
International Journal 0/ Parallel Programming, Val. 24, No. 6, 1996 

Interprocedural Array Region Analyses 

Beatrice Creusillet 1 and Fran<;ois Irigoin 1 

Many program optlmlzations require exact knowledge of the sets of array 
elements that are referenced in or that flow between statements or procedures. 
So me examples are array privatization, generation of communications in dis­
tributed memory machines, or compile-time optimization of cache behavior in 
hierarchical memory machines. Exact array region analysis is introduced in this 
article. These regions exactly represent the effects of statements and procedures 
upon array variables. To represent the flow of these data, we also introduce two 
new types of array region analyses: IN and OUT regions. The intraprocedural 
propagation is presented, as weIl as a general linear framework for interpro­
cedural analyses, which handles array reshapes. The intra- and inter-procedural 
propagation of array regions is implemented in PIPS, the interprocedural 
parallelizer of FORTRAN programs deve\oped at Ecole des mines de Paris. 

KEY WOR OS: Interprocedural analysis; array da ta tlow analysis; array 
regions; array reshaping. 

1. INTRODUCTION 

The efficient compilation of scientific pro grams for massively parallel 
machines or hierarchical memory machines requires advanced pro gram 
optimizations to deal with memory management issues. For instance, 
Blume and Eigenmann(l) have shown that array privatization could greatly 
enhance the amount of potential parallelism in sequential programs. This 
technique basically aims at discovering array sections that are used as tem­
poraries in loops, and can thus be replaced by local copies on each pro­
cessor. An array section is said to be privatizable in a loop if each read of 
an array element is preceded by a write in the same iteration, and several 

I Centre de Recherche en Informatique, Ecole des mines de Paris, 35, rue Saint-Honore, 
F-77305 Fontainebleau Cedex, France. E-mail: {creusiIlet.irigoin}@cri.ensmp.fr. 

513 

0885-7458/96/1200-0513S09.50/0 © 1996 Plenum Publishing Corporation 



514 Creusillet and Irigoin 

different iterations may access each privatized array element.(2.3) Solving 
such problems requires a precise intra- and inter-procedural analysis of 
array data flow, that is to say how individual array element values are 
defined and used (or flow) during program execution. 

Arecent type of analysis (4. 5) has opened up wide perspectives in this 
area: It provides an exact analysis of array data flow, originally in 
monoprocedural programs with static control. This last constraint has 
since been partially removed, (6.7) at the expense of accuracy. A partial 
interprocedural extension (8) has also been defined, but only in a static con­
trol framework. Furthermore the complexity of the method makes it useless 
on large programs. 

Another approach is to compute conservative summaries of the effects 
of statements and procedure calls on sets of array elements. (9. 10) Their 
relatively weak complexity (in practice) .allows the analysis of large 
programs. But since these analyses are flow insensitive, and since they do 
not precisely take into account the modifications of the values of integer 
scalar variables, they are not accurate enough to support powerful 
optimizations. 

In PIPS, (11) the interprocedural parallelizer of FORTRAN programs 
developed at Ecole des mines de Paris, we have extended Triolet's array 
regions(9) (which are array element sets described by convex polyhedra) to 
compute summaries that exactly represent the effects of statements and 
procedures on sets of array elements, (12) whenever possible; whereas the 
regions originally defined by Triolet were over-approximations of these 
effects. 

The resulting exact READ and WRITE regions were found necessary by 
Coelho,(13) and Coelho and Ancourt,(14) to efficiently compile HPF. How­
ever, they cannot be used to compute array data flow, and are thus insuf­
ficient for optimizations such as array privatization. 

We therefore introduce two new types of exact regions: For any state­
ment or procedure, IN regions contain its imported array elements, and OUT 

regions represent its set of live array elements. 
The possible applications are numerous. IN and OUT regions are 

already used in PIPS to privatize array sections, (12) and we intend to use 
them für memory allocation when compiling signal processing specifi­
cations based on dynamic single assignment. In massively parallel or 
heterogeneous systems, they can also be used to compute the communica­
tions before and after the execution of a piece of code. For a hierarchical 
memory machine, they provide the sets of array elements that are used or 
reused, and hence could be prefetched (IN regions) or kept (OUT regions) 
in caches; the array elements that do not appear in these sets are only tem­
poraries, and should be handled as such. In fault-tolerant systems where 



Interprocedural Array Region Analyses 515 

the current state is regularly saved by a software component (checkpoint­
ing)(15) IN or OUT regions could provide the set of elements that will be used 
in further computations, and thus could be used to reduce the amount of 
data to be saved. Examples of other applications are software specification 
verification or compilation of out-of-care computations. (16) 

To support the exactness of the analysis, an accurate interprocedural 
translation is needed. However, by examining the Perfect Club 
Benchmarks, (17) we found out that the existing methods for handling array 
reshapes were insufficient. We propose in this paper a general linear 
framework that handles array reshaping in most cases, including when the 
arrays are not ofthe same type, or belong to a COMMON which does not 
have the same data layout in the caller and the callee. 

This paper is organized as follows. Section 2 presents a motivating 
example that highlights the mains difficulties of region computation. Some 
necessary background is shortly reviewed in Section 3. Sec ti on 4 presents 
array regions and their operators. The intraprocedural propagation of 
READ, WRITE, IN, and OUT regions is detailed in Section 5. The inter­
procedural propagation is then separately described in Section 6. Section 7 
reviews the related work. 

2. MOTIVATING EXAMPLE 

To illustrate the main features of the intraprocedural computation of 
READ, WRITE, IN, and OUT regions along this article, we consider the con­
trived program of Fig. 1. The goal is to privatize array WORK. 

The condition is that any iteration of the I loop neither imports nor 
exports any element of the array WORK. In other words, if there is a read 
reference to an element of WORK, it has been previously initialized in the 
same iteration, and it is not reused in the subsequent iterations (we assurne 
that the array WORK is not used anymore after the I loop). 

K = FDDO 
00 I = i,N 

00 J = 1,N 
WDRK(J,K) = J + K 

ENDDD 
CALL INCi(K) 
00 J = 1,N 

WORK(J,K) = J*J - K*K 
A(I) = A(I)+WORK(J,K)+WDRK(J,K-l) 

ENDDO 
ENDDO 

Fig. 1. Sam pie program. 

SUBROUTINE INC1(I) 
I = I + 1 
END 



516 Creusillet and Irigoin 

There are two main difficulties in our example. First, different elements 
of WORK are referenced in several instructions. We shall need several 
operators to manipulate the regions representing these references, and com­
pute the solutions to data-flow problems; e.g., union, intersection, or dif­
ference. Second, these references, and thus their representations, depend on 
the value of the variable K, which is unknown at the entry of the I loop, 
and is modified by the call. We need an operator to obtain representations 
that depend on the same value of K, and hence can be combined. 

The next two sections present the techniques used to perform the 
analysis of our example. 

3. lANGUAGE, TRANSFORMERS AND PRECONDITIONS 

In PIPS( ll) the parallelization process is divided into several phases, 
either analyses (e.g., transformers, preconditions, array regions) or program 
transformations (e.g., dead code elimination, loop transformations). 
Most analyses also consist of two types of propagation: Intra- and inter­
procedural propagations. This section describes the general mechanisms 
involved in both types of propagation, as weIl as two analyses performed 
in PIPS and whose results are used to compute array regions. 

3.1. language, HCFG and Ca" Graph 

Intraprocedura! propagations are performed on the hierarchica! contro! 
flow graph (I I ) (HCFG) of the routines. This graph be ars some resemblance 
to the abstract syntax tree of the program: Most nodes of the HCFG 

Fig. 2. Example of HCGF. 



Interprocedural Array Region Analyses 517 

correspond to the FORTRAN language control structures (D 0 loop, I F, 
sequence of instructions, assignment, call, ... ), except for the unstructured 
parts of the program (when GOTOs or STOPs are used) which are 
modeled by standard control flow graphs. 

An example of such a graph is provided in Fig. 2. The no des are 
represented by rectangles. The biggest node on the left is a sequence of 
several instructions, represented by sub-nodes. One of these sub-nodes is 
itself a DO loop node. Its inner node is a sequence of two instructions. 

In this article, we only consider assignments, DO loops with unit 
increments, sequences of instructions, and procedure calls. The other con­
structs, in particular IF constructs, are not considered here, because it 
would not provide useful insights to the reader. However, the implementa­
tion of array region computation in PIPS covers the whole FORTRAN 

standard,ttS) with a few minor exceptions3 which can easily be avoided. 
Bottom-up analyses propagate their results towards the root of the 

HCFG (entry node of the procedure): The deepest nodes are first analyzed, 
and the results are used at the upper level to form another solution which 
is similarly propagated. On the contrary, top-down analyses pro pagate the 
solutions toward the leaves of the tree: The solution for the inner nodes are 
computed from the solutions at the upper level. 

Interprocedural propagations are performed on the program caU graph. 
This graph is assumed acyclic, according to the FORTRAN standard( 18) 

which prohibits recursive function calls. Analyses can be performed bot­
tom-up or top-down. In the first case, the intraprocedural analysis of the 
deepest procedures is performed first; the information at the root node of 
their HCFG is then propagated to the various call sites by translating formal 
parameters into actual ones; the callers are then intraprocedurally analyzed 
using the preceding interprocedural solutions, and so on. On the contrary, 
in a top-down propagation, the main program is first intraprocedurally 
analyzed starting from its entry point; the solutions at each call site are 
then propagated to the callees by translating actual parameters into formal 
ones; when there are several call sites for one procedure, the solutions are 
gathered into a unique summary, to limit time and space complexity. 

Whether the analysis is bottom-up or top-down, each node of the 
HCFGS or of the call graph is traversed only once. The complexity of an 
analysis thus mostly depends on the complexity of the operations performed 
at each node. As will be shown later, many semantical analyses in PIPS 

3 ENTRY, BLOCKDATA, ASSIGN, and assigned GOTO, computed GOTO, multiple 
R ETU R N, substring operator (:), HoUerith character chains, statement functions, and com­
plex constants (which are replaced by a caU to CMPLX); COMMON declarations must also 
appear after aU type declarations. 



518 Creusillet and Irigoin 

(transformers, preconditions and array regions) rely on convex polyhedra. 
Most operators have a theoretical exponential complexity, but the practical 
complexity often is polynomial. Furthermore, the exponential speed 
improvement of computers renders these analyses fast enough to perform 
them on real life pro grams. 

3.2. Transformers and Preconditions 

Two auxiliary analyses are of interest in the remainder of this paper: 
Transformers and preconditions. (19) 

Transformers abstract the effects of instructions upon the values of 
integer scalar variables by giving an affine approximation of the relations 
that exist between their values before and after the execution of a statement 
or procedure call. In equations they are designated by T, whereas in 
pro grams they appear under the form T ( args) {pred}, where args is the 
list of modified variables, and pred gives the non trivial relations existing 
between the initial values (suffixed by # init) and the new values of 
variables. Figure 3 shows the transformers of our working example. 

Preconditions are predicates over integer scalar variables. They hold 
just before the execution of the corresponding instruction. In Fig. 3, they 
appear as P (vars) {pred}, where vars is the list of modified variables since 

C PO {} 

C T(K) {} 

K = FDDO 
C P(K) {} 

C T(K) {K==K#init+I-l} 

DD I = 1,N 
C P(I,K) {l<=I<=N} 

DD J = 1,N 
C P(I,J,K) {l<=I<=N, l<=J<=N} 

WDRK(J,K) = J + K 
ENDDD 

C P(I,K) {l<=I<=N} 

C T(K) {K==K#init+l} 

CALL INC1(K) 
DD J = 1,N 

C P(I,J,K) {l<=I<=N, l<=J<=N} 

WDRK(J,K) = J*J - K*K 
A(I) = A(I)+WDRK(J,K)+WDRK(J,K-1) 

ENDDD 
ENDDD 

Fig. 3. Transformers and preconditions. 



Interprocedural Array Region Analyses 519 

the beginning of the current routine, because preconditions abstract the 
effects of the routine from its entry point to the current instruction. 

Transformers are propagated upward, while preconditions are 
propagated downward. And if TI and PI correspond to the instruction SI' 
and P2 to the instruction S2 immediately following SI, then P2 =TI (P 1 ). 

4. REGIONS: DEFINITIONS AND OPERATORS 

An array region is a set of array elements described by a convex 
polyhedron containing equalities and inequalities:(9) They link the region 
parameters (or r/J variables) that represent the array dimensions, to the 
values of the program integer scalar variables. Two other characteristics are 
also of interest: 

-- the type of the region: READ (R) or WRITE (W) to represent the 
effects of statements and procedures; IN and OUT to represent the 
flow of array elements; 

-- the approximation of the region: EXACT when the region exactly 
represents the requested set of array elements, or MAY or MUST if 
it is an over- or under-approximation (M UST s;; EXACT s;; MAY); 
in the rest of the paper, we only consider EXACT and MAY regions; 
in previous papers(20,21) MUST was unfortunately used to me an 
EXACT. 

For instance, the region: 

where the region parameters r/J land r/Jz respectively represent the first and 
second dimensions of A, corresponds to an assignment of the element 
A( I, I). 

In order to summarize array accesses at each level of the HCFG (to 
avoid space complexity), and to propagate the summaries along control 
flow paths, we need several operators such as union, intersection and dif­
ference, and more specific unary operators. 

Union. The union operator is used to merge two elementary regions. 
Since the union of two convex polyhedra is not necessarily a convex 
polyhedron, the approximate operator ü we use is the convex hull. The 
resulting region may thus contain array elements that do not belong to the 
original regions; in this case [test R 1 Ü R 2 == R I U R 2 is implemented in 
PIPS] it is a MA Y region. The third column in Table I gives the approxima­
tion of the resulting region against the characteristics of the initial regions. 



520 Creusillet and Irigoin 

Table I. Binary Operators on Regionsa 

R] Rz R] üR z Rjll R2 R]eR z 

EXACT EXACT EXACT ilf= R j U Rz EXACT Ü (R j 11 Rz), EXACT ilf= R j - R2 

EXACT MAY EXACT ilf Rz S;; R] MAY R], EXACT ilf R,1l Rz = 0 
MAY EXACT EXACT ilf Rj s;; Rz MAY Ü (R j 11 Rz), MAY 
MAY MAY MAY MAY R" MAY 

a All the operators and tests used in this table are implemented in PIPS. 

Intersection. The intersection of two convex polyhedra is a convex 
polyhedron. It follows that the intersection of two EXACT regions is an 
EXACT region. A more complete description of this operator is given in 
Table I, Column 4. 

Difference. The difference of two convex polyhedra is not necessarily 
a convex polyhedron. The chosen operator e may give an over­
approximation of the actual difference of the original regions. Its features 
are described in Table I, Column 5. For instance, when the original regions 
are EXACT regions, a first step computes R 1 n R2 ; the result is a list of 
regions;(12J these regions are then merged using 0, an extension of Ü to 
union of lists. 

Translation from one store to another one. The linear constraints 
defining a region often involve integer scalar variables from the program 
(e.g. tP 1 = = I). Their values, and thus the region, are relative to the current 
memory store. If we consider the statement 1 = 1 + 1, the value of 1 is not 
the same in the stores preceding and following the execution of the instruc­
tion. Thus, if the polyhedron of a region is tP\ == 1 before the execution of 
1 = 1 + 1, it must be tPl == 1-1 afterwards. 

To apply one of the preceding operators to two regions, they must be 
relative to the same store. Let ~] _ "z denote the transformation of a region 
relative to the store (J 1 into a region relative to the store (J 2' 

This transformation is described by Apvrille-Creusillet. ( 12) Very briefly, 
it consists in adding to the predicate of the region, the constraints of the 
transformer that abstracts the effects of the program between the two 
stores. The variables of the original store ((J \) are then eliminated. The only 
variables that remain in the resulting polyhedron all refer to the store (J 2' 

Thus, two transformations, ~k _ "k +] and ~k +, _ "k' correspond to the 
transformer Tk associated to statement Sb depending on the variables that 
are eliminated. 



Interprocedural Array Region Analyses 521 

For instance, let us assurne that 0'1 is the store preceding the statement 
1 = 1 + 1, 0'2 the store following it, and {<PI == I} the predicate of a region 
relative to 0' 1 • 

O'd<pI==I} 

LI = 1 + 1 

0'2{<P1==1-1} 

We first rename 1 into 1 # init in the predicate of the region, and add 
the transformer corresponding to the statement (T( 1 ){ 1 == 1 # init + 1} ). 
This gives {<PI==I#init, 1==I#init+1}. We then eliminate I#init, 
because it refers to 0' I' We obtain {4> 1= = I - 1 }, which is relative to 0'2' 

The exactness of the operation depends on several factors, such as the 
combined characteristics of the transformer and the region. When the 
operation is not exact, it leads to an over-approximation of the target 
region, which becomes a MAY region. 

Merging over an iteration space. The region corresponding to the 
body of a loop is a function of the value i of the loop index. During the 
propagation of regions, we shall need to merge regions corresponding to 
different, but successive, instances of the loop body, in order to get a sum­
mary over a particular iteration subspace (U /h,,;; i";; ub R(i)). 

By definition of the union of sets, this is strictly equivalent to eliminat­
ing the loop index from the region predicate, in which the description of 
the iteration subspace (lb ~ i ~ ub) has been added. However, the elimina­
tion of a variable from a region may lead to an over-approximation of the 
target region: 

proji(R(i)/h";;i,,;;ub) = U R(i) 
Ibs:;,i~ub 

The operation is exact if the following conditions are met: 

1. lb and ub are affine functions of the pro gram integer scalar 
variables, for instance do I = 11, 11 + N - 1; 

2. The elimination of i from R( i) /b,,;; i";; ub is exact according to the 
conditions of Ancourt and Irigoin, (22) or Pugh. (23)4 

4 The elimination of variable v between the inequalities av + A ,,; 0 and - bv + B ,,; 0 (with 
aE N+, bE N+, A =c+ 'L~~lajvj, B=d+ 'Lf_lbjVj, and c, d, aj, b j EI), is exact if and only 
if aB+bA + ab-a-b + I ";0. 



522 Creusillet and Irigoin 

The first condition ensures that the iteration space can be exactly described 
by a convex polyhedron over the program variables (here lb::::; i::::; ub). 
[Remember that the loop is normalized;. the increment is equal to one.] 

Constraining region predicates. In order to have more information on 
<P variables, the constraints of the preconditions can be added to the 
predicate of the region. This is particularly useful when merging two 
regions. 

For instance, {<Pli <PI == I} ü {<Pli <PI ==J} is the whole space, i.e., an 
empty set of constraints. If the current precondition (e.g., {I = = J }) is 
added to the original regions, the resulting region is {<p I I <P I = = I, I = = J } 
instead of { <P I I}· 

This operation increases the accuracy of the analysis, without modify­
ing the definition of regions. Furthermore, since preconditions include 
some IF conditions, regions are powerful enough to disprove some inter­
procedurally conditional dependencies. 

5. INTRAPROCEDURAL ANALYSES 

This section details the intraprocedural computation of READ, WRITE, 

IN, and OUT regions for some of the main structures of the FORTRAN 

language: assignment, sequence of complex instructions and 00 loop. Thc 
interprocedural propagation is described in Seetion 6. 

5.1. READ and WRITE Regions 

Assignment. The reference on the left-hand side of the assignment is 
converted into a WRITE region, whereas on the right-hand side, each 
reference is converted into an elementary READ region. These regions are 
exact if and only if the subscripts are affine functions of the program 
variables, for instance A( 2 * 1+3 * J - 1 ). 

When several references to a particular array appear in the right-hand 
side, the corresponding regions are systematically merged using ü in order 
to obtain a summary. 

For instance, in Example 1, the elementary READ regions for the 
instruction A(I) =A(I) +WORK(J, K) +WORK(J, K-1) are: 

<A(~l)-R-EXACT-{~l==I}> 

<WORK(~1,~2)-R-EXACT-{~1==J. ~2==K}> 

<WORK(~1.~2)-R-EXACT-{~1==J. ~2==K-1}> 



Interprocedural Array Region Analyses 523 

By merging the two regions concerning the array WORK, we finally 
obtain: 

<A(11)-R-EXACT-{11==I}> 

<WORK(11,12)-R-EXACT-{11==J, K-1<=12<=K}> 

Sequence olInstructions. Our purpose is to compute the regions Ro 
corresponding to the sequence SI, S2, that is to say a summary of all the 
read and write references occurring in SI and S2' [S2 can also be a 
sequence of instructions. ] 

R I and R 2 , the READ and WRITE regions of SI and S2, are supposed 
to be known. R 2 refers to the store Cl 2 preceding the execution of S2' while 
R land R o refer to the store Cl I preceding SI as weIl as the sequence SI' S 2' 

Thus, we must first convert them into the same store (ClI) before merging 
them: 

As an illustration, let us consider the body of the I loop in our example. 
We assurne that we know the regions concerning the array WORK 

associated to the two inner loops: 

C <WORK(11 ,12)-W-EXACT-{1<=11 <=N, 12==K}> 

DO J = 1,N 

CALL INC1(K) 

C S3 

C <WORK(11 ,12)-W-EXACT-{1<=11 <=N, 12==K}> 

C <WORK(11 ,12)-R-EXACT-{1<=11 <=N, K-l<=~2<=K}> 

DO J = 1,N 

We cannot simply merge the regions associated to SI and S3 to obtain 
the regions of the whole sequence, because the value of K is modified by S2' 
They must first be converted into the store Cl 2, by using 3';;.3 ~ 0"2: The 



524 Creusillet and Irigoin 

transformer that abstracts the effects of the call to IN C 1 is T ( K ) 
{K == K # init + 1 }; its constraint is added to the regions corresponding to 
S3; then the variable K, which refers to the store immediately following S2, 
is eliminated; and K # init, which represents the value of the variable K in 
(j 2, is renamed into K: 

These regions are relative to the store preceding S2. We should trans­
late them to the store preceding SI. However, since SI modifies no integer 
scalar variable, they are identical. Thus, it is legal to merge them with the 
regions corresponding to SI' to 0 btain the regions for the sequence 
SI,S2,S3: 

DO loop 

<WORK(~1,~2)-W-EXACT-{1<=~1<=N, K<=~2<=K+1}> 

<WORK(~1,~2)-R-EXACT-{1<=~1<=N, K<=~2<=K+1}> 

C (Tü 

DO I = Ib, ub 

C (Ti 

s 
ENDDO 

The purpose is to compute the regions corresponding to the loop and 
relative to (jo, from the regions of its body S. These regions are not only 
functions of the value i of the loop index, but also of the variables v 
modified by S. Let R( i, v) denote them. 

First, we must get rid of the variables v in order to obtain regions that 
are functions of the sole loop index (and of course of variables that do not 
vary in the loop body). This is achieved by using ~; ~ "0. This operator is 
based on the transformer of the loop, which gives the loop invariant when 
it is computable. We must then merge the resulting regions over the itera­
tion space: 

Ro = 0 ~i~"o(R(i, v)) 
lb <;; i <;; ub 



Interprocedural Array Region Analyses 525 

As an example, let us compute the READ regions of the array WORK for the 
loop I in Fig. 1. As previously seen, the regions of the loop body are: 

<WORK(~I' ~2)-R-EXACT-{ 1 <=~l <= N, K < = ~2 < = K + 1}) 

They are functions of the variable K, which is modified in the loop body 
by a call to INC1. To get rid of it, we must use the operator ~i~UO: The 
transformer giving the loop invariant is T (K) {K == K # init + 1- 1} 
(K # init is here the value of K in the store preceding the loop); its con­
straint is added to the region, and K is eliminated; K#init is then renamed 
into K; and since all these steps are exact operations, we have: 

<WORK(~j, ~2)-R-EXACT-{ 1 <=~l <= N, K + 1-1 <=~2<=K + I} > 
To perform the union over the iteration space, the iteration space con­

straint ({ 1 < = I < = N} ) is added to the region, and I is eliminated. This 
operation is exact because the lower and upper bounds are affine and the 
elimination of I is exact. We finally obtain: 

5.2. IN and OUT Regions 

READ and WRITE regions summarize the exact effects of statements and 
procedures upon array elements. They do not represent the flow of array 
element values, which is necessary to test the legality of many optimiza­
tions. For that purpose, we introduce two new types of regions: IN and OUT 

regions, which take array kills(24) into account, that is to say redefinitions 
of individual array elements. 

IN regions contain the array elements, whose values are (EXACT 
region) or may be (MAY region) imported by the current piece of code. 
These are the elements that are read before being possibly redefined by 
another instruction of the same code fragment. 

In Fig. 1, the body of the second J Ioop reads the element 
WO R K ( J I K), but does not imports its value because it is previously 
defined in the same iteration. On the contrary the element WO R K ( J I K-1 ) 
is imported from the first J loop. 

OUT regions corresponding to a piece of code contain the array 
elements that it defines, and that are (EXACT) or may be (MAY) used 
afterwards, in the continuation. These are the live or exported array 
elements. 

In the pro gram of Fig. 1, the first J loop exports all the elements of the 
array WORK it defines towards the second J loop, whereas the elements of 



526 Creusillet and Irigoin 

WORK defined in the latter are not exported towards the next iterations of 
the I loop. 

In the remainder of this section, we limit ourselves to the 
intraprocedural computation of IN and OUT regions for an assignment, a 
sequence of instructions, or a loop. 

5.2.1. IN Regions 

Assignment. The IN regions of an assignment are identical to the 
corresponding READ regions because the values of the referenced elements 
cannot come from the assignment itself, according to the FORTRAN 

standard. 

Sequence 0/ instructions. We are now interested in the region INo 
corresponding to the sequence of instructions SI' S2, and relative to the 
store ()' 1 preceding the execution of SI. It is the set of array elements 
imported by S2 (IN2 ) but not previously written by SI (Wj ), merged with 
the set of array elements imported by SI (INI): 

As an illustration, let us consider the body of the second J loop in 
Fig. 1. The READ and IN regions of its instructions concerning the array 
WORK are: 

C 51 

C <WORK(~1,~2)-W-EXACT-{~1==J, ~2==K}> 

WORK(J,K) = J*J - K*K 

C 52 

C <WORK(~1,~2)-IN-EXACT-{~1==J. K-l<=~2<=K}> 

A(I) = A(I) + WORK(J,K) + WORK(J,K-l) 

Since no scalar variable is modified in the sequence, we have: 

INo = IN1 Ü (IN2 e W1) 

=0Ü(INz e Wd 

=<WORK(~1.~2)-IN-EXACT-{~1==J, ~2==K-l}> 

Finally, INo contains the sole element WORK(J, K-1). 



Interprocedural Array Region Analyses 527 

Loop. We are now interested in the region [No of a normalized 00 
loop, given the WRITE and IN regions of its body, respeetively W(i, v) and 
[N(i, v); i is the value of the loop index, and v represents the variables 
modified by the loop body. Let Go denote the store before the loop and Gi 

the store before the iteration i. 
We first get rid ofthe variables v using ~j-ao' In order to simplify the 

next equation, we use the following notations: 

W(i) = ~j-ao( W(i, v)) 

[N(i) = ~j _ "oUN(i, v)) 

The IN regions of a loop eontain the array elements that are imported 
by eaeh iteration (lN(i)) but not from the preeeding iterations 
(OO';i'<i W(i')). The eomplete equation is then: 

[No = 0 (lN(i) U W(i')) 
Ib~i::S;;uh lb ::s:; j' < j 

The purpose of the following example is to eompute the summary IN 

regions of the array WORK for the seeond J loop in Fig. 1, given the WRITE 

and IN regions of its body: 

<WORK(l/lI' l/l2)-W-EXACT-{ l/ll ==J, l/l2==K} > 
<WORK(l/lI' l/l2)-1N-EXACT-{l/l1 ==J, l/l2==K-1} > 

Sinee no seal ar variable is modified by the loop body, we ean avoid 
the use ofthe operator ~j-"o' We then compute the term O'';J'<J W(J'). 
we first add the iteration subspace eonstraint to the region: 

By eliminating the 100p index J', we obtain the set of all the array 
elements written by at least one iteration preeeding the iteration J: 

These elements are then removed from the set of elements imported by 
the iteration J: 

828/24/6-4 

<WORK(~l.~2)-IN-EXACT-{~1==J. ~2==K-l}> 

e <WORK(~1.~2)-W-EXACT-{1<=~1<=J-l. ~2==K}> 

= <WORK(~1.~2)-IN-EXACT-{~1==J. ~2==K-l}> 



528 Creusillet and Irigoin 

The last region represents the set of elements imported by the iteration 
J from the instructions preceding the loop. These regions are then merged 
over the whole iteration space (1 :::;; J :::;; N) to obtain the set of elements 
imported by at least one iteration, from the instructions preceding the loop: 

(WORK(<pI' <Pz)-lN-EXACT-{ 1 <=<PI < = N, <Pz == K - 1} > 

Hence, the loop imports aB the values stored in the elements of array 
WORK such that <Pz==K-1. 

5.2.2. OUT Regions 

The OUT region of a statement is not defined per se, but depends on 
the future of the computation. For instance, the OUT region of SI in 
program SI, S2 is a function of SI' Sz as a whole, and of S2' Thus, OUT 

regions are propagated in a top-down fashion along the call graph and 
hierarchical control flow graph of the pro gram. Since 1/0 operations are 
part of the program, the OUT region of the main pro gram, from which the 
other OUT regions are derived, is initialized to 0. 

Instrllctions 01 a seqllence. The region OUTo corresponding to the 
sequence SI, S2' and relative to the store 0'1 preceding SI, is supposed to 
be known. The regions OUT I and OUT2 corresponding to SI and S2 are 
computed from OUTo. 

S2 exports the elements that it writes (Wz) and that are exported by 
the whole sequence: 

The elements exported by S I are those that it defines (W1 ), and that 
are either exported by the whole sequence (OUTo) but not by S2 (OUT2 ), 

or exported towards S2, i.e. that are imported by S2 (IN2 ): 

Let us consider as an illustration the body of the second J loop, 
in Fig. 1. Its WRITE and IN regions for the array WORK are: 



Interprocedural Array Region Analyses 

C SI 

C <WORK(~1,~2)-W-EXACT-{~1==J, ~2==K}> 

C S2 

C <WORK(~1,~2)-IN-EXACT-{~1==J, K-l<=~2<=K}> 

A(I) = A(I)+WORK(J,K)+WORK(J,K-l) 

529 

Since no integer scalar variable is modified by the loop body, g:.1- a2 and 
g:.2-al are identity. Moreover, we assume that aUTo = 0. The derivation 
lS: 

aUT2 =W2 n aUTo = 0 

SI exports the element it defines towards S2' which exports no element of 
WORK. 

Loop body. The goal is to compute the OUT regions of the loop body 
(aUT(i) if i is the value of the loop index) from the regions of the whole 
loop (aUTo). An array element can be exported by the iteration j for two 
reasons: 

1. Either it is written by the iteration i ( W(i)), and exported towards 
the continuation of the loop (i.e., it belongs to aUTo); but it must 
not be redefined by any subsequent iteration; in other words, it 
must not belong to the set of array elements defined by the itera­
tions j' such that i<i'~ub: Oi<i',;;ub(W(j')); thus, it belongs to 
the region defined by: 

i<i' :e::;ub 



530 Creusillet and Irigoin 

2. Or, it is written by the iteration i ( W( i)), and directly used in a 
subsequent iteration i'; directly means that it must not be defined 
by an iteration i" between i and i': 

And finaIly, the complete equation is: 

OUT(i) = {( W(i) (l ~o-aJ OUTo)) e i<Qub (W(il))} 

Ü { W(i) (l i<9"'''h [ IN(i') e i<9<i' (W(i"))]} 

Let us take an example to ilIustrate some features of the previous 
equation. We consider the I loop in the program of Fig. 1. The goal is to 
compute the OUT regions concerning the array A for the loop body. We 
assume that its WRITE and IN regions are already available: 

(A(I/!,)-W-EXACT-{ I/! , == I} > 
(A(I/!,)-IN-EXACT-{ I/! , == I} > 

and that the OUT regions of the whole loop (OUTo) are: 

(A(I/!d-OUT-EXACT-{ 1 <=I/!, <= N} > 
~,,_ rr,( 0 UTo) is first calculated: The constraints of the loop transformer, 
T( K) {K == K # IN IT + I - 1}, are added to the polyhedron of the region, 
and K # IN IT is eliminated: 

W(i');< i' ~ub = (A(I/!,)-W-EXACT-{ I/! , == 1', 1+ 1 <= 1' <= N} > 
proj;-(W(i')i<i' ",ub) = (A(~,)-W-EXACT-{ 1 + 1 <=~, <= N} > 

FinaIly, the first part of the equation gives the region: 



Interprocedural Array Region Analyses 

K = FOOO 

C <A(~l)-IN-EXACT-{l<=~l<=N}> 
DO I = 1, N 

C loop body: 
C <A(~l)-IN-EXACT-{~l==I. l<=I<=N}> 

C <WORK(~1,~2)-OUT-EXACT-{1<=~1<=N, ~2==K}> 
DO J = 1, N 

C <WORK(~1,~2)-OUT-EXACT-{~1==J, ~2==K, l<=J<=N}> 
WORK(J,K) = J+K 

ENDDO 
CALL INC1(K) 

C <A(~l)-IN-EXACT-{~l==I}> 

C <WORK(~1,~2)-IN-EXACT-{1<=~1<=N,~2==K-1}> 
DO J = 1, N 

C <WORK(~1,~2)-OUT-EXACT-{~1==J, ~2==K}> 
WORK(J,K) = J*J-K*K 

C <WORK(~1,~2)-IN-EXACT-{~1==J, K-1<=~2<=K}> 
C <A(~l)-IN-EXACT-{~l==I}> 
C <A(~l)-OUT-EXACT-{~l==I, l<=J<=N-l}> 

A(I) = A(I)+WORK(J,K)+WORK(J,K-1) 
ENDDO 

ENDDO 

Fig. 4. IN and OUT regions. 

For the second part of the equation, we successively have: 

and, 

U<,"<,cW(i"» =<A(~l)-W-EXACT-{I+l<=~l <=I'-l}> 
•• • 

IN(i') e U (W(i"» =<A(~t>-IN-EXACT-{~l==I'}> 
i<iJl <i' 

e <A(~l)-W-EXACT-{I+l<=~l<=I'-l}> 

=<A(~l )-IN-EXACT-{~l ==I'}> 

U [ ... ] =<A(~l )-IN-EXACT-{I+l<=~l <=N}> 
i<i':;5n 

W(i)nU [ ... ] =<A(~l)-W-EXACT-{~l==I}> 
i<i'=:;;n 

=0 

531 



532 

KO = FDDO 
DDALL I = 1, N 
PRIVATE WDRK,J,K 

K = KO+I-1 
DDALL J = 1, N 

WDRK(J,K) = J+K 
ENDDD 
CALL INC1(K) 
DDALL J = 1, N 

WDRK(J,K) = J*J-K*K 
ENDDD 
DD J = 1, N 

Creusillet and Irigoin 

AC I) = A(I)+WDRK(J,K)+WDRK(J,K-1) 
ENDDO 

ENDDO 

Fig. 5. Parallel version. 

Thus, the iteration i exports no element of A towards the subsequent 
iterations. And finally, for the whole equation, and for each iteration i, the 
region is: 

(A(tP,)-OUT-EXACT-{<'oI==I, 1 <=<,01 <=N} > 
The complete IN and OUT regions of our example are given in Fig. 4. 

They show that the body of the I loop imports and exports no element of 
WORK, which can be privatized by PIPS after induction variable substitu­
tion (see Fig. 5). 

6. INTERPROCEDURAL ANALVSES 

The intraprocedural computation of array regions has been described 
in the previous seetion. We now focus on the interprocedural part of array 
region analyses. The first subsection is devoted to the propagation on the 
call graph, while the second extensively describes the translation of array 
regions from the source procedure name space to the target procedure 
name space. 

6.1. Propagation on the Call Graph 

The interprocedural propagation of READ, WRITE, and IN regions is a 
backward (or bottom-up) analysis. At each call si te the summary regions 
of the called subroutine are translated from the callee's name space into the 
caller's name space, using the relations between actual and formal 



Interprocedural Array Region Analyses 

PROCl PROC2 

PROC3 .. 

a) Backward propagation: READ, 

WRITE, and IN regions. 

PROCl PROC2 

b) Forward propagation: OUT re­
gions. 

Fig. 6. Interprocedural propagation of array regions. (a) Backward propaga­
tion: READ, WRITE, and IN regions; (b) Forward propagation: OUT regions. 

533 

parameters, and between the declarations of global variables in both 
routines. This is illustrated in the leftmost picture of Fig. 6. 

On the contrary, the interprocedural propagation of OUT regions is a 
forward (or top-down) analysis. The regions of all the call sites are first 
translated from the callers' name space into the callee's name space, and 
are then merged to form a unique summary. [The OUT regions of the main 
routine are initialized to 0 (see Section 5.2.2).] In Fig. 6, see the rightmost 
picture. 

6.2. Array Region Translation 

This section describes the translation part of the interprocedural 
propagation. Because the source and target variables may not have the 
same declaration (array reshaping), this operation is not straightforward. 

By examining the Perfect Club benchmarks,(17) we found it necessary 
to handle several nonexclusive cases: 

1. Array reshaping due to different dimension declarations. 

2. Offsets between the first elements of the source and target arrays 
due to parameter passing (CAL L F (A ( 1, J )) for instance); 

3. Offsets due to different COMMON declarations in the caller and 
the callee (e.g., in the program TRFD, the common TR2PRT is not 
similarly declared in routines TRFPRT and TRFOUT). 

4. Target and source variables of different types (e.g., in the program 
OCEAN). 



534 Creusillet and Irigoin 

The method described in this section tackles these four points. It is 
based on the fact that two corresponding elements of the source and target 
arrays must have the same subscript values,5 up to the offset between their 
first element. This is described in Section 6.2.2. 

However, the resulting translation system may contain nonlinear 
terms, and it hides the trivial relations existing between the 4> variables of 
both arrays. Hence, we propose in Section 6.2.3 an algorithm that first tries 
to disco ver these trivial relations before using the subscript values. It results 
in a simplijied translation system. 

6.2.1. Notations 

In the remainder of this section, we use the following notations: 

source ~ target 

array A B 

dimension IX ß 
lower bounds lai , ... , la. hl, .. ·,hp 

upper bounds U"I"'" uUa, Ubl"'" Ubp 

size of elements * Sa Sb 

region parameters 4> 1 , ... , 4>1X 1/11,· .. ,1/1 ß 

* Unit: the size of the smallest accessible amount of memory (usually 
one byte). 

The subscript values of A (4) 1 , ... , 4> IX) and B( 1/11 , ... , 1/1 fI) are thus: (with 
the convention that nZl=kl = 1 when k 2 < kd 

subscripLvalue(A(4> 1 , ... ,4>,,')) = ;tl [ (4); - la) ~~: (uaj - laj + 1)] 

subscripLvalue(B( 1/11,· .. ,1/1 p)) = itl [ (1/1 i - hJ ~~ (u bj -lbj + 1)] 

Another necessary information is the off set of the first element of A from 
the first element of B in the memory layout. This information is provided 

5 The subscript value of an array elements is its rank in the array, array elements being held 
in column order.(IS) 



Interprocedural Array Region Analyses 535 

Table 11. Offset between the first elements of A and B 

source 
1-+ 

target offset 
parameter parameter 

formal 1-+ actual reference at call site: B( Ob, , ... , Obp ) 

offset = Sb X subscripLvalue(B(Obl' ... ,Obo» 
actual 1-+ formal reference at call site: A( Oa, , ... ,oaa) 

offset = -Sa x subscripLvalue(A(oa,,"" oaa» 

global 1-+ global numerical offset 
difference between the offset of A in the declaration of the 

subroutine FOO(C,n) 
complex C(n,10,20),D 
common D(5,10) 
call BAR(C,2n,100) 
end 

Fig. 7. 

common in the source subroutine, and the offset of B in 
the declaration of the common in the target subroutine. 

C <02(tPI.tP2)-W-EXACT-{1<-tP, <-la. 1<-tP2<-9}> 
C <OHtPl)-W-EXACT-{l<-tPl <-la}> 

C <I\(q>, .tP2)-W-EXACT-{I<-tP, <-NI. 1<"tP2<-N2}> 

subroutine BAR(R,nl,n2) 
real R(nl,n2) 
common Dl(10), D2(10,9) 

end 

lnterprocedural translation: example. 

difTerently, depending on the type of aliasing between A and B (see 
Table 2). 

As an illustration, let us consider the contrived program in Fig. 7, 
which contains all the difficulties encountered in real life programs. The 
purpose is to find the READ and WRITE regions of the call site, from the 
summary regions of procedure BAR. The translation coefficients are: 

offset = 0; 

Dl ...... D: A = D1, B = D; a = 1, ß = 2; la, = 1, h, = lb2 = 1; ua, = 10; 

Ub, = 5, Ub2 = 10; Sa = 4, Sb = 8; offset = 0; 

D2 ...... D: A = D2, B = D; a = 2, ß = 2; la, = la2 = 1, h, = h2 = 1; 

U a, = 10, ua2 = 9; Ub, = 5, Ub2 = 10; Sa = 4, Sb = 8; offset = 40. 



536 Creusillet and Irigoin 

6.2.2. General Translation System 

With the previous notations, the region parameters of the element 
B(t/!I,.", t/!p) corresponding to the source element A(rPI"'" rPIX) must verify 
the following system: 

(S) 

o variables are used to describe the corresponding elementary memory cells 
inside two associated array elements, as shown in Fig. 8. 

For our example, the following systems would be built: 

R~C: 

{
4[(rPI- I)+nl(rP2- 1)]+oa 

= 8[ (t/!\ - I) + n(t/!2 - I) + 10n( t/!3 - I)] + Ob 
0:::::;0,,<4, 0:::::;oh<8, n1 =2n 

DI~D: 

{4(rPI- I )+. 0,,=8[(t/!I-I)+5(t/!z-I)] +Oh 
o :::::; 0" < 4, 0 :::::; 0 h < 8 

D2~D: 

{4[ (rPl - 1) + 1O( rP2 - 1)] + 0" + 40 = 8[ (t/!\ - I) + 5( t/!2 - I)] + 0h 
o :::::; 0 a < 4, 0 :::::; 0 h < 8 

Using S as the translation system has several drawbacks: 

I. In the formal +-> actual cases, S is generally nonlinear (it is the case 
in our first example); 

8a = 1 

A I I 11 

B I I 11 
Fig. 8. Meaning of cl variables. 



Interprocedural Array Region Analyses 537 

2. In order to keep a convex representation, J variables must be 
eliminated; this operation may be inexact, leading to an over­
approximation; 

3. Even in favorable cases, the equation in system S is rather com­
plex, and hides the trivial relations existing between 4> and ljJ 
variables, such as 4> I = ljJ I; this makes the subsequent analyses 
unnecessarily complex, and is not acceptable in an interactive 
environment. 

In the following section, we describe a method that alleviates these three 
problems. 

6.2.3. Simplified Translation System. 

6.2.3.1. Elimination of Unneccessary <5 Variables 

Theorem 1. If Sb divides Sa and offset, then S is equivalent to the 
following system: 

S~ x subscripLvalue(A(4> I , ... , 4>,,J) + J~ + offset 
Sb 

= subscripLvalue(B( ljJ 1'···' ljJ {J)) 

o :::::;J~ <S~ 

Of course, there is a similar system if Sa divides Sb and offset. 

Note. 

1. In the formal +-+ actual cases, Sb divides Sa = Sb divides offset. 
2. In fact, we just replace Sa by Sa/Sb' Sb by I, offset by offset/sb and 

use S without Jb • 

In our working example, since Sa divides Sb and offset in all three cases, the 
translation systems become: 

RHC: 

{
(4)1 -1) + nl(4)2 -1) 

= 2 [ (1jJ 1 - 1 ) + n( ljJ 2 - 1) + IOn (1jJ 3 - 1) ] + J b 

o :::::; J b < 2, n 1 = 2n 

DIHD: 

{ 4> 1 - 1 = 2[ (1jJ 1 - 1) + 5( ljJ 2 - 1)] + J b 

O:::::;Jb <2 



538 Creusillet and Irigoin 

Table 111. Similar dimensions: Condition for the offset 

formal ..... actual V i/I< i < d, Obi = lbl 

actual ..... formal V i/I< i < d, oal = ld; 

global ..... global loffsetl mod Sa rrt=l (Ua ; -la; + 1) = 0 
"Ioffsetl mod Sb rrd (Ub; -lb; + 1) = 0 

D2t--+D: 

{ ( ljJ 1 - 1) + 1O( f.b 2 - 1 ) + 10 = 2 [( 1/11 - 1) + 5 (1/11 - 1)] + Ob 

O~ob<2 

6.2.3.2 Decreasing the Degree of (S ) 

Definition 2. (Similar dimensions) 
A dimension d (d ;:;;, min( IX, ß)) is said to be simi1ar for arrays A and B 

if the following three conditions are met: 

1. Condition Jor the offset: There must be no offset between the first 
element of Band the first element of A on dimension d (Table 3) 

2. Condition Jor the Jirst dimension: The lengths in bytes of the first 
dimensions of A and Bare equal: 

This means that the first dimension entirely compensates the dif­
ference between s" and Sh. This is why S<J and Sb are not used in 
the next condition. 

3. Condition Jor the next dimensions (2 ~ d;:;;, min( IX, ß)): Assuming 
that the previous dimensions are similar, the lengths of the d-th 
dimensions of A and B must be equal: 

This is not necessary if d = IX = ß. 

This definition only takes into account dimensions of identical ranks. 
The general case would try to discover minimal sets of globally similar 
dimensions. 

For instance if the dimensions of A and Bare A(l, m, n) and B(m, I, n), 
the global lengths of dimensions 1 and 2 are similar (dimensions 1 and 2 
are globally similar); as a consequence, the third dimension is similar. 

But the complexity of the algorithm for discovering these sets would 
be too high compared to the expected gain, especially in real life programs. 



Interprocedural Array Region Analyses 539 

Notations. We now use the following notations for k E [2 .. min(cx:, ß)]: 
k-subscripLvalue: 

k-subscripLvalue(A( <PI'"'' <p,,)) = itk [ (<Pi-la) ~~ (Ua) -la} + 1)] 
It is the rank of the array element A(<PI,"" <Pa.) from the element 

A(<p[, ... , <Pk-I' I"k"'" la.), i.e., from the first element ofthe k-th dimension. 
LojJset: 

It is the offset relative to the k-th dimension (see Table 4) 

Table IV. Loffset 

formal ...... actual k_subscripLvalue(B(obt, . . , , Ob )) 

actual ...... formal -k_subscripLvalue(A(o.t, , . , , o.~)) 

global ...... global l8B n; 
Off8d , I 
(uo ·-1 Q .+1) 

Theorem 3. If dimensions 1 to d - 1 (1 ,;;;, d - 1 ,;;;, min( cx:, ß» are 
similar, then S is equivalent to: 

3J", J,,/ 

Sa(<PI -I,) + Ja = Sh(l/JI -Ih) + J h 

Vi E [2.,d -1], <Pi -I,,; = l/Ji-I,,; 

d....subscripLvalue(A( <P I , ... , <p,.) + cLojJset 

O,;;;,Ja<s" 

O,;;;,Jh<Sb 

In our working example, the translation system finally become: 

Rr- C: 

{
<P I - I = 2( '" I - 1) + J h 

<P2 - 1 = ('" 2 - I) + 1 O( '" 3 - 1) 
0,;;;, Jb < 2 

Notice that the system now only contains linear equations. 

Dlr-D: 

{
'" I - 1 = 2( l/J 1 - 1) + J b 

(l/J2- 1)=O 

0,;;;, Jb < 2 

6 In the formal I--> actual case, if d=min(oc, ß) =11., this equation can be replaced by 
lfiE [d .. ß], 1/1;= 0hi' 



540 Creusillet and Irigoin 

There are now only very simple relations between 1> and lj; 
variables. In particular, it becomes obvious that lj;2 = 1, which 
was hidden in the original system. 

D2~D: 

{
1> 1 - 1 = 2( '" 1 - 1) + .5 h 

(1)2 - 1) + 1 = (lj; 2 - 1) 

O::::;:.5 b <2 

Notice how the offset for the whole problem has been tumed into 
an offset for the sole second dimension (the term + 1 in the 
second equation). 

And at last, the translation algorithm is the following: 

ALGORITHM 

1. input: a region RA corresponding to the array A 

3. d = number_o/_similar_dimensions(A, B) + 1 

4. if d = 1 then 

5 . translatiorLsystem = S 

6. else 

7. translatiorLsystem = Sd 

8. endif 

9. add translatiorLsystem to RB 

10. eliminate 6 variables 

11. eliminate rP variables 

12. rename ~ variables into rP variables 

13. translate RB's polyhedron into 

the target routine's name space 

14. for all i E [l..ßl add lbi ~ rPi ~ Ubi to RB 

15. output: RB 



Interprocedural Array Region Analyses 541 

At each step, the exactness of the current operation is checked. At 
Step 3, if an intermediate expression used to check the similarity is not 
linear, the current dimension is declared as nonsimilar, and the next dimen­
sions are not considered. At Steps 5 and 7, if a constraint cannot be built 
because of a non-linear term, it is not used (this leads to an over­
approximation of the solution set), and the translation is declared inexaci. 
At Steps 10 and 11, the exactness of the variable elimination is verified with 
the usual conditions. (22,23) 

Step 13 is performed using the relations between formal and actual 
parameters, and between the declarations of global variables in the source 
and target routines (this gives a translation context system). The variables 
belonging to the name space of the source routine are then eliminated. The 
exactness of this operation depends on the combined characteristics of 
the translation context system and R. 

The last step is particularly useful in case of a partial matching 
between A and B, which is the case when A and B belong to a COMMON 
that is not similarly declared in the source and target routine. 

For the example of Fig. 7, the resulting regions are all exact: 

<C(~1.~2.~3)-W-EXACT-{1<=~1<=N.1<=~2<=10.1<=~3<=20.~2+10~3<=110}> 

<D(~1.~2)-W-EXACT-{1<=~1<=5. 2<=~2<=10}> 

<D(~1.~2)-W-EXACT-{1<=~1<=5. ~2==1}> 

7. RELATED WORK 

The previous works closest to ours are those of Triolet, (9) Tang, (25) 
Hall, (26) Li, (27,28) and Leservot, (8) and the works by Burke and Cytron, (29) 
and Maslov(30) for the interprocedural translation. 

Many other less recent studies(lO, 31, 32) have addressed the problem of 
the interprocedural propagation of array element sets. But they did not 
provide sufficient symbolic analyses, and did not tackle array reshaping. 

Array regions were originally defined by Triolet(9) as over-approxima­
tions of the effects of statements of procedures upon sets of array elements 
(MAY READ and WRITE regions). We have extended his work to introduce 
the notion of exactness, and IN and OUT regions to represent the flow of 
array elements. 

Triolet addressed in his thesis(33) the problem of interprocedural trans­
lation in a very limited way: No array reshaping, except when due to an 
offset in the actual parameter 1'0 represent a column in a matrix for 



542 Creusillet and Irigoin 

instance; and the COM MONs in the caller and callee had to be similarly 
decIared. 

Tang(25) summarizes multiple array references in the form of an integer 
programming problem. lt provides exact solutions, but the source language 
is very restricted, and array reshaping is only handled in very simple cases 
(subarrays, as Triolet(33»). 

Fiat/Suif'26) includes an intra- and inter-procedural framework for the 
analysis of array variables. Under- and over-approximations of array 
elements sets are represented by lists of polyhedra. The problem of exact­
ness is not considered. However the list representation is more precise than 
ours, and the exactness of our regions would certainly benefit from it; but 
the cost, both in memory use and computation time, would certainly be 
more important. 

Different types of regions are available in Fiat/Suif. The Read and 
Write sets are similar to our READ and WRlTE regions. However, the 
ExposedRead sets contain the array elements which are used in the con­
tinuation of the whole pro gram before being defined, while our IN regions 
are restricted to the current level in the HCFG. There are no equivalent for 
our OUT regions, which are (among other applications) useful for the inter­
procedural resolution of the copy-out problem in array privatization. (2) 

For the interprocedural translation, they have adopted a method basi­
cally similar to ours. However, in Fiat/Suif, similar dimensions are taken 
into account only when the system is not linear; and in this case, they do 
not try to build a system similar to Sd (see Theorem 3), possibly missing 
a linear translation system. Moreover, they do not handle global 1-+ global 
translation when the COM MON to which the source and target arrays 
belong, does not have the same data layout in the caller and callee. 

In the Panorama compiler, (27.28) the representation of array element 
sets is a list of RSDS( 10) with bounds and step, guarded by predicates derived 
from IF conditions. Since our regions also incIude some IF conditions, the 
advantages of this representation over ours (except the use of lists) is 
uncIear. 

They also have different types of array element sets. MOD sets are 
similar to WRlTE regions, and UE sets to IN regions; this is due to the fact 
that their analyses rely on a hierarchical control flow graph inspired from 
PIPS HCFG. (27) But as in Fiat/Suif, there is no equivalent for our OUT regions. 

The previous sets are exact sets, unless they contain an unknown com­
ponent. Our regions should be more accurate, because we can keep infor­
mation about all the fjJ variables, even in case of a MAY region. 

Leservot(8) has extended Feautrier's array data flow analysis(5) to 
handle static control programs with procedure calls. To preserve the 



Interprocedural Array Region Analyses 543 

apriori determinism of the analysis, no partial association is allowed at 
procedure boundaries (i.e., the source and target arrays have the same 
type), and only very simple array reshapes are handled (the same cases as 
in Refs. 25 and 33). 

For each procedure, this method computes in-going effects, which bear 
some resemblance with IN regions, and out-going effects, which are some­
what similar to downward exposed writes, and are thus different from OUT 

regions. 
Burke and Cytron(29) alleviate the memory disambiguation problem 

by linearizing all array accesses when possible. This is equivalent to using 
the system S in our method. However, we have seen that this may lead to 
nonlinear expressions, that prevent further dependence testing for instance. 
On the contrary, our method avoids linearization whenever possible by 
detecting similar dimensions, and partially linearizing the remaining dimen­
sions if possible and necessary. This approach eliminates the linearization 
versus subscript-by-subscript problem as formulated by Burke and Cytron. 

Maslov(3) describes a very general method for simplifying systems con­
taining polynomial constraints. This is the case of the general translation 
system presented in Section 6.2.2. 

We think that most cases that arise in reallife pro grams and that can 
be solved using Maslov's method can also be solved by our algorithm, thus 
avoiding the cost of a more general method; for instance, the translation 
from A( N, M, L) to B (N, M, L) yields the equation t/I, + Nt/l2 + NMt/l3 = 
f/J, + Nf/J2 + N Mf/J 3 which he gives as an example; we solve it by simply 
verifying that all three dimensions are similar. 

8. CONCLUSIONS 

Obviously, a lot of efforts have been spent over the last ten years to 
summarize memory effects on array elements. Time and space complexity, 
accuracy, and usefulness are the usual issues. In PIPS, we have chosen to use 
convexity to reduce space complexity. We define several types of sum­
maries. 

READ and WRITE array regions represent the exact effects of statements 
and procedures upon array elements whenever possible. Whereas the 
regions initially defined by Triolet<9) are over-approximations of the effects 
of procedures. READ and WRITE regions are used by Coelho' 13) to efliciently 
compile HPF. 

Since READ and WRITE regions cannot be used to compute the flow of 
array elements, we have introduced two new types of exact array region. IN 

and OUT regions represent the sets of array elements that are imported or 
exported by the corresponding code fragment. IN regions contain the 

828/24/6-5 



544 Creusillet and Irigoin 

locally upward exposed read elements, and are thus different from the usual 
upward-exposed read references. IN and OUT regions are already used in 
PIPS for the privatization of array sections(l2. 34) even when there are proce­
dure calls. 

We also provide a general linear framework for the interprocedural 
propagation of regions, regardless of their type. It handles array reshapes, 
even in COMMONs that do not have the same data layout, and when 
arrays do not have the same type. It is different from the other approaches 
because it systematically tries to discover similar dimensions, and uses 
linearization techniques only for the dimensions that are not sirnilar. 

The current implementation in PIPS covers all the intraprocedural 
structures of the FORTRAN language, along with the interprocedural 
propagation. A first series of experiments carried on the Perfect Club 
benchmarks shows the practicality of the analysis in terms of time and 
space, in spite of the well-known exponential complexity of operators on 
polyhedra. 

More experiments are needed to determine if the representation of IN 

and OUT regions in polyhedral form is precise enough in general to perform 
optimizations such as array privatization, generation of communications in 
distributed memory machines, or compile-time optimization of cache 
behavior in hierarchical memory machines. Other representations are being 
considered, such as finite unions of polyhedra, and intersection of 
polyhedra and lattices. 

ACKNOWLEDGMENTS 

We are very thankful to Corinne Ancourt, Fabien Coelho, Pierre 
Jouvelot, and William Pugh for their careful reading of previous versions 
and helpful comments. We also wish to give special thanks to the referees 
for the improvements they suggested. 

REFERENCES 

I. w. Blume and R. Eigenmann, Performance Analysis of Parallelizing Compilers on the 
Perfeet Benchmarks Programs. IEEE Trans. on Parallel ami Distrib. Sysl., 3(6):643-656 
(November 1992). 

2. Zhiyuan Li, Array Privatization for Parallel Execution of Loops. Int'!. Con! on Supen'om­
puting, pp. 313-322 (July 1992). 

3. Peng Tu and David Padua, Automatie Array Privatization. Languages ami Compilers for 
Parallel Computing (August 1993). 

4. Thomas Brandes, The lmportance of Direct Dependences for Automatie Parallelization. 
In Int' I. Con! on Supercomputing, pp. 407-417 (J uly 1988). 

5. Paul Feautrier, Datat10w Analysis of Array and Sealar Referenees. UPP, 20( I ):23-53 
(September 1991). 



Interprocedural Array Region Analyses 545 

6. Vadim Maslov, Lazy Array Data-Flow Analysis. Symp. on Principles of Programming 
Languages, pp. 311-325 (January 1994). 

7. Jean-Franyois Collard, Automatie Parallelization of While-Loops Using Speculative 
Execution. UPP, 23(2):191-219 (1995). 

8. Arnauld Leservot, Analyses Interprocedurales du Flot des Donnees. Ph.D. Thesis, Univer­
site Paris VI (March 1996). 

9. Remi Triolet, Paul Feautrier, and Franyois Irigoin, Direct Parallelization of Call 
Statements. ACM S/GPLAN Symp. on Compiler Construction, pp. 176-185 (1986). 

10. D. Callahan and K. Kennedy, Analysis of Interprocedural Side Effeets in a Parallel 
Programming Environment. J. of Parallel and Distrib. Comput., 5:517-550 (1988). 

I!. Franyois Irigoin, Pierre Jouvelot, and Remi Triolet, Semantieal Interprocedural 
Parallelization: An Overview of the PIPS Projeet. Int'l. Conf on Supercompuling, 
pp. 144-151 (June 1991). 

12. Beatriee Apvrille-Creusillet, Regions Exaetes et Privatisation de Tableaux (Exaet Array 
Region Analyses and Array Privatization). Master's Thesis, Universite Paris VI, Franee 
(September 1994). Available via http://www.eri.ensmp.fr/-ereusil. 

13. Fabien Coelho, Compilation of 1/0 Communieations for HPF. Frontiers '95, pp. 102-109 
(February 1995). Available via http://www.cri.ensmp.fr/- eoelho. 

14. Fabien Coelho and Corinne Aneourt, Optimal Compilation of HPF Remappings. Teehni­
cal Report A-277-CRI, CRI, Eeole des Mines de Paris (Oetober 1995). (ta appear in 
JPDC). 

15. Chung-Chi Jim Li, Elliot M. Stewart, and W. Kent Fuchs, Compiler-Assisted Full Cheek­
pointing. Software: Practice an" Experience, 24( 10):871-886 (Oetober 1994). 

16. Michael Paleezny, Ken Kennedy, and Charles Koelbel, Compiler Support for Out-of­
Core Arrays on Parallel Machines. Frontiers '95, pp. 110-118 (February 1995). 

17. M. Berry, D. Chen, P. Koss, D. Kuck, V. La, Y. Pang, R. Roloff, A. Sameh, E. Clementi, 
S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, 
K. Lue, S. Orzag, F. Seidl, O. Johnson, G. Swanson, R. Goodrum, and J. Martin, The 
PERFECT Club Benchmarks: Effective Performance Evaluation of Supercomputers. 
Teehnieal Report CSRD-827, CSRD, University of Illinois, (May 1989). 

18. Ameriean National Standard Institute, Programming Language FORTRAN, ANSI 
X3.9-1978, ISO 1539-1980 (1983). 

19. Franyois Irigoin, Interproeedural Analyses for Programming Environments. Workshop 
on Environments anti Tools for Parallel Scientijic Computing, pp. 333-350 (September 
1992). 

20. Beatriee Creusillet, IN and OUT array Region Analyses. FiJtlz Int'l. Workshop on Com­
pilers for Parallel Computers, pp. 233-246 (June 1995). 

21. Beatrice Creusillet and Fran90is Irigoin, lnterprocedural Array Regions Analyses. 
Languages anti Compilers for Parallel Computing, No. 1033 in LNCS, pp. 46-60 (August 
1995). 

22. Corinne Ancourt and Franyois Irigoin, Scanning Polyhedra with DO Loops. Symp. on 
Principles anti Practice of Parallel Programming, pp. 39-50 (April 1991). 

23. William Pugh, A Practical Aigorithm for Exact Array Dependence Analysis. Comm. 
ACM, 35(8):102-114 (August 1992). 

24. William Pugh and David Wonnacott, Eliminating False Data Dependences Using the 
Omega Test. In Int'l. Conf on PLDI, pp. 140-151 (June 1992). 

25. Peiyi Tang, Exact Side Effects for Interprocedural Dependenee Analysis. Int'l. Conf on 
Supercomputing, pp. 137-146 (July 1993). 

26. Mary Hall, Brian Murphy, Saman Amarasinghe, Shih-Wei Liao, and Monica Lam, Inter­
procedural Analysis for Parallelization. Languages and Compilers for Parallel Computing, 
No. 1033 in LNCS, pp. 61-80 (August 1995). 



546 Creusillet and Irigoin 

27. Trung Nguyen, lungie Gu, and Zhiyuan Li, An Interprocedural ParalJelizing Compiler 
and lts Support for Memory Hierarchy Research. Languages and Compilers for Parallel 
Computing, No. 1033 in LNCS, pp. 96-110 (August 1995). 

28. lungie Gu, Zhiyuan Li, and Gyungho Lee, Symbolic Array Dataflow Analysis for Array 
Privatization and Program ParalJelization. Supercomputing (December 1995). 

29. Michael Burke and Ron Cytron, Interprocedural Dependence Analysis and Paralleliza­
tion. ACM SIGPLAN Notices, 21(7):162-175 (July 1986). 

30. Vadim Maslov and William Pugh, Simplifying Polynomial Constraints over Integers to 
Make Dependence Analysis More Precise. Technical Report CS-TR-3109.l, University of 
Maryland, College Park (February 1994). 

31. Pau1 Havlak and Ken Kennedy, An Implementation of Interprocedura1 Bounded Regular 
Section Analysis. IEEE Trans. on Parallel and Dislrib. Syst., 2(3):350-360 (July 1991). 

32. V. Balasundaram and K. Kennedy, A Technique for Summarizing Data Access and its 
Use in Parallelism Enhancing Transformations. IIIt'l. Conf on PLDI, pp. 41-53 (lune 
1989). 

33. Remi Triolet, Contribution it la ParalleIisation Automatique de Programmes Fortran 
Comportant des Appels de Procedures. Ph.D. Thesis, Paris VI University (1984). 

34. Beatricc Creusillet, Array regions for Interprocedural Parallelization and Array Privatiza­
tion. Report A-279, CRI, Ecole des Mines de Paris (November 1995). Availablc at 
http:;(www.cri.ensmp.fr;-creusil. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




