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Abstract 
In this paper we propose two cooperation schemes to compose new parallel variants of the Variable 
Neighborhood Search (VNS). On the one hand, a coarse-grained cooperation scheme is introduced 
which is well suited for being enhanced with a solution warehouse to store and manage the so far 
best found solutions and a self-adapting mechanism for the most important search parameters. This 
makes an a priori parameter tuning obsolete. On the other hand, a fine-grained scheme was designed 
to reproduce the successful properties of the sequential VNS. In combination with the use of parallel 
exploration threads all of the best solutions and 11 out of 20 new best solutions for the Multi Depot 
Vehicle Routing Problem with Time Windows were found. 
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1 Introduction 
In recent years, cluster and grid architectures have 
become more and more popular. These architec­
tures enable the design and development of co­
operating algorithms to solve complex problems 
in the field of combinatorial optimization more 
efficiently than their sequential counterparts. The 
cooperation can take place between the same meta­
heuristic paradigms (e.g., Alba 2005 ; Crainic and 
Toulouse 2002), between different metaheuristics 
(e.g., Le Bouthillier and Crainic 2005) or combi­
nations of metaheuristics and mathematical pro­
gramming (e.g., Fischetti and Lodi 2003; Hansen, 
Mladenovic, and Urosevic 2006). 
The aim of this paper is twofold: First, we propose 
a cooperative and adaptive algorithm based on the 
philosophy of the Variable Neighborhood Search 
(VNS). This metaheuristic described by Hansen 
and Mladenovic (1999) is applied to solve Multi 

Depot Vehicle Routing Problems with Time Win­
dows. Second, in combination with the use of par­
allel exploration threads new best solutions were 
found. The sequential algorithm was published 
by Polacek, Hartl, Doerner, and Reimann (2004) 

and also applied to a real-world routing problem 
(Polacek, Doerner, Hartl, Kiechle, and Reimann 
2007). For the p-median problem, a cooperative 
implementation of the VNS was recently developed 
(e.g., Crainic, Gendreau, Hansen, and Mladenovic 
2004; Garcia Lopez, Melian Batista, Moreno Perez, 
and Moreno Vega 2002). Moreno Perez, Hansen, 
and Mladenovic (2005) provide a survey of parallel 
VNS implementations. 
In recent years, some papers on the paralleliza­
tion of algorithms for solving the capacitated ve­
hicle routing problem have been published (e.g., 
Jozefowiez, Semet, and Taibi 1999, 2005; Ralphs 
2004). Jozefowiez, Semet, and Taibi (1999) devel-
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oped a parallel Pareto genetic algorithm as well as a 
Pareto tabu search for a hi-objective VRP whereas 
Ralphs (2004) developed a parallel exact proce­
dure based on branch and cut for the problem at 
hand. For the Vehicle Routing Problem with Time 
Windows Le Bouthillier and Crainic (2005) devel­
oped a cooperative parallel metaheuristic. Many 
applications were developed in the last few years 
in the broader field of parallel computing in trans­
portation (e.g., Florian and Gendreau 2001). In the 
book by Alba (2005) a recent and comprehensive 
overview of the different parallel metaheuristics 
can be found. To make the use of parallel meta­
heuristics accessible to a broad range of users, 
different libraries were developed by Alba and the 
MALLBA Group (2002) and Cahon, Melab, and 
Talbi (2004). Moreno Perez, Hansen, and Mlade­
novic (2005) outline four different parallel VNS 
approaches. The first strategy analyzed by Garcia 
Lopez, Melian Batista, Moreno Perez, and Moreno 
Vega (2002) parallelizes the local search in the 
sequential VNS to get a balanced load among the 
processors and is denoted as Synchronous Par­
allel VNS (SPVNS). The second approach called 
Replicated Parallel VNS (RPVNS) and described 
by Crainic, Gendreau, Hansen, and Mladenovic 
(2004) simply runs an independent VNS proce­
dure on each processor. This non-cooperating par­
allelization is characterized by a multi start behav­
ior. The same authors also report a more complex 
parallel variant denoted as Cooperative Neighbor­
hood VNS (CNVNS) where several independent 
VNS processes cooperate by asynchronously ex­
changing information about the best solution iden­
tified so far. Communication takes place after a 
complete iteration through the set of neighbor­
hoods. The last parallel strategy introduced is the 
Replicated Shaking VNS (RSVNS) proposed by 
Garcia Lopez, Melian Batista, Moreno Perez, and 
Moreno Vega (2002). RSVNS uses a synchronous 
cooperation mechanism where each worker pro­
cessor generates one neighboring solution and ap­
plies the local search. In this paper we discuss 
different cooperation schemes and we propose an 
adaptive VNS where no a priori parameter tuning 
is necessary. First, from a technical point of view, it 
presents the first cooper-ative and adaptive imple­
mentation of a VNS for this problem and several 
design issues for cooperation and adaptation of 
the VNS algorithm are discussed. Second, from 
a problem oriented point of view, the computa-

tional results show that the approach is competitive 
with the sequential VNS implementation (Polacek, 
Hartl, Doerner, and Reimann 2004) and the Tabu 
Search (TS) algorithm published in (Cordeau, La­
porte, and Mercier 2001, 2004), with respect to 
both solution quality and computation times. The 
parallelization strategy we use is an extension of the 
one implemented in CNVNS. The worker processes 
communicate exclusively with the master process 
which operates as the central memory. This al­
lows an asynchronous cooperation of individual 
processes. In our proposed variants each worker 
has to search through a certain number of neigh­
borhoods. However, compared to the CNVNS, 
in the fine-grained cooperation scheme this must 
not necessarily conclude the whole set of neigh­
borhoods in one worker task. In the coarsegrained 
cooperation scheme, however, the number of iter­
ations performed by each worker is vastly higher 
than the number of neighborhoods. This results 
in a more independent search via individual pro­
cesses. The remainder of the paper is organized 
as follows: The routing problem is illustrated in 
Section 2 and the solution procedure of the se­
quential algorithm is discussed in Section 3. Sec­
tion 4 reviews the main ideas of the cooperation 
and adaptation schemes and provides the details of 
the implementation and the design choices. Com­
putational results are presented and discussed in 
Section s. Section 6 concludes the paper with a 
resume of the applied approach. 

2 Problem Description 
The parallel VNS is applied to the Multi De­
pot Vehicle Routing Problem with Time Win­
dows (MDVRPTW). It is a generalization of the 
well-known Vehicle Routing Problem with Time 
Windows (VR- PTW) where instead of one depot, 
several depots with different locations and asso­
ciated fleets have to be considered. The number 
of customers is denoted by n and the number 
of depots is denoted by m. Thus, the problem is 
defined on a complete graph G = (V, A), where 
V = { v1, .. . , Vm , Vm+ 1, .. . , Vm+n } is the vertex set 
and A = { (v;,vj): v; ,vj E V, i -=1- j} is the arc set. 
Vertices v1 to Vm correspond to m depots, while the 
vertices Vm+l to Vm+n represent n customers. Each 
vertex vi E V has several non-negative weights 
associated with it, namely, a demand d;, a service 
time si, as well as an earliest e; and latest li possi-
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ble start time for the service, which define a time 
window [ei , li]· For the depots these time windows 
correspond to the opening hours. Furthermore, the 
depot vertices v1 to Vm feature no demands and 
service times, i.e. di = s i = 0, Vi E { 1, ... , m}. As­
sociated to each arc (vi, Vj) is a non-negative travel 
time or cost cij. Finally, a fleet of K vehicles is lo­
cated at m depots. Each depot has t vehicles. Each 
vehicle k has associated a non-negative capacity 
Dk and a non-negative maximum route duration 
Tk. Note, that the distribution of vehicles over the 
depots is fixed a priori and is given as input data. 
Based on this graph, the MDVRPTW consists of 
building K vehicle routes such that each vehicle 
starts and ends at its home depot, each customer is 
served by one and only one vehicle, the total load 
and duration of vehicle k does not exceed Dk and 
Tk respectively, the service at each customer i be­
gins within the associated time window [ei, li] and 
each vehicle route starts and ends within the time 
window of its depot. The objective is to minimize 
the total distance travelled by all vehicles. 

3 A VNS for the MDVRPTW 
VNS is a metaheuristic for solving combinatorial 
and global optimization problems proposed by 
Hansen and Mladenovic (1999, 2001). The paper 
at hand deals with the parallelization of the VNS 
for the MDVRPTW published by Polacek, Hartl, 
Doerner, and Reimann (2004). For convenience 
of the reader we repeat the approach and describe 
the required modifications for the cooperation and 
adaptation schemes. The steps of the basic VNS are 
shown in Figure 1. Here, N"'(r;, = 1, ... , r;,max ) is a 
finite set of pre-selected neighborhood structures. 
The stopping condition may be, e.g., maximum 
CPU time allowed, maximum number of iterations 
or maximum number of iterations between two 
improvements. 
The basic VNS consists ofboth a stochastic compo­
nent, i.e., the randomized selection of a neighbor in 
the shaking phase, and a deterministic component, 
that is the application of an iterative improvement 
procedure in each iteration. Finally, the solution 
obtained is compared to the incumbent one and 
will be accepted as a new starting point if an im­
provement was made, otherwise it will be rejected. 
Note, that following Polacek, Hartl, Doerner, and 
Reimann (2004), also ascending moves are per­
mitted. Below, the implementation of each part of 

the VNS to solve the MDVRPTW is described. The 
description consists of the building of an initial 
solution, the shaking phase including the neigh­
borhood structure definition with the necessary 
exchange operators, the local search method, and 
the acceptance decision. 

Figure 1: Steps ofthe basicVNS (cf., Hansen 
and Mladenovic, 2001) 

Initialization. Select the set of neighborhood 
structures N".(r;, = 1, .. . , r;,max) , that will be used 
in the search; find an initial solution x; choose a 
stopping condition; 
Repeat the following until the stopping condition 
is met: 

1. Set"' +-- 1; 

2. Repeat the following steps until "' = "'max: 

(a) Shaking. Generate a point x' at random 
from r;,th neighborhood of x (x' E N"'(x) ); 

(b) Iterative improvement. Apply some local 
search method with x' as initial solution; 
denote with x" the so-obtained local opti­
mum; 

(c) Acceptance decision. If this local optimum 
x" is better than the incumbent, move there 
(x +-- x "), and continue the search with N 1 

(r;, +-- 1); otherwise, set r;, +-- "' + 1; 

3.1 Initial Solution 

To construct an initial solution for the MDVRPTW, 
each customer i is first assigned to the nearest de­
pot. Then all customers associated with a depot are 
ranked with respect to increasing centers of their 
time windows. Finally, routes are constructed by 
sequentially appending the pre-ordered customers 
at the end of a route in a cyclic manner for all 
routes. The initial solution is not necessarily fea­
sible, the following iterative process of the VNS 
needs to overcome this and must come up with a 
feasible solution. 

3.2 Shaking 
The set of neighborhood structures used for shak­
ing is the core of the VNS. The main difficulty is 
to find a balance between effectiveness and the 
chance to get out of local optima. 
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To define a neighborhood for the incumbent solu­
tion an appropriate function or operator must be 
specified. The main issue is that the neighborhood 
operator should allow to sufficiently perturb the 
incumbent solution while still making sure that 
the new solution keeps important parts of the in­
cumbent. 
The operator we use in the shaking phase is the 
CROSS exchange operator developed by Taillard, 
Badeau, Gendreau, Guertin, and Potvin (1997). The 
main idea of this exchange is to take two segments 
of different routes and exchange them. Compared 
with the VNS by Polacek, Hartl, Doerner, and 
Reimann (2004) the selection criterion is slightly 
changed. Now it is possible to select the same route 
twice. This allows to explore more customer visit 
combinations within one route. 
An extension to the CROSS exchange operator is 
introduced by Braysy (2003) . Here the sequences 
get inverted, i.e., the orientation of the selected 
route parts changes. Consequently, this operator 
is called inverted CROSS exchange - iCROSS ex­
change for short. Both operators are used to define 
a set of neighborhood structures for the VNS. 
The set of neighborhood structures used is divided 
into two parts: the first half considers only routes 
belonging to a given depot, whereas the second 
half selects routes from two different depots. In 
the first six neighborhood structures a sequence 
of up to the number of customers on a route can 
be exchanged. In detail, in the first neighborhood 
structure one customer is exchanged. In the sec­
ond neighborhood structure a sequence length of 
up to two customers is exchanged. The potential se­
quence length of the customers is extended to five 
(within neighborhood structure five). In neighbor­
hood structure six the customers of the whole route 
can be exchanged with customers of another route 
within the same depot. In neighborhood structure 
six to twelve, routes of two depots are considered. 
Note that the maximum sequence length just acts 
as an upper bound for the sequence length re­
moved in a given neighborhood. Thus, while in 
each neighborhood all possible sequence lengths 
are equally likely to be chosen, overall, there is a 
strong bias towards smaller sequence lengths to 
focus the search rather close to the incumbent so­
lution. However, significant changes may occur. 
In addition, in each neighborhood the iCROSS 
exchange operator is applied with a probability 
1/(2 · K) to both routes to further increase the 
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extent of the perturbation. This is also a modi­
fication to the VNS by Polacek, Hartl, Doerner, 
and Reimann (2004) where the probability for the 
iCROSS exchange operator applied to only one 
route was 1/ K:max · By including the fleet size K 
and, therefore, the possible number of routes, the 
new probability function is now correlated to the 
problem complexity and not determined by a pre­
set search parameter, which leads to a slightly 
better performance of the search. 
The neighborhood parameter K:m ax is the elemen­
tary parameter in the VNS. In the standard VNS 
for the MDVRPTW, K:max is set to 12 whereas in 
our adaptive parallel approach this parameter is 
adjusted within the search. 

3·3 Iterative improvement 
A solution obtained through shaking is afterwards 
submitted to an iterative improvement procedure 
to come up with a local optimal solution. Here 
the local search is a restricted version of the 3-opt 
where the length of the sequences to be exchanged 
is bounded by an upper limit of three. The cus­
tomers have time windows; therefore, a restricted 
version of the 3-opt is beneficial with respect to 
runtime and possible time window violations. 
Mter each shaking, only the two routes that have 
changed need to be re-optimized. In the iterative 
improvement phase the first improvement strategy 
is realized. 

3·4 Acceptance decision 
Mter the shaking and the iterative improvement 
procedures have been performed, the solution thus 
obtained has to be compared to the incumbent so­
lution to be able to decide whether or not to accept 
it. We use a modified acceptance decision which is 
based on threshold-accepting ideas (cf., Dueck and 
Scheuer 1990) to allow non-improving (ascend­
ing) moves. A solution with an improved solution 
quality is always accepted, while deteriorating so­
lutions are accepted as long as their objective value 
does not exceed a fixed threshold. This threshold 
is given by B% of the so far best found solution 
value. As proposed by Polacek, Hartl, Doerner, 
and Reimann (2004) ascending moves are only 
performed after a minimum number of a itera­
tions counted from the last accepted move. 
Because of the fact that a reasonable presetting 
of the threshold parameter e strongly depends on 
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the given problem instance we integrated this pa­
rameter into our self-adapting mechanism for the 
parallel VNS variant. 

4 Cooperation Schemes 
We propose two parallel cooperation schemes both 
of which are based on a central memory mecha­
nism provided by the master process which stores 
and manages the best found solutions. Hence, the 
communication is done exclusively between this 
master process and the individual worker pro­
cesses which act as search threads. This allows an 
asynchronous exchange of information where the 
whole solution data is only transmitted when a new 
best solution was discovered. If the worker process 
improves the obtained solution it sends only the 
value of the new solution to the master process. If 
this value improves the best solution value found 
so far, the worker sends the complete solution data 
to the master, which in turn sends it to all other 
working processes. 
The parallelization takes place at a level where each 
search thread executes all three main components 
of the VNS several times. This includes the shaking 
phase, the local search, as well as the comparison 
of the new obtained solution with the incumbent 
one. The point in time where the working process 
communicates its so far best solution to the master 
is triggered by an iteration counter. 
In our cooperative architecture each processor ex­
ecutes exactly one process. In the context of this 
paper a search thread is defined as a single process 
which runs exclusively on one processor and does 
not share any resources with other search threads. 

4.1 Coarse-Grained Cooperation 

In the coarse-grained cooperation scheme exactly 
one ascending move is performed per thread, i.e. 
at least 2 · a iterations are made between commu­
nications. As described in Section 3-4, if there is 
no improvement of the solution after a iterations, 
also non-improving solutions will be accepted if 
the solution value is below the threshold of B% 
of the best found solution. If improving solutions 
are found, the iteration counter for allowing an 
ascending move gets reset each time. 
Instead of making the second ascending move the 
worker communicates the so far best solution value 
to the master process. If no improving solution was 
found by one of the other search threads, the work-
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ing process continues the search with its own best 
found solution. 
On the one hand, the coarse granularity enables 
an independent search of the working processes 
which consequently reduces the communication 
with the master process. On the other hand, this 
form of cooperation enables the application of a 
self-adapting mechanism for the most influential 
parameters of the applied VNS: the neighborhood 
parameter "'m ax and the ascending move parame­
ter e. 
Within the adaptation process the values for both 
parameters have lower and upper bounds. So the 
range of e goes from 4 to 10 whereas all even num­
bers from 4 to 20 can be assigned to "'max· Further­
more, there is an iterator x i for every possible value 
i of the two parameters. If a search thread obtains 
an improving solution with the current parameter 
setting the associated iterators are incremented by 
1. The parameter values for each search thread are 
selected by the roulette wheel method. Here, for 
every parameter value i the probability P('i ) to get 
chosen is calculated by the following function: 

(1) 

where 0 denotes the set of all possible parameter 
values. The natural logarithm is applied to avoid 
the dominance of a specific parameter setting. So 
the VNS has the possibility to adjust its parameter 
values to find an appropriate setting for the differ­
ent phases of the search process. 
Furthermore, a solution warehouse to store and 
manage the so far best found solution can be used 
instead of accepting only the best solution. The 
solution warehouse emphasizes the diversification 
of the search. In our case it stores the 10 best 
solutions found so far and the starting point for 
each search thread is randomly chosen from these 
solutions. 

4.2 Fine-Grained Cooperation 

The fundamental idea behind the fine-grained co­
operation scheme was to develop a parallel VNS 
which retains the successful properties of the se­
quential one. Hence, a fine granularity was realized 
and the decision about accepting ascending moves 
was assigned to the master process. 
More precisely, every "'max iterations a working 
process sends its new best solution value to the 
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master process. This is also done in case the new 
best solution generated by the worker does not 
improve the starting solution of the subtask. If a 
search thread does not reach the neighborhood of 
"'max the value of"' is stored and serves as starting 
value for the next subtask. 
Because of the fact that the master process also 
accepts ascending moves two solutions have to 
be stored: the current solution which is the start­
ing point for the search threads and the so far 
best found solution. If a iterations have passed 
without an improvement the master accepts an 
non-improving solution if the value of the objec­
tive function does not exceed e percent of the value 
of the best found solution. An important issue 
here is that after accepting an ascending move the 
master process has to reject all improving solu­
tions from the other search threads until all of 
them have retrieved the non-improving solution 
as starting point. Otherwise the principle of the 
ascending move is not effective. For the sake of 
completeness, note that new best solutions are 
always accepted by the master process. 

5 Computational Results 

5.1 Performance Measurement 
The experiments with the parallel variants of our 
algorithms were run on the cluster IBM 1350 of the 
Technical University of Vienna with 144 Pentium 
IV Nocona 3.6 GHz processors (2 processors per 
node) connected via InfiniBand low latency node 
interconnect. 
The VNS is implemented in ANSI C++ using el­
ements of the Standard Template Library (STL). 
For programming parallel processors the Message­
Passing Interface (MPI) is used. MPI is a library of 
functions and macros that can be implemented in 
C, FORTRAN, and C++ programs. The definition 
of MPI is documented in the MPI standard (MPI, 
1995). 
For analyzing the performance of our parallel al­
gorithm we measured the speed-up as well as the 
efficiency obtained on varying numbers of pro­
cessors. The efficiency and speed-up measures we 
used are based on the definitions recommended by 
Alba and Luque (2005) and defined by Alba and the 
MALLBA Group (2002). The original definitions 
are introduced by Barr and Hickman (1993) and 
Karp and F1att (1990). In this article the speedup 
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is defined as 

where Sp is the speed-up obtained on p processors, 
Tseq is the measured sequential execution time and 
Tp is the parallel execution time on p processors. 
Efficiency is defined as 

As our algorithm is non-deterministic we use the 
average parallel execution time and the average 
sequential execution time. All our reported results 
are averaged over 20 instances. In our implementa­
tion we need one processor which serves as central 
memory frontend. As this processor is only a com­
munication node we introduced a measure for the 
working processors. We denote these measures as 
worker speed-up and worker efficiency. 
Worker speed-up is defined as 

(4) S:;' = Tseq/T:;' 

where S;f is the speed-up obtained on q workers, 
Tseq is the measured sequential execution time 
and T:( is the parallel execution time on q = p - 1 
processors. 
Worker efficiency is defined as 

Note that for the complete algorithm p processors 
are required. The p-th processor stores and man­
ages the best found solutions and is not considered 
in the computation of the worker speed-up and the 
worker efficiency. 

5.2 Numerical Results 
The VNS described in this paper originates from 
the VNS introduced by Polacek, Hartl, Doerner, 
and Reimann (2004) which is denoted as VNSprev · 

Compared to the VNSprev the current VNS includes 
two modifications. On the one hand, the CROSS 
exchange operator in the shaking phase can also 
be applied within one route. On the other hand, 
the probability for the application of the iCROSS 
exchange operator has slightly changed. 
The problem instances used for the analysis orig­
inate from Cordeau, Laporte, and Mercier (2001) 
and are available on the internet at 
http:/ jwww.hec.ca/chairedistributique/data. The 
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Table 1: Modified VNS compared to TS and previous VNS 

TS VNS (Avg. 32 Runs) 
Nr. n m t Time Value VNS prev Timetotal Time best Value RPD 

01 48 4 2 28 1074.12 1074.12 67.86 9-49 1074.12 o.oo% 

02 96 4 3 79 1762.48 1762.36 115.09 27.63 1763.66 0.07% 

03 144 4 4 115 2397.06 2385·94 143.27 75.88 2388.73 0.12% 
04 192 4 5 144 2865.71 2840.59 153.23 93·53 2847·56 0.25% 

05 240 4 6 181 3050.80 3018.38 136-40 89.36 3015.27 -0.10% 
o6 288 4 7 221 3670.13 3675.61 157-41 96.63 3674.60 -0.03% 

07 72 6 2 53 1418.22 1418.22 70-48 7.66 1418.22 o.oo% 
08 144 6 3 102 2118.50 2099-49 106.35 54 ·92 2103.21 0.18% 

09 216 6 4 160 2760-46 2752.61 135·71 69.11 2753.61 0.04% 
10 288 6 5 227 3507.26 3540.60 124.66 65.70 3541.01 0.01% 

11 48 4 1 32 1016.59 1021.61 183.22 18.30 1011.65 -0.97% 
12 96 4 2 81 1486.26 1488.28 193·38 89-40 1488.32 o.oo% 

13 144 4 3 143 2028.85 2014.06 199·94 82.30 2012.37 -o.o8% 
14 192 4 4 188 2228.64 2242-45 180 .74 106.51 2239.02 -0.15% 

15 240 4 5 227 2527.60 2525.20 135-41 89.39 2498.85 -1.04% 
16 288 4 6 261 2960.93 2940.73 153·76 99.69 2909-45 -1.06% 

17 72 6 1 61 1241.25 1249-45 203.22 62.15 1247·51 -0 .16% 
18 144 6 2 146 1823.24 1831.03 163.55 99.24 1809.25 -1.19% 

19 216 6 3 262 2288.38 2314.70 165.31 90.84 2294.19 -0.89% 
20 288 6 4 263 3120.32 3109.78 132.89 86.38 3093·51 -0.52% 

2974 45346.8 45305.21 2921.88 1414.13 45184.09 -0.28% 

data set consists of 20 instances which differ with 
respect to their size as well as their time window 
tightness. 
The first four columns of Table 1 describe the 
benchmark instances with a consecutive instance 
number, the number of customers which have to 
be served, the number of depots and the number 
of available vehicles at each depot denoted by 
Nr., n , m and t, respectively. Note that the same 
number of vehicles t is assigned to each of the m 
depots. The next two columns show the runtime 
in minutes and the corresponding solution value 
of the TS introduced by Cordeau, Laporte, and 
Mercier (2001) and improved by the some group 
of authors (Cordeau, Laporte, and Mercier 2004). 
These results were obtained after 106 iterations on 
a 2 GHz Pentium 4 computer. Furthermore, the 
column VNS11rev provides the average results of 10 
runs of the original VNS for the MDVRPTW which 
are compared with the results of the modified VNS. 
The relative percentage deviation (RPD) is stated in 
the last row. Timetotal and Timebest show the total 
runtime for 108 iterations and the time when the 
best solution was found, respectively. The new VNS 
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calculations were performed on a single processor 
of a Pentium 3.6 GHz dual processor computer. 
The modified VNS outperforms VNS11rev with an 
average improvement of 0 .28%. So the new shak­
ing phase was qualified to be used for the parallel 
VNS variants. Furthermore, a remarkable fact is 
that on average all results were found in half of the 
total runtime. 
To obtain comparable data for the parallel VNS 
variants we implemented the RPVNS introduced 
by Garcia Lopez, Melian Batista, Moreno Perez, 
and Moreno Vega (2002) to report the contri­
bution of cooperation. The RPVNS is one of the 
simplest parallel VNS approaches because there 
is no form of cooperation between the individual 
search threads. Every thread performs a complete 
VNS run. The average results of the VNS on the 
32 working processes are illustrated in Table 1. 

Furthermore, we report the best results and the 
average runtimes for the first 2, 4, 8 and 16 search 
threads as well as for the total of 32 processes in 
Table 2(a). 
Table 2 presents 4 different series of exploration 
runs where each series consists of 5 runs with 
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Table 2: Exploration runs 

(a) VNS (Avg. 32 Runs) 

Time Ep Total RPD 

2921.88 100.00% 45184.09 o.oo% 

(b) RPVNS 

Worker Time Ep Total RPD 

2 2929.52 100.26% 45130.68 -0.12% 

4 2926.06 100.14% 45015.01 -0.37% 
8 2928.32 100.22% 44891.39 -0.65% 
16 2930.02 100.28% 44846.79 -0.75% 
32 2921.87 100.00% 44780.63 -0.89% 

(c) coarse-grained non-adaptive VNS 

Worker Time EW 
q Total RPD 

2 3032.13 96.36% 45316.92 0.29% 
4 3008.39 97.12% 45225.19 0.09% 
8 3060.36 95-47% 45138-47 -0.10% 
16 2997·76 97-47% 45023-94 -0.35% 

32 3036.72 96.22% 44951.25 -0.52% 

(d) coarse-grained adaptive VNS 

Worker Time EW 
q Total RPD 

2 2853.21 102-41% 45240.28 0.12% 
4 2848.66 102.57% 45092.96 -0.20% 
8 2854.37 102.36% 45053.06 -0.29% 
16 2849-54 102.54% 45008.18 -0.39% 

32 2829.68 103.26% 44894-48 -0.64% 

(e) fine-grained VNS 

Worker Time EW 
q Total RPD 

2 3105·19 94.10% 45125.14 -0.13% 
4 3121.39 93.61% 44999-13 -0-41% 
8 3148.21 92.81% 44877-13 -o.68% 
16 3132·59 93-27% 44813-75 -0.82% 

32 3175-49 92.01% 44679·83 -1.12% 

an exponentially increasing number of workers. 
Compared to the sequential run the runtime is 
approximately the same. However, the total num­
ber of iterations is determined by multiplying the 
number of search threads with the standard value 
of 108 iterations. All tables contain the total run­
time, the worker efficiency Ew, the total objective 
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Table 3: Speed-up runs 

(a) coarse-grained non-adaptive VNS 

Worker Time sw 
q 

Ew 
q Total RPD 

2 1517.38 1.93 96.28% 45635-55 1.00% 

4 763.08 3.83 95-73% 45425.72 0.53% 
8 386.52 7-56 94-49% 45368.97 0-41% 
16 190.85 15.31 95.69% 45614.37 0.95% 
32 95-60 30-56 95-51% 45482.93 0.66% 
Avg. 95-54% 45505-51 0.71% 

(b) fine-grained VNS 

Worker Time sw 
q 

Ew 
q Total RPD 

2 1569.78 1.86 93.07% 45264.99 0.18% 

4 783.60 3-73 93.22% 45169.03 -0.03% 
8 392.13 7-45 93.14% 45319.84 0.30% 
16 198.14 14-75 92.17% 45121.79 -0.14% 
32 99·34 29-41 91.92% 45393·73 0-46% 
Avg. 92.70% 45253.88 0.15% 

value over all instances and the RPD comparing 
this value with the average value of the 32 VNS pro­
cesses presented in Table 2(a). Table 2(b) contains 
the RPVNS results described in the previous para­
graph. Here the use of 2 search threads achieves an 
improvement of 0.12% while the use of 32 threads 
brings an improvement of 0.89% in solution qual­
ity. 
More significant are Table 2(c) and Table 2(d) 
which represent the results of the coarse-grained 
cooperation scheme with and without adaption 
and a solution warehouse. While the non-adapting 
variant already has a high worker efficiency with an 
average value of 96.53% which ascribes to the min­
imal communication effort, the average efficiency 
value of the adapting search lies with 102.63% 
above the 100% mark. The reason for this is the 
fact, that the self-adapting mechanism allows a 
strong bias towards the smaller sequence lengths 
during the exchange operations in the shaking 
phase of the VNS. This leads to a lower compu­
tational effort and is therefore noticeable in the 
runtimes of the self-adapting parallel variant. Fur­
thermore, the parameterless version achieves on 
average 0 .16% better results than the parallel VNS 
with fixed parameters. A graphical representation 
of all exploration runs is given in Figure 5.2 (see on 
page 10). The x-axis denotes the number of work­
ers and the y-axis denotes the RPD to the average 
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Table 2(e) contains the results of the fine-grained 
cooperation scheme. It can be shown that this vari­
ant successfully replicates the effective properties 
of the sequential VNS. Moreover, with the use of 
several parallel search processes the solution qual­
ity can be remarkably improved in nearly the same 
runtime compared to the standard VNS. In the case 
of 32 workers the improvement is more than 1%. 
Although this scheme is defined by an extremely 
fine granularity, the worker efficiency has a more 
than satisfying average value of 93.16%. 
Table 3 shows the behavior of the coarse- and fine­
grained parallel VNS in two series of speed-up runs. 
Here, the total number of iterations is constantly 
set to 108 in all runs. The self-adapting mecha­
nism and the solution warehouse were omitted in 
the speed-up runs for the coarse-grained variant. 
The two tables contain data about the total time, 
the worker speed-upS:{', the worker efficiency E~v, 

the total value over all instances and the RPD 
to the average RPVNS value. Again, the worker 
efficiency and consequently the worker speed-up 
are relatively high in both series. In the coarse­
grained runs E~v is 95-54% on average and in the 
fine-grained runs it is 92.70%. In both cases the 
efficiency value is lower than in the exploration 
runs because of the fact that improving solutions 
were found mostly in the beginning of a search. 
Therefore, more solution data has to be transferred 
between the processes. The fine-grained coopera­
tion scheme convinces with its marginal average 
RPD while still possessing an excellent runtime 
scalability. 
Finally, Table 4 gives an overview of the best results 
for the MDVRPTW. First, the best found results 
so far by the VNSprev and the TS are presented 
along with the minimum of both methods. Then 
the VNS column states all the new best found 
solutions obtained by the parallel variants of the 
VNS. The last column shows the RPD between the 
incumbent values and the new VNS values. Hence, 
on average the results for the MDVRPTW were 
again improved by 0.37%. 

6 Conclusion 
In this paper two parallel VNS approaches were in­
troduced. The advantage of the coarse-grained co­
operation scheme is the independency of its search 
threads. Each process can be configured with an 
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individual parameter setup. A self-adapting mech­
anism was developed to control these settings and 
to evaluate the results obtained by the individual 
search processes. The main contribution of this 
technique is that no a priori parameter tuning 
for different problem instances is required. There­
fore, the coarse-grained cooperation scheme is well 
suited for problems which cannot be studied in de­
tail before applying the search like it may occur in 
the real-world. 
The fine-grained cooperation scheme allows a suc­
cessful replication of the effective properties of the 
sequential VNS. With the use of 32 search threads 
the intensified exploration of the solution space 
improves the solution quality by 1.12% compared 
to the results of a single run of the sequential proce­
dure. Here, the impact of the cooperation becomes 
apparent by comparing the results of this scheme 
with the best results obtained by 32 independent 
RPVNS runs. The fine-grained cooperation scheme 
is best suited for cases where the characteristics 
of the problem instances are known in advance 
and appropriate parameter settings can be made. 
Furthermore, at a constant number of iterations 
the runtime of a complete search applied to all 
instances was reduced from 48.7 to 1.7 hours. 
Both cooperation schemes show extremely high 
efficiency values which results in an excellent run­
time scalability. Finally, for all 20 MDVRPTW in­
stances the best known solution was found and in 
11 cases a new best solution was obtained. 
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Figure 2: Results of the exploration runs (x-axis: number of workers, y-axis: RPD) 
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Table 4: New best results for the MDVRPTW 

Nr. VNSbest TS best Previous Best New Best RPD 

01 1074·12 1074·12 1074·12 1074.12 o.oo% 

02 1762.21 1762.21 1762.21 1762.21 o .oo% 

03 2373·65 2373·65 2373·65 2373·65 o.oo% 

04 2815·48 2852.29 2815·48 2815-48 o.oo% 

OS 2993-94 3029.65 2993-94 2965.18 -0.96% 
o6 3629-72 3627.18 3627.18 3612.72 -0.40% 

07 1418.22 1418.22 1418.22 1418.22 o.oo% 
o8 2096·73 2102.61 2096·73 2096·73 o.oo% 

09 2730.54 2737.82 2730.54 2727.42 -0.11% 

10 3499-56 3505.27 3499-56 3483.22 -0-47% 
11 1005·73 1005·73 1005·73 1005·73 o.oo% 

12 1472-76 1478.51 1472-76 1467.72 -0.34% 

13 2001.83 2011.24 2001.83 2001.83 o.oo% 

14 2215-51 2202.08 2202.08 2196.28 -0.26% 

15 2465.25 2494-57 2465.25 2456·52 -0.35% 
16 2896.03 2901.02 2896.03 2853·32 -1.47% 

17 1236.24 1236.24 1236.24 1236.24 o.oo% 

18 1796.21 1792.61 1792.61 1788.18 -0.25% 

19 2292-45 2285.10 2285.10 2269.33 -0.69% 

20 3076.37 3079-16 3076.37 3013·71 -2.04% 

44852-55 44969.28 44825.63 44617.81 -0.37% 
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