
96 

Marja van den Heuvel-Panhuizen 

The learning paradox and the learning miracle: thoughts on primary 
school mathematics education l 

Zusammenfassung: Die Diskussionen iiber neue Formen des Lernens sind haufig vom Kern 
des Lernens we it entfernt. 1m Gegensatz dazu wird in diesem Beitrag Lemen unter einer als solche 
erachteten Schliisselfrage der Mathematikdidaktik iiberdacht: Wie konnen wir Lernende dazu 
veranlassen, auf der Basis ihres vorhandenen Wissens ein neues Verstandnis auszubilden? Exem
plarisch werden didaktische Bootstrapping-Strategien vorgestellt, urn mit dieser "Paradoxie des 
Lernens" umzugehen. Erganzend dazu wird auch dem "Wunder des Lernens" Aufmerksamkeit 
geschenkt. In Anbetracht der Qualitat der Unterrichtskommunikation und der Erlauterungen, die 
Lernenden geboten werden, ist es oft erstaunlich, dass Lemen iiberhaupt stattfindet. Zur Entwick
lung neuer didaktischer Einsichten miissen beide Seiten in Betracht gezogen werden. 

Abstract: It is characteristic for the discussions about the new forms of learning that they are far re
moved from the core of the learning process. In contrast, in this contribution leaming will be reconsid
ered from what is seen as a key question within the didactics of mathematics education: how can we 
prompt the students to construct new understanding based on what they already know. Examples are 
given of the didactical bootstrapping strategies that can be applied to handle this 'leaming paradox'. In 
addition to this high-level didactics attention is also paid to the 'learning miracle'. In view of the quality 
of classroom communication and explanations given to students it is often remarkable that learning takes 
place. Taking both leaming issues into account is necessary for developing new didactical insights. 

1. Introduction 

The answer to the question 'How do people learn?' is crucial for guiding our teaching of 
mathematics. Not for nothing was it one of Freudenthal's questions when he was asked what 
he saw as the major problems of mathematics education of the time2 at the Fourth ICME in 
Berkeley in 1980. For Freudenthal, knowing how people learn was both the first step towards 
solving the everyday problems of practioners of how to teach learning, and the first step 
towards building a learning theory. I think that nothing has changed on that since 1980. 
Learning and our knowledge of it undoubtedly form the main pillars of education. At the 
same time, however, it is still being emphasized today that research in mathematics learning 
has not yet produced a successful and widely accepted theory of learning (see e.g. Bereiter, 
1985; Uljens, 1992; Romberg, 1993; Roschelle, 1995; Schoenfeld, 1999). 

This contribution will not change much about that. What I want to do as a developer and 
researcher of mathematics education is to look purposefully at the learning side. The under
lying intention - or rather, the hope hiding underneath - is that reconsidering learning might 
give directions for further improvement of the theory and practice of mathematics education. 

1 This article is an elaborated version of my plenary address at the 37th GDM Conference in Dortmund. 
2 This request was inspired by what Hilbert did in 1900 when he pronounced the major mathemati
cal problems of his time at the Paris International Congress of Mathematicians. The list of thirteen 
problems Freudenthal came up with in 1980 is still used as a reference for state-of-art descriptions 
of mathematics education today. Furthermore, often the conclusion is drawn that none of these 
problems have been solved yet and are still of major interest; see for instance Adda (1998). 

(JMD 24 (2003) H. 2, S. 96-121) 
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My review of learning will concentrate on two issues. The first one is related to what 
is called 'the learning paradox': the phenomenon that students construct a higher level of 
understanding based on their current lower level of knowledge. No matter how interest
ing this may be, I will not deal here with a philosophical or epistemological reflection, 
but will mainly pay attention to the didactical scaffolding or bootstrapping strategies that 
can be applied to make this shift in understanding happen. 

The second issue is a little bit the opposite of the high-level didactics used to achieve 
the aforementioned shift in thinking, and takes us back down to earth: apparently many 
things sort themselves out. If there is one thing that classroom research brings to light 
over and over, it is that so much goes wrong in instruction. By this I refer specifically to 
the micro-level of teaching: the terrible quality of communication between teacher and 
student, and the many unclear and incorrect explanations children have to cope with 
when learning mathematics. The miracle is that, despite this, learning takes place. For 
that reason I have called this 'the learning miracle'. 

Actually, both issues do not show a glimpse of the 'new forms of learning,3 that one 
might expect in this age of booming technology. Indeed, this contribution is mainly 
about 'old' learning, but not completely.4 I will start with discussing some ideas about 
'new' learning. However, I will not spend long on this, because it concentrates too much 
on the outside of learning. I will not ignore it either, because once again it teaches us that 
we must look at the core of learning. 

2. New forms of learning 

I think that the best way to make clear that in learning the times are changing is to go 
to the internet. Using a search machine such as Google instead of Webster's Dictionary 
immediately gives you a wide scope of what new forms of learning are. The links mainly 
refer to learning with computer-based software, the use of new technical tools such as the 
graphic calculator, the use of hypertext and multimedia (including the use of video) and 
learning via the internet, e-Iearning, distance learning, networking, globalisation and com
puter-mediated conferences. Furthermore, there are also links to creativity, life-long learning, 
learning by constructing, cooperative learning, the joy of learning, story boards, and even the 
implications of LSD for human learning. 5 6 

An appropriate way to make clear what 'new forms of learning' are, is to contrast them 

3 'New forms of learning in education and teacher education' was the theme of the 37. lahresta
~ng der Gesellschaft flir Didaktik der Mathematik, Universitat Dortmund, 3.-7. Marz 2003. 

See, for instance, Oliver (2000) who stressed that the recognition of alternative theories for 
learning coincided with the emergence of new learning technologies. 
5 When I used Google for the preparation of my lecture at the GDM 2003 in Dortmund, I was 
brought into contact with new learning in a very confronting manner. Searching for links about 
'new forms of learning' the first hit was 'Hauptvortag Heuvei'. I must say, it feels a bit like look
ing into space with a telescope and watching the birth of a star or a black hole. 
6 A search on December 27, 2002 resulted in around 200 hits for 'new forms of learning' and 
similar English expressions. It will be not a surprise that the number of hits went down considera
bly when 'mathematics' was added to the search parameters. A bigger surprise resulted from 
performing the same search in German: the number of hits rose to around 3350. 
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with the traditional ways of learning. An example can be found in Fischer & Palen 
(1999) (see Fig. 1). Although their list is certainly not complete, it covers clearly the 
general purport of comparing traditional learning with new learning: the learning is more 
in the hands of the student and instead of being teacher-centered learning becomes more 
self-directed and collaborative. Fisher & Palen also mention lifelong learning and, of 
course, learning with computers. 

Traditional forms of learning New forms oflearning 
- Instructionism (teacher-centered) - Self-directed learning 
- Fixed curriculum - Learning on demand 
- Decontextualized learning - Integration of working and learning 
- Memorisation - Collaborative knowledge construction 

- Organizational learning 
- Lifelong learning 
- Learning about computers _ 

learning with computers 
Fig. 1: Traditional versus new forms of learning (adapted from Fisher & Palen, 1999) 

This last characteristic, the use of computers, is often the first thing people think of in 
new learning. Yet this is a limited interpretation. As Riel (1998) elucidated the aspect of 
tools in relation to new forms of learning contains much more. In Fig. 3 we can see that 
this includes student created materials and student generated lessons, as well as simula
tions, virtual worlds interacting with reality and having many 'expert' voices in class
room. 

Past tools for learning Promising power tools for learning 
- Textbooks and worksheet - Primary sources and student created 

materials 
- Linear text student writing - Hypertext multimedia productions 
- Models and materials - Virtual creatures and simulations 
- Direct observation - Tools for remote observations 
- Educational films broadcast reality - Virtual worlds interact with reality 
- Teacher delivers lectures - Many 'expert' voices in classroom 
- Student reports to teacher on learning - Student generated lessons for others 

Fig. 2: Past versus new tools for learning (Riel, 1998) 

It is interesting to see how people regarded future tools for learning one hundred years 
ago. Asimov's (1986) book 'Futuredays', which is based on a series of cigarette cards 
designed in France to celebrate the beginning of the 20th century, shows us a nice exam
ple of this. According to one of the cards (see Fig. 3), learning in the year 2000 was 
going to be a case of grinding down textbooks, after which the subject matter could be 
transferred directly into the children's brains through wires. Not much has come out of 
this prediction - which by the way was not meant to be taken very seriously, however-, 
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elements of which can also be found in more serious literature.? The closest we come to 
this forecast is if we think of a classroom which has been furnished with head phones for 
a language lesson. 

Fig. 3: Picture from Asimov 's 'Futuredays' 

Alongside forms of learning and the tools used for them, there is a third approach to 
characterizing new learning: the underlying assumptions on which the new forms and 
tools are based. It was Grabinger who came up with the list in 1996 (see Oliver, 2000), 
of which a slightly adapted version is shown in Fig. 4. 

Old assumptions about learning New assumptions about learning 
- Learners are receivers of knowledge - Learners are active constructors of 

knowledge 
- Learning is behavioristic and involves - Learning is cognitive and in a constant 

strenghening of stimulus and response state of growth and evolution 
- Skills and knowledge are best ac- - Skills and knowledge are best required 

quired independent of context within realistic context 
- Learners are blanc slates ready to be - Learners bring their own needs and 

filled with knowledge experiences to learning situations 
- People transfer learning with ease by - People transfer learning with difficulty 

learning abstract and decontextualised needing both content and context 
concepts learning 

Fig. 4: Old versus new assumptions about learning (Grab inger, 1996, p. 667; adapted 
from quotation by Oliver, 2000) 

With some good will something can be found of the old assumptions in the 'Future
days' way of learning: learners as receivers of knowledge, learning as reinforcing 
stimulus response connections, learning bare knowledge that is not linked to a context, 
learning that ignores students' own knowledge, transfer taking place automatically based 

? In 1910 Comenius was of the opinion that as soon as we have succeeded in finding the proper 
method "[k]nowledge can be impressed on the mind, in the same way that its concrete form can be 
printed on paper" (Comenius, 1910, p. 289; quoted by Wittmann, 2001, p. 7). 
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on abstract knowledge. The new assumptions about learning are the opposite of these, 
and can be summarized by the label 'social constructivist' (see also Romberg, 1993). 
Learning is seen as a process of personal understanding and meaning making which is 
active and interpretative and for which interaction in a social environment is seen to play 
a crucial role. 

This view about learning can also be found in the standard work about learning pub
lished in 1999 by the u.s. National Research Council (NRC), titled 'How people learn' 
(Bransford et aI., 1999)8. The intention of this book is to give a broad overview of re
search on learning and the implications for teaching. As shown in Fig. 5 the key findings 
on learning described in the later published expanded edition of the book (Bransford et 
aI., 2000) have to do with: (1) pre-taught initial understanding and misconceptions of 
students; (2) the 'content' or 'range' of knowledge (facts, conceptual frameworks, and 
abilities for retrieval and application of knowledge); and (3) the active nature of the 
learning process, or the learner's control of learning.9 According to Bransford et ai. 
(2000) the following implications for teaching result from this: (1) instruction should 
take into account pre-existing understanding of students; (2) superficial coverage of a 
subject matter domain must be replaced by in-depth coverage of fewer topics, and in
struction must include concepts 'at work' and a firm foundation of factual knowledge; 
and (3) metacognitive skills should be taught that give students opportunities to take 
control of their own learning. 

Key findings research on learning Implications for teaching 
1. Students come to school with initial 1. Instruction should engage with this pre-

understanding existing understanding 
2. Developing competence requires (a) a 2. Subject matter must be taught in-depth, 

deep foundation of factual knowledge, providing many examples of concepts 
(b) understanding of facts in the context 'at work' and a firm foundation offac-
of conceptual frameworks, and (c) the tual knowledge 
organization of knowledge that facili-
tates retrieval and application 

3. Students can be actively involved in 3. It is necessary to teach metacognitive 
their learning and should have possi- skills that help students to take control 
bilities to control of their own learning of their own learning 

Fig. 5: Key findings of research on learning and implications for teaching according to 
the NRC's publication 'How people learn' (Bransford et al., 2000) 

Although the book also shows some cases of mathematics educationlO with the intention 
to show which (learning) knowledge base is fundamental to this education, the book in fact 
only shows at a general level what the teachers are doing and what decisions they are tak
ing. The description does not touch on the core of the learning process. The cases do not 

8 In 2000 an expanded edition was published: Brandsford et aI., 2000. 
9 Although this sounds as if the book provides a very precise research base of the findings, this is 
not the case. Instead it remains fairly vague about which research these key findings are based on. 
lO This concerns work of respectively Lampert (1986) and Ball (1993), and work from the ap
proach ofCognitively Guided Instruction (e.g. see Carpenter & Fennema, 1992). 
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reveal why the teachers behaved as they did and why their teaching strategies worked; that 
is to say, why their strategies resulted in learning. If the goal is to inform readers about 
how people learn, then these are the crucial questions that have to be answered. 

The same distance from the heart of learning is reflected by a diagram that shows the 
key role that knowledge of learning plays in choosing a suitable teaching technique (see 
Fig. 6). 

Fig. 6: Overview of teaching strategies that can be chosen based on knowledge about 
how people learn (from Bransford et al., 2000, p. 22) 

Based on this knowledge it can be decided whether the teaching technique should be 
lecture-( or text-)based, skills-based, inquiry-based, be organized in an individual or 
group setting, or should be techology-enhanced. After this first decision for a main te
chi que a more specific one can be chosen. The lecture can be given in oral or written 
form or by means of narrative videos. The skills-based method can be focused on drill 
and practice, conceptualized practice or modeling. The inquiries can be carried out on 
cases, problems, projects, and design activities. The individual or group setting can be 
filled in by self-study, cooperative learning, and jigsaw learning. Finally, the technology
enhanced method can be based on simulations and electronic tools, and can give oppor
tunities for assessment and can offer communication environments. 

My problem with this scheme is that it does not deal with how learning works. This 
does not mean, however, that making use of these educational methods is not important 
- cooperative learning can elicit reflection and project work can make that students are 
confronted with the relations between different subdomains of mathematics. All of this is 
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important, but if we want our knowledge about learning to help us to improve our 
mathematics education, then our thinking about how students come to know must be 
related to what Wittmann (1998) calls 'the core of mathematics education'; it must be 
related to mathematical activity. In fact, we have to answer the question of how particu
lar mathematics content - taken in a broader sense - can be made accessible to the stu
dents. 

However, in most definitions of learning the content is left out. Take, for instance, the 
definition given by Greeno & Collins & Resnick (1996). They see learning as "the proc
ess by which knowledge is increased or modified" (p. 21). Descriptions like these are 
easy to give, but the difficulty only starts there. An immensely complex problem is hid
den behind such a definition. What, for instance, is meant by 'knowledge' and what do 
'increased' and 'modified' mean? Moreover, learning takes place on many levels. Every 
acquisition of a form of knowledge or ability through the use of experience can be called 
learning, but these superficial forms of learning are not what I want to focus on here. 
Within the context of learning mathematics I want to look especially at what Ohlsson 
(1995) calls 'deep learning', the acquisition of new insights. At that point we are dealing 
with shifts in understanding. 

An example of that is the conceptual change that is necessary for understanding ra
tional numbers. The number knowledge that children have developed for counting and 
operating with whole numbers is not sufficient for understanding fractions and must 
even be overturned completely. In contrast to natural numbers, rational numbers do not 
have unique successors; there is an infinite number of numbers between two rational 
numbers. Furthermore, the 'normal' view of the size of numbers is not valid anymore. 
The students have to understand that 1/5 is less than 1/3. 

Not only in difficult domains do these shifts in understanding have to happen, they are 
also a necessary part of the learning process in, for instance, the area of early number. 
The step from 'counting all' to 'counting on' and the step to making use of 'known facts' 
imply a conceptual change as well. 

Essential is how these new insights arise. Although interpretations vary, the current 
interpretation of learning can - as said before - be referred to as 'social constructivist', 
which means that "learners [are seen] as active constructors of knowledge in a social 
environment" (Romberg, 1993, p. 102). Moreover, when we are looking at the origins of 
new insights, the contemporary view is that "people construct new knowledge and un
derstandings based on what they already know and believe" (Bransford et al. (1999, p. 
10). This last view in particular gets us into trouble. Developing the new insight presup
poses an understanding of a more sophisticated procedure in advance of discovering it. 
In other words, to obtain the new insight, the student has to possess prior knowledge 
which is at least as complex as the new insight itself. 

A paradigmatic example of this, that is often quoted by Cobb (see e.g. 1987), is Holt's 
(1982) experience with the use of Cuisenaire rods: "Bill [a colleague of Holt] and I were 
excited about [Cuisenaire] rods because we could see strong connections between the world 
of rods and the world of numbers. We therefore assumed that children, looking at the rods 
and doing things with them, could see how the world of numbers and numerical operations 
worked. The trouble with this theory was that Bill and I already knew how the world of 
numbers worked. We could say: 'Oh, the rods behave just the way numbers do.' But if we 
hadn '/ known how numbers behaved, would looking at the rods have helped us to fmd out?" 
(Holt, 1982,p. 138-139). 
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3. The learning paradox 

The previous example takes me to the central question of didactics: How can we trig
ger and guide the students' learning process to finally attain our goal of having the stu
dents develop new insights? Put bluntly, this is what it is all about: the moment at which 
the students make a conceptual shift and when insight is born. As said before, the prob
lem with this shift is that the mathematical understanding, which has to be achieved, is at 
the same time needed to gain this understanding. 

Since Fodor's contribution to the Piaget-Chomsky debate in Royaumont in 1975, this 
old epistemological problem 11 has been referred to as the 'learning paradox'. In the 
words of Fodor "[ ... J it is never possible to learn a richer logic on the basis of a weaker 
logic." (Fodor, 1980, p. 148) 

A strong methaphor outside the field of mathematics education that explains what is 
meant by the learning paradox is Lionni's (1970) story 'Fish is fish'. It illustrates how 
people construct new knowledge based on their current knowledge with all its limita
tions. The story is about a fish who is keenly interested in learning about what happens 
on land, and who asks a frog to tell him about it. When the frog returns to the pond he 
describes all kinds of things like birds, cows, and people. 

\ .-
Fig. 7: Picture from Lionni's book 'Fisch ist Fisch' 
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The book shows pictures of the fish's representations of each of these descriptions: 
each is a fish-like form that is slightly adapted to accommodate the frog's descriptions -
people are imagined to be fish who walk on their tailfins, birds are fish with wings, and 
cows are fish with udders (see Fig. 7). 

One person who has given a very important contribution to our understanding of the 
learning paradox and who notably made the connection to its implications for education is 
Bereiter (1985). In his famous article 'Toward the solution of the learning paradox' he 
argues for taking the learning paradox seriously and pleads for developing educational 
strategies "for the 'bootstrapping' in cognitive growth" (ibid., p. 201) as he calls it. Draw
ing on the many sources, that according to him, the human cognitive system has available 

11 This paradox has a very long history. According to Orton (1995) it might be stated in its earliest 
form by Plato in his dialogue 'The Meno' in which Menon and Socrates discuss the problem of 
how a concept might trigger its learning before it has been learned. 
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for promoting its own development, he comes to several theoretical principles that seem to 
hold promise for understanding how bootstrapping can occur. Based on these principles he 
describes examples of educational strategies that can be used for tackling the learning 
paradox. He mentions the following strategies: (a) 'chance plus selection', which implies 
providing students with a rich variety of solution strategies; (b) 'piggy backing', which 
implies that already available understanding or skills are used for other purposes; (c) 'af
fective boosting', which involves using problems in which students fInd something to be at 
stake for them; (d) 'fIeld facilitation'; which means that relevant features of a problem are 
made perceptually prominent for the students; and (e) 'imitation'; which simply refers to 
something like copying what teachers and peers are thinking aloud. 

What is above all worth taking note of in this list - and which is a paradox in itself - is that 
lower forms of learning can be used to reach a higher level. I see it as a great achievement of 
Bereiter that he opened our eyes to this. Bereiter makes it clear that the learning that I would call 
'surface learning' - and which has a negative connotation in our current understanding-oriented 
education - provides scaffolding for subsequent learning of higher cognitive strategies. In this 
respect I recognized a similar turn in didactical thinking in Wittmann's plenary lecture at leMI 
lOin Japan, where he argued "to integrate the practice of skills into substantial mathematical 
activities" (Wittmann, 2001, p. 12). According to Wittmann our focus on higher-order skills 
should not result in neglecting the importance and specifIc role of the basic skills. 

4. Shifts in understanding percentage - an example from RME 

As the many reactions to Bereiter's article l2 have made clear, the learning paradox is -
didactically speaking - a great challenge. Actually, one could say that every educational 
approach has its own ways to either avoid, resolve or overcome this paradox. In this 
contribution I cannot deal with the discussions that came up after Bereiter's article. In
stead of doing this, I will address how in the Dutch instructional approach to mathemat
ics - called Realistic Mathematics Education (RME) 13 - the students are prompted to 
make conceptual shifts in understanding mathematics. My focus will be on an example 
of the didactical use of models in teaching percentage. I will say in advance that I will 
not work out the example as a genetic epistemology, but that I will describe from a di-

12 See for instance the reaction by Newman & Griffin & Cole (1989) who discuss Bereiter's article 
from the perspective of the sociohistorical school or socio-cultural theory, the reaction of von 
Glasersfeld (1998) who sees in the scheme theory the key to the learning paradox, and especially 
the reaction by the socio-constructivists Cobb & Yackel & Wood (1992) and the discussion that 
resulted from this reaction (see Orton, 1995; Cobb, 1995). According to Cobb et al. the learning 
paradox results when one adopts a represential view of mind that requires learning processes in 
which the students have to modify their mental representations, and it disappears when students 
are offered opportunities to construct mathematical meanings based on the development of taken
as-shared ways of mathematical knowing that are compatible with those of the wider community. 
In other words, mathematical relationships are not only self-evident to the initiated but the students 
themselves have the possibility of apprehending them (see Cobb & Yackel & Wood, 1992, p. II). 
Although this interpretation of learning mathematics obviously can be considered as a way to 
avoid the learning paradox, it is not very clear in explaining how the bootstrapping that results in a 
shift of understanding works. 
13 A concise overview of the philosophy and principles ofRME can be found in Van den Heuvel
Panhuizen (2001). 
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dactical point of view how growth of understanding is elicited. And although I know that 
for some of you the interaction in the classroom is the heart of the matter (see e.g. Stein
bring, 1991, 1998), I will also leave that out of consideration. 

As an introduction to the example I will give a very short overview of RME and the 
use of models in this approach. 

4.1 RME and the use of models 

One of the basic concepts of RME is Freudenthal's (1971) idea of mathematics as a 
human activity. For him mathematics was not the body of mathematical knowledge, but 
the activity of solving problems and looking for problems, and, more in general, the 
activity of organizing all the information you have about a problem situation - which he 
called 'mathematizing' (Freudenthal, 1968). 

It was Treffers (1978, 1987) who later explicitly distinguished 'horizontal mathematiza
tion' and 'vertical mathematization'. The fIrst means that mathematical tools are brought 
forward and used to organize and solve a problem situated in daily life - Freudenthal (1991) 
called this going from the world of life to the world of symbols. Vertical mathematization 
stands for all kinds of re-organizations and operations done by the students within the 
mathematical system itself; it implies, for instance, the making of shortcuts - in Freudenthal's 
(ibid.) words this means moving within the world of symbols. 

Another characteristic that is closely related to mathematization is what can be called 
the 'level principle' ofRME (Van den Heuvel-Panhuizen, 2001). Students pass through 
different levels of understanding on which mathematization can take place: from devis
ing informal context-connected solutions to reaching some level of schematization, and 
fInally having insight into the general principles behind a problem and being able to see 
the overall picture. In short, this is meant by what is named 'progressive mathematiza
tion' (Treffers, 1987). 

Models have a powerful role in achieving these rises in level. The person we have to 
thank for this insight is Streefland. About fifteen years ago, he elucidated in a Dutch 
article how models can fulfill the bridging function between the informal and the formal 
level, namely by shifting from a 'model of' to a 'model for' (Streefland, 1985; see also 
Streefland, 1993, 1996). In brief, this means that in the beginning of a particular learning 
process a model is constituted very closely connected to the problem situation at hand, 
and that later on, the context-specific model is generalized over situations and then be
comes a model that can be used to organize related and new problem situations and to 
reason mathematically. In that second stage, the strategies that are applied to solve a 
problem are no longer related to that specifIc situation, but reflect a more general point 
of view. 

In this process of schematization and generalization, again the roles of the designer 
and the teacher are very important. By designing a trajectory in which new problems 
prompt the students to arrive at adaptations of the initial 'concrete' model and by accen
tuating particular adaptations that the students come up with, the process of model de
velopment is guided. For a more extensive discussion about the didactical use of models 
in RME, see Van den Heuvel-Panhuizen (under review) and Gravemeijer (1999). In the 
following I will show you some snapshots from such a trajectory on percentage. 
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4.2 The didactical use of the bar model in learning percentage 

This trajectory, in the development of which I was involved, is designed for 'Mathe
matics in context' (Romberg, 1997-1998), a mathematics curriculum for the U.S. middle 
school. I4 In this percentage trajectory, that is meant for 11 to 12 year-old students, the 
learning of percentage is embedded within the domain of rational number. This means 
that gaining knowledge of percentages is strongly entwined with learning fractions, 
decimals and ratios. However, since I mainly want to highlight the longitudinal character 
of the trajectory, as well as the shifts in understanding that occur within such a trajec
tory, I will limit myself to the percentage part of it. For the sake of clarity I will also 
limit myself to just one model: the bar model. I will describe how the bar model emerges 
and evolves, and supports the students' learning. 

The learning-teaching trajectory on percentage is spread out over three teaching 
units. 15 Globally speaking, the trajectory starts with a qualitative way of working, with 
percentages as descriptors of so-many-out-of-so-many situations, and ends with a more 
quantitative way of working with percentages, by using them as operators . 

... 
State 

State 

a. A pop concert 

100 °/0 

b. An historical play 

~o OlD 

Co A fashl()/\ show 

00 OlD 

Fig. 8: Percentage of occupied seats in school theater 

14 The development of this curriculum was a joint project by the Center for Research in Mathe
matical Sciences Education at the University of Wisconsin-Madison and the Freudenthal Institute 
of Utrecht University, and funded by the National Science Foundation. 
IS The draft version of these units have been developed by staff members of the Freudenthal Insti
tute. The draft of 'Per Sense' is developed by Van den Heuvel-Panhuizen and Streefland. This 
took place from 1991 to 1993. The draft version of 'Fraction Times' is developed by Keijzer, Van 
Galen and Gravemeijer. 'More or Less' was designed in draft by Keijzer, Van den Heuvel
Panhuizen, and Wijers. 
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In the fIrst teaching unit 'Per Sense', the instruction begins with building on the infonnal, pre
school and outside school knowledge of students. The worksheet in Fig. 8 shows student work 
related to an assignment connected to the school theater. The students are asked to indicate for 
different perfonnances how busy the theater will be. They can do this by coloring in the part of 
the hall that is occupied and then writing down the percentage of the seats that is occupied. This 
is asked before the students have been taught about percentages. 

It was remarkable how easily the children got to work on this assignment. Observa
tions during the try-outs of the teaching unit showed that the scenario to elicit the use of 
bars through the school theater activity worked. For the students, this coloring in of 
theater halls also became a way to express other kinds of so-many-out-of-so-many situa
tions. Here, in other words, a fIrst shift from a 'model of to a 'model for' is made. An
other interesting fInding was that the students spontaneously used fractions to 'explain' 
percentages (see Fig. 9). 

15 pen:eal 
01 tbe Dowen an red 

~ 
~ 

Fig. 9: The use of drawings to expresss percentages 

This is used in the next chapter of the 'Per Sense' unit that includes a set of problems 
in the context of parking. The students are asked to compare parking lots with respect to 
their fullness. Again, the students are asked to indicate the degree of occupation for each 
parking lot by coloring in the frame that represents the parking lot. Based on this, it can 
be detennined which parking lot is the fullest (see Fig. 10). 

The next step is that the rectangular frame that represents the 'real' parking lot is re
placed by an 'occupation meter' which is similar to, for instance, a display to check the 
amount of dust in a vacuum cleaner or a charge indicator for batteries. Like these, the 
occupation meter offers the students a way to represent the parking lot's fullness. They 
can again color in the occupied part (see Fig. 11). 
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Fig. 10: Comparing the fullness of parking lots 
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Fig. 11: The 'occupation meter' shows the fullness of the parking lot 

Moreover, after doing this, the 'occupation meter' visualizes the percentage of occu
pied spaces. If the meter is completely colored in, it means that the parking lot is 100% 
full. If 24 out of 40 spaces are occupied the parking lot is filled for, let us say as a pre-
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liminary first answer, a little bit over 50%. But after indicating 75% as the middle be
tween 50% and 100%, and using 75% as a reference, 60% might come up as 'a good 
guess' (see Fig. 12). 

o m 1~ g 

P31~' . \Ji~!"~J.'i"".i..il ·";;:;1 I I 
0% 50'1. 60'4 15 1. 100% 

Fig. J 2: The 'occupation meter' reveals the percentage of fullness 

At this moment I should give some attention to the often neglected function of choos
ing specific numbers that prompt students to discover particular relations between num
bers and to make use of clever strategies. 

Because of time restraints I will continue instead with the next chapter of the 'Per 
Sense' unit, in which the 'occupation meter' gradually changes into a plain bar model. In 
other words, again a shift is made from a 'model of to a 'model for'. This means that the 
model is no longer exclusively connected to the parking lot context, but can help, for 
instance, to compare the different preferences of fans for particular baseball souvenirs. 
Moreover, the shift gives access to a higher level of understanding, in which the bar is 
used to reason about so-many-out-of-so-many situations. Especially in cases where the 
problems concern numbers that cannot be simply converted to an easy fraction or per
centage, the bar gives a good hold for estimating an approximate percentage. An exam
ple of this is shown in the following worksheet (Fig. 13). 
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Fig. J 3: Using the bar as an estimation model 

The problem is about two groups of fans, Giants fans and Dodgers fans, who have 
been interviewed about their favorite baseball souvenir. In total, 310 Giant fans have 
been interviewed and 123 of them chose the cap as their favorite souvenir. In the case of 
the Dodgers fans, 119 out of 198 fans chose the cap. The students are asked which fans 
like the cap the most? On the worksheet you can see how this student found the answer 
by means of an estimation strategy. 

In order to provide the students with a more precise strategy, later on in this chapter 
their attention is also drawn to the 1 %-benchmark. This is done more or less casually 
through a headline in the newspaper, which is about a dramatically low attendance by 
Tigers fans (see Fig. 14). This 1 %-benchmark is introduced to open the way to calculate 
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percentages, but the approach chosen in this trajectory is different from the usual way of 
precise calculation in which first the I % is calculated precisely. In contrast, here the 1% 
benchmark is only used as a rough approximation by which the total amount is divided. 

TIGERS' SUPPORT WANES 
TUESDAY'S GAME VISITED BY 1,598 - ONLY 1& TIGERS FANS 

Fig. J4: Introduction of J% as a benchmark 

The bar also has a different role here than it had before. It is no longer a tool used to 
operate on, but is used to guide the students in calculating the percentage. The bar tells 
them what calculation they have to carry out to find the answer. To know the percentage 
that belongs to 91 in the Marathon problem we have to determine how many steps of 1% 
we have to make. So we can divide 91 by 16 to find the approximate percentage of drop 
outs (Fig. 15). 
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Fig. J 5: Using the bar as a calculation model with J% as a benchmark 

At this point I will skip several steps in the trajectory; among them the activities in 
which the students see, via a differently scaled bar (from 0 tot 1), that they can also write 
a percentage as a decimal - which is clearly a form of vertical mathematization. 

Later, in grade 6, in the unit called 'More or Less', the students are confronted with situa
tions of change. Then they learn to express - both in an additive (+ or -25%) and in a multi
plicative way (x 0.75 or x 1.25) - new situations as percentages of the old ones. This part of 
the trajectory starts with a situation of price reduction. The example that is shown in the fol
lowing worksheet (Fig. 16) is about a supermarket that introduced new price tags. The stu-
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dents are asked to check the sale prices by making only one calculation on their calculator. In 
this case this means that they have to multiply 3.20 by 0.75. 

EGGPLANT 
Norfl\ally $3.20 per kg 

2S% off the price 
-....:.... ..--1---. 

I 
Now $2.40 per kg 

Fig. 16: Checking the sale price by one multiplication 

Here again I will skip some activities, such as using the bar as an elastic strip to find a 
double reduction with a particular percentage. 

Another example that shows how helpful the bar can be in understanding complex situations is 
when the bar is used in circumstances that ask for backward reasoning. This is the case in the 
problem in which the sale price and the discount percentage are given and the students have to find 
the original price. 
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Fig. 17: The double number line as a support for backwards reasoning 

The student work (see Fig. 17) shows that, instead of the bar, a simple double number 
line is used to support the backwards reasoning. In a way it confirms the natural switch 
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from one version of the model to another. Crucial for both versions is that they help the 
students to understand that the sale price equals 75% of the original price and that they 
can find the original price, for instance, by dividing the sale price by 3 and then adding 
that part to the sale price. 

original price x 0.75 .. sale price 

oriJtinal price .. +0.75 sale price 

Fig. 18: Finding the original price as the reverse of finding the sale price 

On a higher level, however, the original price can be found by means of a one-step di
vision by dividing the sale price by seventy-five hundredths, which is the opposite of 
finding the sale price when the original price and the percentage of discount have been 
given (see Fig. 18). Actually, this latter solution is again an example of vertical mathe
matization. It is based on a shortcut within the mathematical system. 

The previous snapshots from the learning-teaching trajectory show how the bar model 
can be used didactically to elicit shifts of understanding of percentage. During this proc
ess of growing understanding the bar gradually changes from a picture of a so-many-out
of-so-many situation to an occupation meter and later to a double number line. At the 
same time, it changes from a concrete context-connected representation to a more ab
stract representational model that moreover is going to function as an estimation model, 
and to a model that guides the students in choosing the calculations that have to be made; 
this means that the model then becomes a calculation model. At the end of the trajectory, 
when the problems become more complex, it can also be used as a thought model for 
getting a grip on these problem situations. In fact, the modeling activities do not produce 
one single model, but a chain of models. 

context-connected I 
informal 
level of understanding 

context 
domain 
function 

model of model for 

1ofl~1ofl~1ofl~ 
~ for ~ for ~ for 

and so on 

~ 

general I 
formal 
level of understanding 

Fig. 19: Different levels of understanding and the shifts from 'model of' to 'model for' 

Just as it is not a case of one bar model, but of a chain of models that together fonn the 
conceptual model that incorporates the relevant aspects of the rational number concept, 
there also is not just one shift from 'model of to 'model for'. In fact, there is a series of 
continuous local shifts, which implies that a model, which on a context-connected level 
symbolizes informal solutions, in the end becomes a model for fonnal solutions on a 
more general level. 
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As shown in the diagram in Fig. 19, these local shifts refer to (a) shifts in context 
(when the students become aware that what is used for the occupation of the theater can 
als be used for the part offlowers[part of flowers?]), (b) shifts in the (sub)domain (when 
the students become aware of the relationship between percentages and fractions and 
decimals) and (c) shifts in function (when the students use the model in different ways). 

The trajectory depicted here should in no way be seen as a fixed recipe. It is meant as a 
scenario that offers a learning environment for learning percentage, including the means 
needed to make these shifts in understanding, while they at the same time provoke the 
shifts, because of the fact that there is a certain necessity for making them. The multi
level quality of the models makes it possible that the students can see a given problem 
with different eyes. In this way, the didactical use of models in RME could be consid
ered as a form of what Bereiter (1985) calls 'field facilitation'. It is a way of directing 
the students' attention, prompting the acquisition of new and more advanced strategies. 
However, this does not mean that RME has solved the learning paradox. As for Bereiter, 
within RME bootstrapping is accepted as a mechanism that happens and we are continu
ously looking for teaching methods that can make it happen. 

But there is more happening in classrooms than the scenarios that are developed for 
teaching mathematics. This takes me to the second learning issue that I would like to 
address in this contribution: the learning miracle. 

5. The learning miracle 

Let me first explain what I do not mean by a learning miracle. It is not - to return to 
my previous topic - the miracle that so many students wait for when solving a problem 
(see Fig. 20). 

"I think you should be more explicit here i1 step two." 

Fig. 20: Solution strategy with mirac/e/6 

16 I found this cartoon on a web site dedicated to Brenda H. Loyd, the former president of the u.s. 
National Council on Measurement in Education. 
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Nor do I mean the success stories about, for example, learning a foreign language in 
ten days, or the existence of mathematical prodigies that seem to violate all rules of 
learning. And I certainly do not mean the rise in state test scores that occurred at the 
price of an increase in drop-out rates in the Texas of then Governor Bush, which is 
wrongly referred to as the 'Texas Miracle' (see e.g. Haney, 2000). 

No, what I am thinking of when I talk about the learning miracle, are the many experi
ences of flawed instruction students undergo during their school years, which apparently 
do not stop most of them from learning mathematics in the end. Students are clearly 
resistant to the not very good teaching that educational practice is so full of. Let me 
show some examples of such teaching. 

5.1 A classroom vignette about learning fractions 

The first example I found in an article by Davis (1997, p. 357-358). The teacher is 
considered highly competent. The lesson is about addition of fractions and is being given 
in an eight-grade classroom. It is one of the first lessons of a unit on the subject. 

"[ ... ] Wendy [who is the teacher] wrote a series of addition statements on the chalkboard, 
11151112 
-+- -+- -+- -+-
55884225 

[ ... ] A few moments later she asked for students to volunteer their answers. Tim of
fered the first one (i.e., to 1/5 + 1/5); 'One tenth.' 

'Now, let's think about that one,' Wendy suggested. 'Pretend we have a chocolate bar 
and that we cut it into fifths.' On the chalkboard she drew a rectangle and sliced it into 
five equal-sized pieces [ ... ] (see Fig. 21). 'If you take one fifth,' she said as she shaded in 
the first of the five sections, 'and I take one fifth,' shading in the second section. 'how 
much is gone altogether?' 'Two fifth,' Tim responded correctly. 'So,' Wendy continued, 
pointing to the shaded parts of the diagram, 'what is one fifth plus one fifth?' 

lilT-II 
Fig. 21: Chocolate bar example 

'Two fifths.' 'Two fifth. That's right. How many of you got that?' Most of the stu
dents raised their hands. 'Good. Adding fractions is just like adding anything else. One 
horse plus one horse is two horses; one tree plus one tree is two trees; one fifth plus one 
fifth is two fifths.' " 

5.2 A classroom vignette about learning ratio 

The next example is taken from the Dutch MOO] study (Van den Heuvel-Panhuizen & 
Vermeer, 1999). The fragment is from a sixth-grade classroom. The children have been 
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working on the following problem: "A car covers a distance from 20.7 km to 21.7 km l
? 

in exactly 1 minute. What is the average speed?" This problem is discussed in a whole
class setting. The teacher suggests the ratio table and finally it is found that the average 
speed is 60 km/hr (see Fig. 22). 

lkm lOkm 60km 
1 min 10 min 60 min 

Fig. 22: Ratio table 

Mariska comments that the jump from 1 minute to 60 minutes can also be made in one 
go, but the teacher does not think that is a different approach and reacts by saying: "That 
doesn't change anything." This remark ends the discussion and the teacher continues 
with the next problem, which is the following one: "The distance from 21.7 km to 22.7 
km is covered in 2 minutes. What is the average speed now?" 

The teacher wants the students to look at the table again. But Felix, a fairly good stu
dent, immediately says: "Thirty kilometers, because it's half." The teacher reacts to this 
with: "That's hocus pocus." It looks like the teacher does not understand what Felix 
means, and that therefore the tum is given to another student. This student does fill in the 
whole ratio table and the session is finished without making any connection to the previ
ous problem; which is surely rather strange in a lesson about ratio. 

5.3 A classroom vignette about learning subtraction 

The protocols we made of observed lessons within the Dutch MORE research (Grave
meijer et aI., 1993), also painfully exposed just how anti-didactical classroom communica
tion often is. 18 See, for instance, the following fragment of a lesson in grade 1, recorded 
halfway through the school year. 19 

Teacher: "I have ten cents and 1 buy apples for 8 cents. What problem goes with that?" 
[ ... ] Teacher: "Well, you have to tell me how to do that, 10 minus 8. Who knows? How 
do you do 10 minus 8?" [There is hardly any reaction from the classroom.] Teacher: "10 
minus 8, who knows how you should do that? John?" John: "2 cents." Teacher: "How 
did you calculate that? That's what 1 want to know." John: "Then 1 set out the 8 and then 
1 add 2 and then 1 know." Teacher: "You add 2. That's pretty smart. But do you remem
ber how we agreed to do those difficult subtraction problems before holiday [the teacher 
means the Christmas holiday]? ... Wobke?" Wobke: "Count back." Teacher: "Yes, but 
counting back 8 steps is a lot. I can't do that. That is much too difficult." Other student: 
"Say the list." Teacher: "Which list?" [More questions and answers follow.] Teacher: 
"Of course you have to do the list of ten. Let's do it all together." Students: "lOis 10 and 
0, 10 is 9 and 1." Teacher: "There it comes." Students: "10 is 8 and 2." Teacher: "And 2! 
So what is 10 minus 8?" 

17 These data are derived from the hectometer posts alongside the Dutch highways. 
18 More on this can be found in Streefland & Te Woerd (l991a, 1991b) and Gravemeijer & Van 
den Heuvel-Panhuizen & Streefland (1990). 
19 MORE Observation, school 24, NZR, grade 1,7-1-1988. 
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5.4 A classroom vignette about learning estimation 

The next example, from a third grade class, is also from the MORE-research.2o The 
problem that is being worked on is estimating the length of an illustration of a pencil (see 
Fig. 23). 

Teacher: "Now, there you see [ ... ] a pencil. Now you are not supposed to, eh, measure 
the pencil! [ ... ] first you must estimate how many centimeters of millimeters the pencil 
is. Get your scratchpad and write down for yourself, the pencil is about that many centi
meters. You're not allowed to measure it. Take a good look. How much do you think it 
is? Write down a figure. Write down a figure. How many centimeters. [ ... ] 

Right, you wrote that down. Now you must write down another figure, for the same 
pencil. Imagine that the pencil isn't exactly 5 centimeters. Like that broken ruler, that 
wasn't 10 centimeters like Jeroen said, but 10 centimeters and 5.6 millimeter [sic]. Now 
maybe the pencil isn't 5 centimeter at all, but there are some millimeters more. Now 
write down that figure. How many centimeters and how many millimeters do you think 
the pencil is long? And you are definitely not allowed to measure it." 

Taak9 

1 Centimeters en millimeters, 

2 SchaHen en moten. 

Meet de voorwerpen heel precies 
Eerst schalten. dan meten en dan afronden 

3 Werkblad '9. Meten In centimeters en millimeters. 

'8 

Fig. 23: Textbook sheet 

Later on in the lesson rounding off is discussed. The teacher asks the students whether 
they know what that is. He finds the answers the students give unsatisfactory. 

Teacher: "No. Do you know what rounding off is? Very understandable that you didn't 
know. Imagine you have 7 centimeter. Okay, a 7 centimeter pencil. That is fine. You 

20 MORE Observation, school9, WIG, grade 3, 9-3-1990. 
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don't need to round off anything. But now you have a pencil that is 7 centimeter and 2 
millimeter long, because you just sharpened it, and my pencil is 7 centimeter and 2 mil
limeter. Now I'm going to round it off. What is rounding off? I'm going to tell you. I'm 
going to round off this number. Those millimeters have to go. I don't want to see them 
anymore. Too much trouble. Imagine having to ask in a shop: 'Do you have 7 pencils 
that are 7 centimeter and 2 millimeter long?' The man would have to measure first if that 
is possible. So what are we going to do now? We agreed that if it is under 5 centimeter 
[the teacher means millimeter!], the millimeters disappear and we just say: 'This pencil 
is 7 centimeter long. Look, the 2 is lower than 5.' If you don't look here, you certainly 
won't understand [said by the teacher to a student who isn't paying attention]. And then 
we would for example get the same pencil that is lying next to it, because that is 7 cen
timeter and 6 millimeter .... " 

And this lesson goes on like that for a while. I do not think I need to give any com
ment here. 

5.5 Imperfect teaching 

The type of teaching I have shown you is no exception. Each of us could easily add to 
the list of examples, either based on observing colleagues or on what we know from our 
own teaching practice. Characteristic for many of these examples is that they come from 
classroom situations where teachers - who are often very experienced - do their best, but 
where nevertheless things are going wrong, where students go too fast or express them
selves so clumsily that the teacher can make heads nor tails of what they mean, and 
where teachers give explanations that mathematically and didactically speaking leave 
much to be desired. 

That education often is imperfect and messy even in the best circumstances is not a 
newly discovered phenomenon. It has been pointed out by a number of authors (see e.g. 
Duckworth, 1987; Desforges & Cockburn, 1987; Sizer, 1997; Greeno, 1998). Sizer, a 
famous school reformer and former dean of Harvard's graduate school for education has 
the following to say about this: "Good teaching and learning are rarely linear, neat, pre
dictable. The serendipities aDd distractions and fascinations that crowd into every class
room [ ... ] conspire against that. Learning - and therefore teaching - is messy, but messy 
does not mean bad any more than orderly means good." (Sizer, 1997) 

Another aspect of the imperfection of teaching has been exposed in a revealing manner 
by the research of Desforges & Cockburn (1987). They observed and video-taped the 
lessons of seven experienced teachers in classes from Kindergarten to grade 3, each for a 
period of three weeks. These obervational data were compared with data from tests made 
by the students before and after the teaching period, and diagnostic interviews that were 
held during the teaching. 

It emerged from the analysis that in about 50% of the observed teaching events the chil
dren knew what to do before they were told. Another remarkable fact was that only very 
occasionally did the students point this out to the teacher. Furthermore, even when the 
students did, it did not stop the teacher from explaining again. Another outcome of this 
research was that of all the children who could not do a task before the teacher started her 
instruction 60% still could not do so twenty minutes afterwards (which amounts to 30% of 
all cases, because 50% of the children were already able to do the task before instruction). 
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6. Conclusion 

To conclude, when we look at classroom practice we cannot do otherwise than draw 
the conclusion that quite often a 'learning miracle' occurs. More often than we would 
like, the quality of the classroom communication and the explanations given by teachers 
leave much to be desired. Despite this, the majority of children does learn mathematics. 
They may not all learn it at the highest achievable level, but it cannot be denied that with 
this occasionally flawed teaching we can at least maintain the knowledge of mankind, 
and can even enlarge it. 

Please understand that the foregoing cannot be taken as a license for bad teaching. 
What I want to draw attention to is that children can apparently 'take' a lot where learn
ing is concerned, as is the case for physical and mental resilience. Not every flu or cold 
virus that is going round will infect everybody that comes into contact with it, and not 
every bad experience will be traumatic. In mathematics education, it seems almost as if 
they have a repair or compensation capacity; a kind of 'mathematical buffer' that pro
tects them for instance from faulty explanations (see Fig. 24). 

Learning miracle 

flawed ... 
education 

#:!t ... 
¥ ' ..... 
" , .. 
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...
Iearning 
mathematics 

Fig. 24: 'Mathematical buffer' of children 

The odd thing is that this mechanism is hardly taken into account when researching 
and developing mathematics education. In examples as given previously we only see 
what goes wrong in teaching and we desperately try to find ways to improve it. I would 
like to argue in favor of taking a closer look at the learning that takes place in spite of 
flawed teaching. In other words, we should not just look at the high-level didactics re
quired to achieve shifts in understanding: the learning miracle is just as important as the 
learning paradox. Maybe taking both into account would even lead us to new forms of 
learning in education. 
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