
International Journal of Parallel Programming, Vol. 24, No.3, 1996

Using Predicated Execution to

Improve the Performance of a

Dynamically Scheduled Machine

with Speculative Execution

Po-Yung Chang, I Eric Hao, I Yale N. Patt,l
and Pohua P. Chang 2

Conditional branches incur a severe performance penalty in wide-issue, d~'\:ply
pipelined processors. Speculative execution!l. 2) and predicated executionl'-O) are
two mechanisms that have been proposed for reducing this penalty. Speculative
execution can completely eliminate the penalty associated with a particular
branch, but requires accurate branch prediction to be effective. Prcdkatcd
execution does not require accurate branch prediction to eliminate the branch
penalty, but is not applicable to all branches and can increase the latencies
within the program. This paper examines the performance benetit of using both
mechanisms to reduce the branch execution penalty. Predicated execution is
used to handle the hard-to-predict branches and speculative execution is uscd to
handle the remaining branches. The hard-to-predict branches within the
program are determined by protiling. We show that this approach can
signiticantly reduce the branch execution penalty suffered by wide-issue
processors.

KEY WORDS: Predicated execution; speculative execution; branch prcdic
tion; wide-issue dynamically scheduled processors; instruction level parallelism.

1. INTRODUCTION

Today's processors are being built with wider issue rates and deeper
pipelines in order to exploit larger amounts of instruction-level parallelism.

I The University of Michigan, Ann Arbor, Michigan.
2 Intel Architecture Laboratory, Santa Clara, California.

209

0885-7458/96/0600-0209$09.50/0 © 1996 Plenum Publishing Corporation

210 Chang, Hao, Patt, and Chang

For such processors, the occurrence of branches in the instruction stream
incurs a severe performance penalty. (10. 11) Two well-known mechanisms
have been proposed to reduce this penalty, speculative execution in
conjunction with branch prediction and predicated execution.

Speculative execution(J,2) is a micro architectural mechanism that
solves the branch problem by guessing the direction that a branch will take
before the branch condition is known. After making a prediction for a
branch in the dynamic instruction stream, the processor speculatively
executes the instructions along the predicted path. The branch prediction is
confirmed when the branch instruction is executed. If the prediction is
correct, then the processor suffers no performance penalty for this dynamic
instance of the branch. If the prediction is incorrect, the processor, after
removing from its state the effects of the speculatively executed instructions,
must return to the point of the branch prediction and begin executing
instructions from the correct path. In this case, the full branch execution
penalty is suffered.

Predicated execution(3-9) is an architectural mechanism that addresses
the branch problem by providing the compiler with a set of predicated
instructions that can be used to eliminate static branches in the program.
The branches can be eliminated by replacing their control-dependent
instructions with predicated instructionsY2) A predicated instruction
contains an extra source operand known as the predicate operand. The
predicated instruction is conditionally executed based on the value of this
operand. If the predicate evaluates to true, the predicated instruction is
executed like a normal instruction. If the predicate evaluates to false, the
instruction is not executed. Given these semantics, a compiler can replace
the branch and the set of instructions that represent an if-then-else state
ment by predicating the then clause with the branch condition as the
predicate and predicating the else clause with the complement of the
branch condition as the predicate. By eliminating the branch, predicated
execution ensures that the processor never suffers any branch execution
penalties due to that branch.

While both speculative and predicated execution have been shown to
significantly reduce the performance penalty due to branches, both
mechanisms have disadvantages. A processor using speCUlative execution
suffers the full branch execution penalty whenever it makes a branch
misprediction. A processor using predicated execution may see a drop in
performance because predicated execution changes control dependencies
into flow dependencies, lengthening the dependency chains in the program.
In addition, using predicated execution wastes issue bandwidth because the
predicated instructions from both branch paths must always be issued.
Finally, predicated execution has the disadvantage that certain branches

Improve Performance of Dynamically Scheduled Machine 211

have characteristics that prevent them from being eliminated. A mechanism
other than predicated execution must be used to handle such branches.
[Two other disadvantages to using predicated execution are that it requires
the addition of a third operand to every instruction in the instruction set
architecture and the addition of hardware to support its semantics. These
issues are not addressed in this paper.]

This paper examines the performance benefit of using both speculative
and predicated execution to reduce the branch execution penalty for wide
issue, dynamically scheduled machines that use the Two-Level Adaptive
Branch Predictor.(13-15) To minimize the effect of each approach's disad
vantages, speculative execution is used to handle the branches that are
accurately predicted by the branch predictor and predicated execution is
used to eliminate the remaining hard-to-predict branches. Profiling is used
to determine which branches are inaccurately predicted by the branch
predictor. In addition, we examine the effectiveness of the instruction
promotion compiler optimization, (6,16) which removes the data dependen
cies that were created by the addition of predicated instructions. We show
that for most of the SPECint92 benchmarks, profiling is an effective means
for determining which branches are difficult to predict for the Two-Level
Predictor. Furthermore, we show that the addition of predicated execution
can provide a significant performance increase while the instruction promo
tion optimization can provide a small additional performance increase.

This paper is organized into five sections. Section 2 discusses previous
work done with predicated execution. Section 3 discusses the methodology
used to eliminate hard-to-predict branches. The predicated execution model
used in this study and the results from profiling the benchmarks for hard
to-predict branches are presented. Section 4 describes the simulation
methodology used in our experiments and the results from those
experiments. Section 5 provides some concluding remarks.

2. PREVIOUS WORK

Many researchers have studied the effectiveness of combining
speculative and predicated execution. Pnevmatikatos and Sohi(7) studied
the performance benefit of using predicated execution in conjunction with
the Two-Level Adaptive Branch Predictor. They eliminated as many
branches as possible through predicated execution and reported its effect
on the number of dynamic branches executed, basic block size, wasted
issue bandwidth, and the dynamic window size (the number of instructions
issued between branch mispredictions). Tyson (8) studied the performance
benefit of predicating all short forward branches. In addition to the metrics
reported in Ref. 7, he approximated the reduction in the branch execution

212 Chang. Hao. Patt. and Chang

penalty due to predicated execution by calculating the penalty as a function
of processor issue width and pipeline depth. Mahlke et al. (6.9) studied the
performance benefit of using predicated execution in conjunction with a
static branch predictor or a simple dynamic branch predictor.

In examining the performance benefit of using both speculative and
predicated execution, this paper builds on the work of these previous
researchers and makes three contributions. First, it examines the perfor
mance benefit of eliminating only the hard-to-predict branches for the
Two-Level Branch Predictor. Because the Two-Level Branch Predictor
achieves a much higher prediction accuracy than those examined in Refs. 6
and 9, the number of branches that must be eliminated is smaller. Second,
it measures this performance benefit by simulating an actual dynamically
scheduled machine and reporting the benefit both in terms of number of
mispredictions eliminated and the number of cycles saved in total execution
time. Third, it shows the effectiveness of using profiling to detect branches
that are hard-to-predict for the Two-Level Branch Predictor.

3. PREDICATED EXECUTION

3.1. Predication Model

Our predication model assumes that each predicated instruction
has a register destination and three or four source operands: one or two
source operands for calculating the result generated by the instruction, one
predicate operand, and one implicit source operand specified by the
destination register.(7· 17) We have assumed that the predicate operand is an
ordinary register, although we expect some future implementations to use
Boolean registers for that purpose. The predicated instruction uses the least
significant bit of a register as the value of its predicate.

Although predicate registers are usually set by compare instructions,
they can be set by any instruction. If the predicate evaluates to true, the
predicated instruction executes like a regular instruction: the destination
register receives the result of the instruction's operation. If the predicate
evaluates to false, the predicated instruction writes the old value of the
destination register (the implicit operand) back into the destination
register. This is done instead of suppressing the execution of the instruction
because the machine simulated uses dynamic register renamingY8.19) For
register renaming to operate correctly, every issued instruction having a
destination register must produce a result. This requirement has the draw
back that it forces every predicted instruction to be part of a dependency
chain regardless of the value of its predicate.

Improve Performance of Dynamically Scheduled Machine 213

In our predicated execution model, each predicated instruction is
allowed to execute once the predicate value and the required operands are
ready. That is, if the predicate is true, the predicated instruction needs to
wait only for the value of the source operands. On the other hand, if the
predicate is false, the predicated instruction needs to wait only for the old
value of its destination register. With this execution model, the implicit
data dependence usually causes only one additional cycle of delay.

Figure 1 illustrates this drawback with a modified code fragment from
the eqntott benchmark. Although there is no true dependence between the
two predicated move instructions in Fig. 1, the second move instruction
has a data dependence on the first move instruction due to the implicit
destination operand (r5). [Sprangle and Patt(20) have proposed a static
register tagging scheme that avoids this drawback by eliminating the need
to execute predicated instructions when their predicates are false. Our
simulations, however, do not take advantage of this scheme.] When the
second instruction is issued, the implicit destination register gets the old tag
for r5, say x, and a new tag, say y, is assigned to the destination register
r5. When the third instruction is issued, the destination register is assigned
with a new tag, say z. Thus, if r4 is true, there will usually be one addi
tional cycle of delay for instruction (2') to pass the value of r5 to instruc
tion (3'); instruction (3') then can distribute the new value ofr5 with tag z.

We should point out that there could be additional delay cycles if
instruction (3') is not able to execute in the next cycle, because other ready
instructions are fired first. These additional delay cycles can usually be
eliminated with the correct assignment of operations to node tables.

/* C code */
if (aa < bb)

res = -1;
else

res = 1;

;; Assembly code with predicated instructions
(1) cmp_lt r4, r2, r3
(2) movi rS, -1, if r4
(3) movi rS, 1, ifnot r4

;; Decoded instructions after register renaming
(1') cmp_lt r4 = tag w, r2 = tag u, r3 = tag v
(2') movi rS = tag y, -1, rS = tag x,
(3') movi rS = tag z, 1, rS = tag y,

if r4 = tag w
if not r4 = tag w

Fig. I. Elimination of an if-then-else branch with predicated instructions.

214 Chang, Hao, Patt, and Chang

On the other hand, if r4 is false, instruction (3') does not need to wait
for tag y, resulting in no additional delays.

3.2. Branch Profiling

For static branch predictors, branch taken-rate can effectively identify
the hard-to-predict branches. However, for dynamic branch predictors,
branch taken-rate alone may not be sufficient in identifying the hard-to
predict branches. That is, dynamic predictors may be able to accurately
predict those branches whose taken-rates are not mostly-taken or mostly
not-taken. Using taken-rate alone, we may mistakenly classify these
branches as hard-to-predict. Figure 2 shows a branch with a dynamic
taken-rate of 60%. This branch is taken for the first 6 times and then not
taken for the next 4 times. Using taken-rate as the metric, this branch will
be classified as hard-to-predict. However, as shown in the lower part of the
table, a simple dynamic predictor like the last time taken predictor can
capture the change in this branch's behavior and predict this branch with
90 % accuracy. Therefore, profiling the performance of the dynamic branch
predictor may better identify the hard-to-predict branches.

To determine which branches to consider for elimination, each
benchmark was profiled with a training data set. The profiler modeled the
processor's branch predictor and recorded the number of mispredictions for
each static branch. Branches whose misprediction counts exceeded a given
threshold were considered hard-to-predict and marked for elimination.

The branch predictor simulated by the profiler in our experiments was
the Gshare/PAg predictor,os,21) an aggressive variation of the Two-Level
Branch Predictor. This hybrid branch predictor combines the global
history (Gshare(21)) and per-address history (PAg(13)) schemes of the Two
Level Branch Predictor into one predictor. It bases its prediction on
whichever scheme has recently been making the more accurate predictions
for the branch to be predicted. An array of IK 2-bit updown counters is

• Static predictors: record branch direction

Branch: I TIT I TIT I TIT I N I N I N I N I
Profile: T: 6, N: 4

• Dynamic predictors: record correct branch predictions

Branch: I TIT I TIT I TIT I N I N I N I N I
Predictions:1 TIT I TIT I TIT I TIN I N I N I
Profile: C: 9, I: 1

C = correct prediction, I = incorrect prediction

Fig. 2. Branch profiles based on taken-rate and prediction accuracy.

Improve Performance of Dynamically Scheduled Machine 215

used to keep track of the relative accuracies of the two schemes. Both the
Gshare and the PAg schemes use IO-bit branch history registers and
IK-entry pattern history tables for making their predictions.

The profiler simulates the behavior of the branch predictor by modi
fying the program to be profiled. It replaces the code that calculates the
branch conditions for each branch in the program with function calls.
These functions invoke the branch predictor simulator which then
generates the branch prediction and updates the state of the simulated
prediction hardware. By comparing the actual branch direction with the
simulated predication, the performance of the branch predictor can be
determined on a per branch basis. The pro filer's modifications to the
program do not change its behavior because the inserted functions return
the actual branch conditions so that the program always executes down the
correct path.

Profiles that report the performance of the Two-Level Branch Predictor
for each static branch in each of the six SPECint92 benchmarks were
generated. Table I lists the input data sets used to profile each of the
benchmarks. The SPECint92 reference input sets were used whenever
possible, but because eqntott, compress, and xlisp were each provided with

Table I. Input Data Sets used to Profile the SPECint92 Benchmarks

Profiling Inputs

Benchmark Input I Input 2 Input 3

008.espresso cps bca ti
022.li 9 queens hanoi" rootsb

023.eqntott intl.eqn" int2.eqnJ fx2fp.eqn'
026.compress in gcc src! trace g

on.sc loadal loada2 loada3
085.gcc rttv.i" stmt.i gcc.i

"Tower of Hanoi.
b Newton's method for approximating square roots.
"Abbreviated version of the SPECint reference input set inLprL3.eqn. It consists of IS

Boolean equations with 39 different variables.
J Abbreviated version of the SPECint reference input set inLpri_3.eqn. It consists of 27

Boolean equations with 49 different variables. The majority of the equations differ from
those used in int l.eqn.

'Fixed point to floating point encoder.
! Concatenated gcc source files (- 1MB).
g Motorola MC88110 instruction trace of compress (-1MB).
"rttv.i is the concatenation of the four SPECint92 reference input flies regclass.i, toplev.i,

tree.i, and varasm.i.

216 Chang, Hao, Patt, and Chang

Table II. Percentage of Mispredictions Covered by
Branches Specified as Hard-to-Predict

by the Input 1 Data Set

Benchmark Input 1 Input 2 Input 3

008.espresso 75.25 70.55 67.28
022.li 75.03 68.32 50.36
023.eqntott 83.26 78.36 85.12
026.eompress 76.57 83.29 86.38
072.sc 89.66 55.25 6.42
085.gec 75.01 76.68 74.54

only one input set, their profiles were based on inputs that were not from
the SPECint92 suite.

For each profile, the branches were listed from worst to best where the
branch with the largest number of mispredictions was considered the worst
one. Branches that appeared in the list before the cumulative number
reached 75 % of the total number of mispredictions were considered to be
the hard-to-predict branches for that profile. Appendix A contains an
abbreviated listing of these branches. The profiles show that for all the
benchmarks, with the exception of gcc, there were very few hard-to-predict
branches. Tables II-IV list for each benchmark the percentage of total
mispredictions that were covered by the set of branches that are profiled as
hard-to-predict. Each table uses a different input file to generate the profile.
With the exception of sc, an average of 73 % of the total mispredictions for
each of the benchmarks were covered by the set of branches that were
profiled as hard-to-predict. This result shows that the set of hard-to-predict
branches for a given benchmark is consistent over all the input data sets
profiled, indicating that the majority of the hard-to-predict branches can be
detected by profiling. Sc, the spreadsheet program, did not fare as well

Table III. Percentage of Mispredictions Covered by
Branches Specified as Hard-to-Predict

by the Input 2 Data Set

Benchmark Input I Input 2 Input 3

OOS.espresso 35.77 75.05 30.57
022.1i 79.52 75.62 59.54
023.eqntott 83.26 78.36 85.12
026.eompress 76.57 83.29 86.38
072.se 53.34 76.34 5.59
085.gee 71.74 75.02 71.21

Improve Performance of Dynamically Scheduled Machine

Table IV. Percentage of Mispredictions Covered by
Branches Specified as Hard-to-Predict

by the Input 3 Data Set

Benchmark Input 1 Input 2 Input 3

008.espresso 70.46 67.02 75.18
022.1i 71.19 74.01 75.20
023.eqntott 83.26 78.36 85.12
026.compress 76.57 83.29 86.38
072.sc 32.94 36.70 76.56
08S.gee 73.89 75.38 75.01

217

because each of the input data sets focused on a different subset of the
spreadsheet commands. Our experiment also yielded an anomalous result
for espresso. The profiles generated from the Input 1 and Input 3 data sets
covered the majority of the hard-to-predict branches for the other two data
sets, but the Input 2 profile did not. This is because Input 1 and Input 3's
profiles had to include a large number of static branches to reach the 75 %
misprediction threshold while Input 2's profile required a smaller number
of static branches. This smaller set was subsumed by the larger sets. As a
result, Input 2's profile was unable to provide good coverage of the other
input data sets even though their profiles were able to provide good
coverage of its hard-to-predict branches.

Appendix A also lists branches that were eliminated in our experiment.
Since not all branches can be predicated (e.g., loop branches can not be
predicated), one of the hard-to-predict branches in the se benchmark was
not eliminated. In addition, because gee had a large number of hard-to
predict branches and the branch elimination for each benchmark was done
by hand, only a small fraction of the hard-to-predict branches was
eliminated for the gee benchmark.

3.3. Source Level Transformations

Once the hard-to-predict branches for a program have been found, the
performance benefit provided by predicated execution is dependent on the
number of these branches that can be eliminated. Branches that cannot be
eliminated include loop branches and branches that branch around proce
dure calls. To deal with these branches, a set of transformations was
proposed by Mahlke(6,9) that transformed some of these branches into a
form more amenable to elimination. Two of these transformations, loop
peeling and loop branch coalescing, were used to help eliminate some of
the hard-to-predict branches found in Section 3.2.

218 Chang, Hao, Patt, and Chang

Loop peeling is applied to loop branches that are hard-to-predict
because the loop frequently iterates a small number of times. The body of
the loop is duplicated an appropriate number of times and the execution of
each copy is predicated on the condition that the previous copy was not
the last iteration of the loop. As a result, no branches need to be executed
for most occurrences of the loop.

Loop branch coalescing merges separate loop-exit branches within a
loop body into one branch. Loop-exit branches branch to either some
point in the program outside the loop or to the basic block that follows it
inside the loop body. Because these branches can redirect the instruction
stream to a point inside or outside of the loop, they cannot be eliminated.
For a loop with n loop-exit branches, loop branch coalescing reduces the
number of branches that cannot be eliminated from n to one.

3.4. Instruction Promotion

One cost of using predicated execution to eliminate a branch is the
introduction of new data dependencies. An instruction that was converted
into a predicated instruction becomes data dependent on the instruction
that generates the branch's condition. Instruction promotion(6.16) can
remove this dependence by promoting the instruction above the branch so
that it does not need to be predicated. This optimization can only be
applied when the destination register of the promoted instruction is dead

Predicated assembly code
, ,
ld r4, r6, 16
cmp_eq rS, r6, 0
ld r8, r6, 0 if rS
add r2, r2, r8 if rS

Predicated assembly code
with instruction promotion .

ld r4, r6, 16
ld r8, r6, 0 Instruction promoted
cmp_eq rS, r6, 0
add r2, r2, r8 if rS

Fig. 3. Example of instruction promotion which removes the data
dependence on the predicate.

Improve Performance of Dynamically Scheduled Machine 219

at the point of the branch (i.e., along both paths of the branch, the register
is written before its first use) and that the promoted instruction is the first
instruction to write to the register along its branch path. Figure 3 gives an
example of instruction promotion from the sc benchmark. When the
promoted instruction can potentially cause an exception (e.g., a load
instruction), a nontrapping version of the instruction is used. (22.23)

4. EXPERIMENTAL RESULTS

4.1. Generating the Predicated Object Files

The code compilation process consists of the following steps. First, we
profile the benchmarks to identify the hard-to-predict branches. We then
hand-modify the C source-code programs to include the aforementioned
source level transformations, converting selected branches into short
if-branches. The assembly code for the modified source programs are
generated using the GCC V2.4.3 compiler. We then hand-modify the
assembly programs, predicating the hard-to-predict branches that can be
eliminated and performing the aforementioned instruction promotion
optimizations. [The manual steps in the compilation process for our
experiments can be automated as is done in the IMPACT compiler.(6. 9) We
are currently working on incorporating those steps into our compiler.]
Finally, predicated object files are generated using the GNU assembler. For
the gcc benchmark, profiling showed many hard-to-predict branches.
Because we are hand-modifying the source-code program, only a small
subset of those hard-to-predict branches were eliminated. Appendix A lists
for each benchmark the branches that were actually eliminated.

Assembly
Code

SPEC_OP
Insertion

Assembler +
Linker

Executable

ArchSim
Trace -1L.._~_~~_~~--J1 • L...1_T_ra_ce_S_im---l~

Fig. 4. Process flow for simulating predicated instructions.

Execution
StatistiCS

220 Chang, Hao, Patt, and Chang

Before After

beq rO, 0, L1 SPECDP
op1 beq rO, 0, L1
op2 op1

L1 : ... op2
L1.: ...

Fig. 5. Marking branches in the assembly code for predication
with the special instruction SPEC_OP.

4.2. Simulation Process

The simulation process consists of the following steps (see Fig. 4).
First, we insert special instructions, SPEC_OPs, in the assembly program
to indicate which branches are to be predicated. Figure 5 shows a code
segment before and after a branch has been marked for predication. This
modification to the program does not change its behavior because these
special instructions are NOPs and do not affect the machine state.
A Motorola MC88100 instruction level simulator, ArchSim, then reads in
the object code and simulates execution, producing an instruction trace. To
replace the selected branches with predicated instructions, a trace-filter
module reads the trace generated by ArchSim and scans for occurrences of
the SPEC_OP instruction. If a SPEC_OP instruction is detected, the filter
module does the following:

• If the branch following the SPEC-OP instruction is not taken, we
replace the instructions in the fall-through path with predicated instruc
tions (see Fig. 6).

Before After

SPECDP op1 if rO
beq rO, 0, L1 op2 if rO
op1 L1 : " .

op2
11: ...

Fig. 6. Replacing a not-taken branch in the instruction
trace with the appropriate set of predicate instructions.

Improve Performance of Dynamically Scheduled Machine 221

• If that branch is taken, the instructions in the fall-through path will
not be in the instruction trace. To determine what predicated instructions
to insert into the new instruction stream, the filter module reads in a table
which contains the predicated instructions associated with each branch (see
Fig. 7).

The new instruction trace is then processed by the trace-driven simulator,
TraceSim, to produce the execution statistics.

4.3. Machine Model

The underlying micro architectural model is an HPS implementa
tion(\·19) of the MC88IOO architecture. Execution in HPS flows as follows:
Each cycle, multiple instructions are issued, and using the information in
the register files, the instructions are merged into node tables, much like
the Tomasulo algorithm merges operations into the reservation stations of
the IBM 360/91.(18) Associated with each instruction (node) are the source
operands for that instruction (or identifiers for obtaining the operands),
and destination information. Each node is stored in its proper node table
independent of and decoupled from all other nodes currently awaiting
dependencies in the datapath until all its operands are available, at which
point the node is eligible for scheduling. Each cycle, the oldest firable node
of each node table is scheduled, i.e., it is shipped to a pipelined functional
unit for execution. Each cycle, functional units complete execution of nodes
and distribute the results to nodes waiting for these results, which then may
become firable. Many of these micro architectural features which comprise
the HPS model have been adopted by industry and incorporated into their
current microprocessor implementations. (24,25)

The HPS processor simulated in this paper supports 8 wide issue with
a perfect instruction cache and a 16KB data cache. The data cache miss
latency is 10 cycles. Table V shows the instruction classes and their
simulated execution latencies, along with a description of the instructions

Before After

SPEC_OP opi if rO
beq rO, 0, Li op2 if rO

Li: .. . Li: ...

Fig. 7. Replacing a taken branch in the instruction trace
with the appropriate set of predicate instructions.

222 Chang, Hao, Patt, and Chang

Table V. Instruction Classes and Latencies

Instruction Class

Integer
FP Add
FPjINT Mul
FPjINT Div
Load
Store
Bit Field
Branch

Exec. Lat.

3
3
8
2

Description

INT add, sub and logic OPs
FP add, sub, and convert
FP mul and INT mul
FP div and INT illv
Memory loads
Memory stores
Shift, and bit testing
Control instructions

that belong to each class. In the processor simulated, each functional unit
can execute instructions from any of the instruction classes. The maximum
number of instructions that can exist in the machine at one time is 128. An
instruction is considered in the machine from the time it is issued until it
is retired.

4.4. Experiments

Experiments were run to measure the performance benefit of adding
predicated execution for the four SPECint92 benchmarks, eqntott, com
press, sc, and gcc. Four different variations for each benchmark were
simulated:

• np-baseline version of the benchmark in which none of the
branches were eliminated.

• sp-software-based predication version in which branches were
eliminated by the GCC compiler through the use of logical and bit
manipulation operations. (26) Appendix B shows an example of software
based predication.

• hp-ISA-based predication version m which branches were
eliminated by predicated instructions.

• ip-ISA-based predication version in which branches were
eliminated by predicated instructions and instruction promotion optimiza
tions were applied.

The branches that were considered for elimination by predicated execution
were chosen based on the profiles of the Input 1 data set for each
benchmark (see Section 3.2). Appendix A lists the subset of those branches
that were actually eliminated in the hp and sp versions. For the sc and gcc
benchmarks, the compiler did not eliminate any branches through software

Improve Performance of Dynamically Scheduled Machine 223

predication. The sp and np versions were identical for those benchmarks.
Experimental runs were done using the Input 1, Input 2, and Input 3 data
sets for each benchmark. Although the Input 1 results were unrealistically
optimistic because they were based on the use of the same data set for both
profiling and execution, they were included to provide a baseline to which
the Input 2 and Input 3 results could be compared.

Figures 8-11 show the absolute number of mispredictions for each
benchmark. Because the number of mispredictions for the hp and ip
versions were the same, the numbers for the ip version were omitted.

The ISA-predicated versions of the compress and eqntott benchmarks
showed large reductions in absolute misprediction counts across all three
input data sets. The relative drops in the number of mispredictions for the
second and third data sets were consistent with the first data set, indicating
that profiling was locating a significant number of the hard-to-predict
branches. In addition, the misprediction count for compress's hp version
was significantly lower than the misprediction count for its sp version
because ISA-based predication was able to eliminate more of the hard-to
predict branches than software-based predication. The eqntott benchmark
showed little difference between its hp and sp versions because software
based predication was able to eliminate all the hard-to-predict branches
eliminated by ISA-based predication.

The ISA-predicated versions of the gcc benchmark showed small
reductions in mispredictions across all three input data sets. Because gcc
had a large number of hard-to-predict branches and the branch elimination
for each benchmark was done by hand, only a small fraction of the hard
to-predict branches were eliminated for the gcc executable used in this
study. Only the top ten hard-to-predict branches were considered for
elimination. These branches accounted for 7.8 % of the total mispredictions
in the profile run. By considering only these branches, we were able to
reduce the total number of mispredictions for the three input sets by 3.5 %
on the average. Predication's full performance benefit will not be known
until the process is automated and we are able to consider all branches in
the benchmark. However, if the branches we considered are representative
of the rest of gcc's hard to predict branches, then predicated execution
could reduce gcc's mispredictions by 40 %.

The IS A-predicated versions of the sc benchmark showed a large
reduction in the absolute misprediction count for the first input data set,
but little reduction in the misprediction counts for the second and third
input sets. Given that the first input data set was used to profile the
benchmark, this result indicates that while predicated execution can be
effective in eliminating the hard-to-predict branches in the sc benchmark,
profiling was not effective in locating them.

828/24/3·2

224 Chang, Hao, Patt, and Chang

til
C
o

2M~------~r---~==~======~1
np: no predication

:.::
• ::! 1.5M
"0

Q.I
J,.,
Q.
.~
~ 1M
~
o
J,.,

~500K

5
::I
Z o

np sp hp
Input 1

sp: software-based pred.
hp: ISA-ba<;ed pred .

np sp hp
Input 2

np sp hp
Input 3

Fig. 8. Predicated execution's effect on the dynamic number of mispredictions--compress.

5M.------------r------------r-----------.
til
C
o

-"::4M
.~
"0

Q.I
J,.,
Q.
til

~
~2M o

J,.,
Q.I

.c
E
::I
Z o

np sp hp
Input 1

np sp hp
Input 2

np sp hp
Input 3

Fig. 9. Predicated execution's effect on the dynamic number of mispredictions-eqntott.

Improve Performance of Dynamically Scheduled Machine

5M,------------,-----------,------------,

np sp hp
Input 1

np sp hp
Input 2

np sp hp
Input 3

225

Fig. 10. Predicated execution's effect on the dynamic number of mispredictions-gcc.

1.5M
<IJ
C
.~ ~
"0 1M Q)
l-
e..
.~

~
~
0
I-
Q)

.&:I

S ::s
Z

0
np sp hp np sp hp np sp hp

Input 1 Input 2 Input 3

Fig. 11. Predicated execution's effect on the dynamic number of mispredictions-sc.

226 Chang, Hao, Patt, and Chang

Figures 12-15 show the total number of cycles needed to execute each
of the benchmarks. This number was broken down into two components,
the total number of cycles spent on the correct path of the program (i.e.,
doing the real work) and the total number of cycles that were spent on
incorrect paths of the program, waiting for mispredicted branches to be
resolved.

The execution times of the hp and ip versions of the compress
benchmark were 23 % and 25 % faster than that of the np version. This
speedup was due solely to the reduction in cycles wasted due to branch
misprediction. The hp and ip versions were actually spending additional
time executing along the correct path. This effect was due to the predicated
instructions increasing the latency of the program because of their extra
flow dependencies. Some of this latency was eliminated in the ip version by
the instruction promotion optimization. Its running time was 3 % faster
than that of the hp version. Despite its smaller number of mispredictions,
the sp version was slower than the np version by an average of 9.7 %. The
slowdown was caused by the software predication. Elimination of an inner
loop branch in the sp version required a large number of logical operations
that greatly increased the critical path within the loop. This resulted in an

r.I}
~ -~

40M

30M

>. 20M
U

10M

o

IillTI Cycles Lost Due to Branch Mispredictions

• Cycles for Work on Correct Path

IillTI + • Total Execution Time

np sp hp ip
Input 1

np sp hp ip
Input 2

np sp hp ip
Input 3

Fig. 12. Predicated execution's etfect on execution time-compress.

Improve Performance of Dynamically Scheduled Machine

rIJ
~

mJ Cycles Lost Due to Branch Mispredictions

• Cycles for Work on Correct Path

Btl + • Total Execution Time

150M,····, .. ··· .. ,

100M

50M

o
np sp hp ip

Input 1
np sp hp ip

Input 2
np sp hp ip

Input 3
Fig. 13, Predicated execution's effect on execution time--eqntott.

Iillill Cycles Lost Due to Branch Mispredictions

• Cycles for Work on Correct Path

[§j + • Total Execution Time
80M~----------~----------~----------~

60M

~40M
~

U

20M

o
np sp hp ip
Input 1

np sp hp ip
Input 2

np sp hp ip
Input 3

Fig. 14. Predicated execution's effect on execution time-gee.

227

228 Chang, Hao, Patt, and Chang

mrn Cycles Lost Due to Branch Mispredictions

• Cycles for Work on Correct Path

!EJ + • Total Execution Time

60M+-------

40M

20M

o
np sp hp ip

Input 1
np sp hp ip

Input 2
np sp hp ip

Input 3

Fig. 15. Predicated execution's effect on execution time-sc.

increase in execution time that could not be offset by the number of cycles
saved due to the elimination of the branch.

The hp and ip versions of the eqntott benchmark outperformed the np
version by 20 % and 24 %, respectively. For the hp version, this increase in
performance was almost entirely due to the difference in branch execution
penalty. The ip version was able to achieve an additional increase of 4 %
by reducing the number of cycles required to execute the real work of the
program. In fact, this number was even smaller than that of the baseline np
version. This reduction in the number of cycles required for doing the real
work of the program was due to the increase in basic block size and issue
density that occurs when branches are eliminated by predicated execution.
This performance increase was not apparent in the hp version because it
did not take advantage of the instruction promotion optimization to
reduce the latency penalties of its predicated instructions. Unlike compress's
sp version, eqntott's sp version showed a significant performance increase
over the np version (24 %) because the sequences of logical operations
required to eliminate the hard-to-predict branches were extremely short.

The hp and ip predicated versions of the gcc benchmark outperformed
the np version by a very small margin, 2.5 % and 1.0 %. As mentioned
above, the difference in performance was small because this study

Improve Performance of Dynamically Scheduled Machine 229

attempted to eliminate only a small fraction of the hard-to-predict
branches.

The hp and ip predicated versions of the sc benchmark showed small
performance increases over the np version for the second and third input
sets. The sc benchmark did not achieve the same level of improvement as
the other benchmarks because the profile generated by its first input set did
not locate many of the hard-to-predict branches for its second and third
input sets.

Unlike the other benchmarks, sc's hp version outperformed its ip
version. Because the instruction promotion optimization removes flow
dependencies from the program, it is counter-intuitive that the use of this
optimization would reduce performance. The predicated instruction model
used in this experiment provides a possible explanation to this anomaly.
A predicated instruction whose predicate evaluates to false does not have
to wait for its source operands. In the case of a store instruction, this
means throwing away the store as soon as the predicate evaluates to false,
this is, without waiting for the target address to be resolved. This allows
the dynamic memory disambiguator to disregard this instruction. On the
other hand, when the store instruction is promoted, it cannot be executed
until its target address has been resolved. Furthermore, the memory disam
biguator forces all memory instructions that follow the store to also wait
for the resolution of the target address. If the target address is slow to
resolve, it will delay the execution of its associated store instruction and all
subsequent memory instructions. This situation occurs in the sc benchmark
where the majority of the promoted instructions were store and load
instructions that were inside loops.

5. CONCLUSION

This study examined the performance benefit of combining speculative
and predicated execution to reduce branch execution penalty. Speculative
execution eliminates the branch execution penalty for branches that are
predicted correctly. Predicated execution can eliminate a branch's execu
tion penalty regardless of the processor's ability to predict it correctly.
However, it incurs a small performance overhead and is not applicable to
all branches. To achieve a better combination of these two mechanisms,
this study used predicated execution to handle the hard-to-predict branches
and speculative execution to handle the remaining branches. Profiling was
used to determine the hard-to-predict branches for each benchmark. The
performance benefit of this approach was measured for a wide-issue
dynamically scheduled processor. In addition, this study examined the
effect on performance of the instruction promotion compiler optimization.

230 Chang, Hao, Patt, and Chang

The results show that profiling is an effective mechanism for detecting
hard-to-predict branches. For a given benchmark, one input data set was
chosen to generate the profile. The effectiveness of the profile was then
measured for all the input data sets for the benchmark. With the excep
tion of sc, the set of branches denoted by profiling as hard-to-predict
accounted for an average of 73 % of the total mispredictions for each of the
SPECint92 benchmarks.

By using ISA-based predication to eliminate only the branches from the
profile-generated set of hard-to-predict branches, significant performance
improvements were achieved for compress and eqntott (23 % and 20 %).
Profiling was effective in locating the hard-to-predict branches for both these
benchmarks and predicated execution was effective in eliminating those
branches. Predicated execution provided only a small performance benefit
for gcc (2.5 %). However this result was considered promising because the
limitations of this study forced us to consider only a very small subset of gcc's
hard-to-predict branches for elimination. Based on this result, we project
that predicated execution could reduce gcc's mispredictions by 40 %. The
predicated version for sc showed little improvement in performance.
Because profiling was not effective in finding the hard-to-predict branches
for sc, predicated execution was not able provide much performance
benefit.

Software-based predication can also significantly improve performance.
The eqntott benchmark showed little difference between its hp and sp
versions because software-based predication was able to efficiently eliminate
all the hard-to-predict branches eliminated by ISA-based predication.
However, software-based prediction can also degrade performance when
not carefully applied. The sp version of the compress benchmark was slower
than the baseline model because software-based predication greatly
increased the critical path of a program after eliminating a hard-to-predict
branch with a large number of logical operations. This increase in execution
time was not offset by the number of cycles saved due to the elimination of
the branch.

The performance benefit of using the instruction promotion optimiza
tion was not consistent across the benchmarks. The compress and eqntott
benchmarks showed a small increase in performance (3 %-5 %) due to
instruction promotions. The sc benchmark showed a decrease in perfor
mance (up to 9 %). This decrease in performance was due to the promotion
of certain memory instructions that hindered the dynamic memory disam
biguator. When the memory instructions were predicated, a significant
number of them were squashed, allowing subsequent memory instructions to
resolve earlier. This suggests that the instruction promotion optimization
must be selectively applied in order to achieve performance improvements.

Improve Performance of Dynamically Scheduled Machine 231

This study's results showed that adding predicated execution to a
machine that supports speculative execution can lead to significant
increases in performance. However, more research can still be done to
further increase the performance benefit provided by predicated execution.
In particular, predicated execution's performance benefit would be
significantly increased by compiler optimizations that transform the code
so that more of the hard-to-predict branches could be eliminated. We are
currently building a compiler to not only automate branch elimination
through predication, but to evaluate the performance benefits of these
optimizations as well.

ACKNOWLEDGMENTS

This paper is one result of our ongoing research in high performance
computer implementation at the University of Michigan. The support of
our industrial partners, Intel, NCR in all its various incarnations,
Motorola, and Hewlett-Packard, is greatly appreciated. In addition, we
wish to gratefully acknowledge the other members of the HPS research
group for the stimulating environment they provide and for their comments
and suggestions on this work. We are particularly grateful to NCR and
Intel for their technical and financial support, and to Hewlett-Packard for
the gift of the HP 7xx workstations. We would also like to thank the
reviewers of this paper for their helpful suggestions.

APPENDIX A

A.1. Hard-to-Predict Branches

The tables in this section list up to the ten worst branches in descending
order for each benchmark simulated. The branch which accounts for the
largest number of branch mispredictions is considered to be the worst. A
check in the hp or the sp column indicates that the branch is removed in the
hp or sp version of the program respectively.

026.compress:
Line % misprediction

File No. input1 input2 input3 hp sp
compress.c 790 29.06 35.50 41.37 V
compress.c 799 27.31 19.16 20.07 V V
compress.c 802 20.20 28.63 24.94 V .. total: I 76.57 I 83.29 I 86.38 I

232 Chang, Hao, Patt, and Chang

023.eqntott:
Line % misprediction

File No. input 1 I input2 I input3 hp sp
pterm_ops.c 45 58.521 52.401 59.71 .; .;
pterm_ops.c 47 24.74L 25.96J 25.41 .; .;

total: I 83.26 I 78.36 I 85.12 I

085.gce:
Line % misprediction

File No. input! input2 input3 hp sp
tree.c 408 2.31 2.13 1.84 .;
c-parse.tab.c 1016 2.02 2.15 1.56
c-parse.tab.c 3185 1.57 1.62 1.11 .;
reload .c 1190 1.52 1.25 1.72
c-parse.tab.c 3185 1.45 1.54 0.99 .;
c-parse.tab.c 1056 1.41 1.53 1.13 ,;
c-parse.tab.c 2272 1.29 1.25 1.09 ,;
tree.c 522 1.23 1.40 0.82 ,;
c-parse.tab.c 1056 1.15 1.16 0.92 ,;
reload.c 1190 1.14 1.02 1.27

total: I 15.09 I 15.05 I 12.45 I

072 sc"
Line % misprediction

File No. input 1 input2 input3 hp sp
interp.c 264 36.32 0.00 0.85 ,;
interp.c 1002 32.11 27.55 5.18 ,;
interp.c 1001 21.22 27.70 0.40

total: I 89.66 I 55.25 I 6.03 I

APPENDIX B

B.1. ISA-Based and Software-Based Predication

This section gives an example of a branch being eliminated by ISA-based
predication and being eliminated by software-based predication .

• No predication

L1 :

Ii : cmpeq r4, r2. r3
I2: bne r4. 1. L1
I3: mav riO, rB
H: jmp L2

IS: mov riO, r9
L2:

Improve Performance of Dynamically Scheduled Machine

• ISA-based predication
Il: cmpeq r4. r2. r3
I2: mov riO, r8 if r4
I3: mov r10. r9 if not r4

• Software-based predication

I1: cmpeq r4, r2, r3
I2: ext r6, r4, 1<0>

I3: and ra, re J r6

I4: cmpne rS, r2, r3
IS: ext r7, rS, 1<0>

I6 : and r9, r9, r7

I7: or riO, ra, r9

REFERENCES

J* it r4's Oth bit == 1, r6 ::;; Oxfffftftf *1
1* otherwise. r6 ::;; OxO */

233

1. Y. N. Patt, S. W. Melvin, W. Hwu, and M. C. Shebanow, Critical issues regarding HPS, a
high performance micro architecture, Proc. of the 18th AIIII. ACM/IEEE lilt'!. Symp. Oil

Microarchitecture, pp. 109-116 (1985).
2. S. Melvin and y, N. Patt, Exploiting fine-grained parallelism through a combination of

hardware and software techniques, Proc. of the 18th Ann. lilt'!. Symp. all Computer Architec
ture, pp. 287-297 (1991).

3. P. Hsu and E. Davidson, Highly concurrent scalar processing, Proc. of the 13th Anll. Int'!.
Symp. on Computer Architecture (1986).

4. B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, The Cydra 5 departmental supercom
puter, IEEE Computer, 22:12-35 (January 1989).

5. J. C. Dehnert, P. Y. T. Hsu, and J. P. Bratt, Overlapped loop support in the Cydra 5, Proc.
of the 16th Anll. Int'!. Symp. on Computer Architecture, pp. 26-38 (1989).

6. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, Effective compiler
support for predicated execution using the hyperblock, Proc. of the 25th Ann. ACM/IEEE
Int'!. Symp. on Microarchitecture, pp. 45-54 (1992).

7. D. N. Pnevmatikatos and G. S. So hi, Guarded execution and dynamic branch prediction in
dynamic ILP processors, Proc. of the 21st Ann. IIlt't. Symp. on Computer Architecture,
pp. 120-129 (1994).

8. G. S. Tyson, The effects of predication on branch prediction, Proc. of the 27th A 1111.

ACM/IEEE Inft. Symp. on Microarchitecture, pp. 196-206 (1994).
9. S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and W. W.

Hwu, Characterizing the impact of predicated execution on branch prediction, Proc. of the
27th Anll. ACM/IEEE 111ft. Symp. all Microarchitecture, pp. 217-227 (1994).

10. E. M. Riseman and C. C. Foster, The inhibition of potential parallelism by conditional
jumps, IEEE Trans. on Computers, C-21 (12): 1405-1411 (1972).

II. J K. F. Lee and A. J. Smith, Branch prediction strategies and branch target buffer design,
IEEE Computer, pp. 6-22 (January 1984).

12. J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, Conversion of control dependence
to data dependence, 10th Ann. ACM Symp. on Principles of Programming Languages,
pp.I77-189 (1983).

234 Chang, Hao, Patt, and Chang

13. T.-Y Yeh and Y. N. Patt, Two-level adaptive branch prediction, Proc. of the 24th Ann.
ACM/IEEE Int'!. Symp. on Microarchitecture, pp. 51-61 (1991).

14. T.-Y. Yeh and Y. N. Patt, Alternative implementations of two-level adaptive branch predic
tion, Proc. of the 19th Ann. Int'l. Symp. on Computer Architecture, pp. 124-134 (1992).

15. P.-Y. Chang, E. Hao, T.-y' Yeh, and Y. N. Patt, Branch classification: A new mechanism for
improving branch predictor performance, Proc. of the 27th Ann. ACM/IEEE Int'l. Symp. on
Microarchitecture, pp. 22-31 (1994).

16. P. Tirumalai, M. Lee, and M. Schlanskar, Parallelization of loops with exits on pipelined
architectures, Proc. Supercomputing '90, (1990).

17. M. G. Butler, Aggressive execution engines for surpassing single basic execution, Ph.D.
thesis, University of Michigan, 1993.

18. R. M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units, IBM
Journal of Res. and Development, 11:25-33 (January 1967).

19. Y. Patt, W. Hwu, and M. Shebanow, HPS, a new microarchitecture: Rationale and intro
duction, Proc. of the 18th Ann. ACM/IEEE Int'l. Symp. on Microarchitecture, pp. 103-107
(1985).

20. E. Sprangle and Y. Patt, Facilitating superscalar processing via a combined static/dynamic
register renaming scheme, Proc. of the 27th Ann. ACM/IEEE Int'l. Symp. Microarchitecture,
pp. 143-147 (1994).

21. S. McFarling, Combining branch predictors, Technical Report TN-36, Digital Western
Research Laboratory (June 1993).

22. M. D. Smith, M. S. Lam, and M. A. Horowitz, Boosting beyond static scheduling in a super
scalar processor, Proc. of the 17th Ann. Int'!. Symp. on Computer Architecture, pp. 344-354
(1990).

23. P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, IMPACT: An
architectural framework for multiple-instruction-issue processors, Proc. of the 18th Ann.
Int'!. Symp. on Computer Architecture, pp. 266-275 (1991).

24. L. Gwennap, Intel's P6 uses decoupled superscalar design, Microprocessor Report, Vol. 9,
(February 1995).

25. L. Gwennap, PA-8000 combines complexity and speed, Microprocessor Report, Vol. 8,
No. 15 (November 1994).

26. T. Granlund and R. Kenner, Eliminating branches using a superoptimizer and the GNU C
compiler, Proc. of the ACM SIGPLAN '92 Can! on Programming Language Design and
Implementation, pp. 341-352 (1992).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

