek-directed pointer problem, using 
conservative approximations for the heap. Our points-to analysis uses only 
one abstract loeation heap to represent all heap objeets. All other methods 
use a variation of the allocation-site approach proposed by Chase et al. (8) 

Landi and Ryder(10) and Ruf(17) simply name heap objects based on their 
allocation site (identified by calls to library routines like malloe). With this 
approach, if the programmer uses his own routine mY.J11alloe with the 
malloe call embedded in it, all heap objects will get the same name. This 
would result in a similar scenario as our points-to analysis. To overeome 
this flaw, Choi et al. (11) proposed attaching prodecure strings with the 
alloeation site. Wilson and Lam( 16) also follow the same approach. With 
this technique, heap objects allocated at the same alloeation site but along 
different eall-ehains get distinct names. However, this strategy sometimes 
resuits in a large set of names, (16) whieh can slow down the analysis. 
Further this approach can still give the same name to completely unrelated 
heap objects. 

Unlike these methods, conneetion analysis is not sensitive to the loea­
tion of alloeation sites in the pro gram. As explained in Section 2.1, it 
simply makes use of the fact that an allocation routine returns a new node 
not po in ted to by any pointer in the program. Further if the eall to an 
alloeation routine is embedded inside a user-defined funetion, our analysis 
does not lose any precision because of its interproeedural nature. For 
example, suppose the user defines a funetion my_malloe: 

void *my_malloc(int size) 
{ 

} 

void *temp; 
temp = (void*) malloc(size); 
if (temp == 0) 

fatal_error("Virtual memory exhausted."); 
else 

return temp; 
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Now the statement p = mY.J11alloc (size) will be analyzed as: 

mYJnalloe(size); 

p = returnJnYJnalloe; 

In the function call my_malloc(), statement return temp will be 
analyzed as: 

returnJnYJnalloe = temp; 

return; 

Thus after the function call, the global variable return_my_malloc will 
be pointing to the new heap object allocated by the call to malloc( ) in the 
function. The assignment p = return.J11y_malioc will make p also point to 
this object. Thus the statement p=my_malloc(size} has the same effect on 
connection relationships of p as the statement p = malloc (size ). 

Another important point is that connection analysis reports two 
pointers to be connected, if they can point to the same heap data structure. 
While allocation-site based approaches can give the same name to co m­
pletely unrelated heap objects: in our terms connect pointers which are 
actually "disjoint." 

Landi and Ryder also combine allocation-site naming with k-limiting 
of object names (discussed in Section 1). This can sometimes provide better 
information than connection analysis. Consider this example: 

p = malloe () ; 

p->link = malloe(); 

They would get the alias pairs (*p, malloc_1) and (* (p - link), 
malloc_2}, and can identify that pointers p and p->link lead to disjoint 
objects (of the same heap data structure). However, this greatly depends on 
the structure of the given pro gram, and no general conclusions can be 
drawn. On the other hand, connection analysis is our level-l heap analysis, 
and is not designed to disambiguate heap accesses at this level. We have 
implemented a level-2 heap analysis called shape analysis(26) that can 
disambiguate accesses to the same heap data structure. 

Finally as the other implemented methods give experimental results 
for the stack and heap pointers combined, we do not have a direct empiri­
cal comparison. 

828/24/6-7 
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6. CONCLUSIONS 

In this paper we have presented our approach to practical heap 
analysis for C. In contrast to other approaches that solve the stack-directed 
and heap-directed pointer problems simultaneously, we separate the two 
problems. The stack-based problem is solved with points-to analysis. 
A hierarchical approach to the heap-directed pointer problem is used. For 
programs with few heap references, points-to analysis can be used directly 
(level-O heap analysis). Points-to analysis gives a very conservative answer 
by treating the entire heap as one named location. For programs that 
allocate many disjoint structures, such as scientific programs with dyn am­
ically-allocated arrays, connection analysis (level-l heap analysis) provides 
useful information about the disjointness of the heap-allocated structures. 

We have implemented the method in the McCAT compiler, and we 
provided experimental reslllts to show that connection analysis gives a sub­
stantially more precise answer than points-to analysis. The results are very 
good for the target application domain. For applications that use struc­
tures which are heavily linked, connection analysis is not effective, and our 
approach has been extended to provide a more expensive directionjinter­
ference/shape analysis that allows us to estimate the shape (treejdagjgraph) 
of each data structure allocated in the heap( 18.26) and disambiguate 
accesses to disjoint parts of the same data structure. 

Our overall strategy is to use the analysis that is most appropriate for 
the target application pro gram. If the pro gram has no (or very little) 
dynamic allocation, then there is no advantage to running the heap 
analysis, after points-to analysis. For programs that allocate mostly non­
recursive data structures, connection analysis is simple and relatively 
inexpensive, while at the same time it provides useful results. We are 
presently building tools for using connection analysis information to 
provide good dependence analysis, particularly with respect to disam­
biguating (dynamically-allocated) arrays for array dependence analysis. 
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