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Lenni Haapasalo & Djordje Kadijevich 

Two Types of Mathematical Knowledge and Their Relation 

Abstract. The distinction between procedural knowledge and conceptual knowledge seems to be 
possible at a terminological level. However, real problems begin when this distinction is to be 
operationalized by acceptable tasks, and the relation between the two knowledge types is to be 
clarified. This article tries to resolve some ofthese problems by using a constructivist approach. 

Zusammenfassung. Die Unterscheidung des prozeduralen und begrifflichen Wissens scheint auf 
terminologischer Ebene evident zu sein. Die wirklichen Schwierigkeiten beginnen dann, wenn 
explizite Beziehungen zwischen diesen zwei Kenntnisstypen oder angepasste Aufgaben gesucht 
sind. Dieser Artikel stellt einen Versuch dar, einige von diesen Problemen im Sinne des 
Konstruktivismus zu analysieren und zu lösen. 

Distinction by terminology 

Because of different research frameworks and the fact that procedural and conceptual 
knowledge are not easy to define precisely (Carpenter, 1986), a number ofviews relating 
to procedural vs. conceptual knowledge can be found in the literature. For giving a 
framework for interpretations made by the reader as weil as by ourselves, let us shortly 
summarize some ofthese views. The views are not identical, but most ofthem do more or 
less deal with the same kind ofknowledge distinction. . 
• According to Ivic (1991), Piaget made a distinction between 'practical knowledge' 

(savoir-faire) and 'conceptual knowledge', whereas Vygotsky dealt with three levels 
ofknowledge: 'manifest content' (facts, data and the like), 'instrumental knowledge' 
(methods, skills, procedures, etc.), and 'structural knowledge' (knowledge structures 
with underlying modes of thinking). 

• Skemp (1979) examined the relationships between knowledge and actions by using 
three distinct yet closely connected constructs: 'knowing that', 'knowing how' and 
'being able to'. The first denotes that an individual possesses an appropriate schema 
(conceptual structure), the second refers to his/her ability to come up with a particular 
task plan by using this schema, and the third denotes hislher ability to carry out such 
plan if available. 

• As regards a computer pro gram in Artificial Intelligence, 'declarative knowledge' is 
encoded as facts the program is "aware" of, whereas 'procedural knowledge' is encoded 
as procedures the program is typically "unconscious" of (Hofstadter, 1980). 

• Papert (1980) pointed out that a common distinction between the two types ofknowing 
is usually expressed as dualizations like 'knowing that' - 'knowing how', 'facts' -
'skills' or 'propositional knowledge' - 'procedural knowledge'. He underlined that 
such a distinction, which is typically reflected in memorizing facts vs. practicing 
skills, impoverishes the learning process. 

• Procedural knowledge comprises productions (condition-action rules), whereas 
'declarative knowledge' (this term was used instead of conceptual knowledge) is 
composed oftangled hierarchies of cognitive units (Anderson, 1983). 

(JMD 21 (2000) H. 2, S. 139-157) 
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• Having assumed that understanding refers to the individual 's control over hislher process 
ofknowing, Nesher (1986) made a distinction between learning algorithms and leaming 
towards understanding, pointing out that 'algorithmic performance' and 'understanding' 
can only be examined separately after the leaming has been completed. 

• Gelman & Meck (1986) distinguished between 'procedural competence' and 
'conceptual competence', assuming that the former relates to procedure performance, 
whereas the latter refers to knowledge of principles. 

• Procedural knowledge is rich in algorithms for completing tasks but is lacking in 
relationships, whereas conceptual knowledge is rich in relationships but is lacking in 
algorithms for completing tasks (Hiebert & Weame, 1986). 

• VanLehn (1986) distinguished between 'schematic knowledge' comprising 
descriptions of actions, and 'theological knowledge', referring to information relating 
these descriptions and their parts to the intended purposes. 

• By examining geometric knowledge, Schoenfeld (1986) contrasted 'empirical know-ledge' 
based on guess-and-test loops with 'deductive knowledge' comprising proofs. 

• 'Mechanical knowledge' refers to factual data, and rules and algorithms (procedural 
knowledge), whereas 'meaningful knowledge' denotes knowledge (implicit of explicit) 
of concepts or principles (Baroody & Ginsburg, 1986). 

• Skemp (1987) proposed three types of understanding: instrumental, relational and 
logical, each of which can be demonstrated in two modes of mental activity: intuitive 
and reflective. 'Instrumental understanding' refers to the ability to utilize certain rules 
without knowing why they work. 'Relational understanding' relates to the ability to 
infer particular rules or procedures by considering some general relationships. 'Logical 
understanding' denotes the ability to reason deductively by applying suitable patters 
of reasoning to relevant definitions, axioms and theorems. 

• Procedures are modelled by productions (condition-action rules), whereas concepts 
refer to several kinds of relational representations such as A is kind of B, event A is 
caused by event B, object Ais above object B, and event A happened after event B 
(Bymes & Wasik, 1991). 

• Procedural knowledge is viewed as sequences of actions, whereas conceptual 
knowledge refers to connected networks (Hiebert & Carpenter, 1992). 

• Procedural knowledge denotes knowledge of procedures and mastery of computational 
skiHs, whereas conceptual knowledge relates to knowledge ofvarious interconnections 
between conceptions that give meaning to mathematical procedures (Shimizu, 1996). 

• While 'concept image' denotes "the total cognitive structure that is associated with 
the concept, which includes all the mental pictures and associated properties and 
processes", 'concept definition' denotes "words used to specify that concept" (Tall & 
Vinner, 1981; p. 152). 

• According to Tessmer et al. (1990), who examined concepts as context-dependent 
cognitive tools, each concept has as weH declarative as procedural components, such 
as its definition, concept examples and non-example, connections to related knowledge, 
procedures for classificationlidentification, rules for use in different contexts and 
emotive connotations. 

• Having defined 'procept' as "a combined mental object consisting of a process, a 
concept produced by that process, and a symbol which may be used to denote either 
ofboth" (e.g. 3/4), Gray & Tall made a distinction between 'procedural thinking' and 
'proceptual thinking'. The former requires the use of procedures, whereas the latter 
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calls for "the use of procedures where appropriate and symbols as manipulable objects 
where appropriate." (Gray & Tall, 1993; pp. 6, 8) 

• S fard (1994) distinguished between 'operational thinking' and 'structural thinking'. 
While the former deals with processes in terms of operations on objects, the latter 
refers to objects made out of these processes. 

Mathematics educators, especially on the operationallevel oftheir enterprise, often make 
a distinction between procedural and conceptual knowledge by speakingjust about "al go­
rithmic performance" and "understanding" (e.g., Nesher, 1986). This easily leads to a 
polarization that procedural knowledge would be dynamic in nature, whereas conceptual 
knowledge would be static. Such an assumption would not, however, modem constructivist 
paradigms of teaching and leaming mathematics. In the MODEM project (Haapasalo, 
1993) for example, conceptual knowledge is viewed in dynamic way: it is constructed by 
using different kind ofrepresentation forms ofthe concept (especially verbal, graphic and 
symbolic), and active dynamic processing between these concept attributes. They may be 
of different characters, depending on wh at kind of concept class the particular concept 
represents (terms and examples are discussed later). 

We see that it is the dynamic view of conceptual knowledge which should be highlighted 
more clearly. In our view, the two knowledge types can, in some cases, be distinguished 
only by the level of consciousness of the applied actions. We therefore assume the follow­
ing proceduralo-conceptual knowledge distinction: 

• Procedural knowledge denotes dynamic and successful utilization of particular rules, 
algorithms or procedures within relevant representation form(s). This usually requires 
not only the knowledge ofthe objects being utilized, but also the knowledge offor­
mat and syntax for the representational system(s) expressing them. 

• Conceptual knowledge denotes knowledge of and a skilful "drive" along particular 
networks, the elements ofwhich can be concepts, rules (algorithms, procedures, etc.), 
and even problems (a solved problem may introduce a new concept or rule) given in 
various representation forms. 

Furthermore, procedural knowledge often calls for automated and unconscious steps, 
whereas conceptual knowledge typically requires conscious thinking. However, the former 
(like the above-mentioned instrumental understanding) mayaiso be demonstrated in a 
reflective mode ofthinking when, for example, the student skillfully combines two rules 
without knowing why they work. 

We hope that our characterization not only emphasizes some important aspects that are 
missing in others' views, but also allows a radical departure from two traditional views on 
the relation between the two types ofknowledge (i.e. procedural is based upon conceptual 
vs. conceptual is based upon procedural). At a higher level, one knowledge type can be 
based upon another (to be discussed later). 
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Distinction between procedural and conceptual tasks 

Like the concept of 'problem', the proceduralo-conceptual knowledge distinction is at least 
person, content and context dependent. As regards educational context, it depends on the 
pedagogical theory guiding the teaching/leaming process. This situation is immediately 
realized when suitable tasks are looked for. In the case of the percentage in Fig. 1, for 
example, we can ask which of the knowledge types it represents. 1 Keeping in mind our 
knowledge distinction, this percentage should be considered conceptual when we deal with 
its different representations and (conscious) transferring between them, and procedural when 
we execute a certain set of (automated) actions (within a particular representation). 

l Which part of -+ is 3? ) 
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Fig. 1. Percentage as conceptuallprocedural knowledge 

According to Silver (1986), it is hard to develop conceptual (procedural) test items that 
are procedurally (conceptually) free as most items of knowledge have both conceptual 
and procedural features. Despite that, most empirical studies on procedural and conceptual 
knowledge to date have been based upon two sets of test items assessing the levels of 
these types of knowledge (e.g., Nesher, 1986; Bymes & Wasik, 1991; Palmiter, 1991; cf. 
Shimizu, 1996). Beyond these studies seems to be an optimism that some (global) 
classification of procedural vs. conceptual test items is nevertheless attainable. (To our 
readings, no study, especially those with large sampies, examined whether the applied 
classification is also reflected in the subjects' answers. It could be easily done by using a 
factor - or cluster analysis, for example). A sampie ofthe applied tasks is given below. 

1 Even this simple example (like also that in Fig. 3) can uncover some important issues relevant to 
the goals of this article. Furthermore, there are large empirical studies beyond these examples 
(Haapasalo 1992). We find that these and other examples examined in our paper can satisfactorily 
represent main features of secondary school mathematics. 
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• Zucker's study reported in Nesher (1986) dealt with decimals. Algorithmic perfor­
mance was assessed by items dealing with the four arithmetic operations, whereas 
understanding was assessed by items calling for comparing decimals, estimating the 
outcomes of multiplication and division, reading and writing decimals and the concept 
of density in decimals (e.g., how many numbers are between 2.5 and 2.6?). 

• In a study on fractions by Bymes & Wasik (1991), procedural knowledge items required 
addition and multiplication with fractions, whereas conceptual knowledge items called 
for comparing fractions in a given context ( eating pie), picture-symbol correspondence 
(e.g., write a fraction representing a shaded area), and simple morphi-sam items (given 
a picture, find another picture showing the same fraction shaded). 

As regards problem solving, developing procedural test items requiring ex ac computation 
and conceptual test items requiring genuine understanding of the underlying domain is 
particularly complex enterprise that may be very person, content and context sensitive. lt 
is our beliefthat in certain cases (for particular students, topics, etc.) these distinctive test 
items could nevertheless be created ifthe teacher has been from the very beginning actively 
involved in the planning and control of the leaming process (i.e. assessment in aglobaI 
sense; see "the sailing paradox" introduced later). As an example of a suitable task 
distinction, consider the following two problems on motion (note their identical underlying 
structure), bearing in mind that these problems are to be solved by students who have 
been previously familiarized with: (a) solving typical procedural tasks on meeting and 
overtaking when the speeds ofboth objects are given, by using arithmetic, algebraic and 
graphical means; and (b) the work with quantitative and qualitative graphs representing 
piecewise uniform motion of objects. 

• Procedural task - A car and a truck started simultaneously from towns that are 150 km apart. 
After what time did they meet each other iftheir speeds were 80 kmlh and 60 km/h, respectively? 

• Conceptual task - A mountaineer started his trip in the moming, arriving at a mountain house 
in the evening. Having spent the night there, the ml,lUntaineer started down the next morning 
by using the same trai!. 1s thae a point on the trail where he was at the same place at the same 
time each day? Give a detailed explanation. 

Arecent study (Kadijevich 1999) ex amines a number of conceptual task types. It however 
does not deal with tasks on finding out different object representations and transferring 
between them, which are, according to our knowledge distinction, also conceptual. Figure 
2 represents such a task. This task taken from the MODEM project (Haapasalo, 1993) 
deals with the conceptual field Proportionality - Linear Dependence - Gradient 01 a Straight 
Line through the Origin. The task can have two different kinds offunction. lt can measure 
concept understanding on the identification level between graphic and symbolic forms. 
However, in the process of concept building, organised according to MODEM philosophy, 
it helps pupil to construct links between concept attributes. What kind ofthinkirig process 
a particular task is calling for from a pupil, depends very heavily on curricular context as 
well as on the quality and organization of the leaming process. The same task can be 
purely mechanical for one pupil, whereas it can be achallenging problem for another 
pupil, requiring further development of conceptual knowledge (recall Fig. 1). This important 
issue will be highlighted by a sailing metaphor in our didactic considerations later. 
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Conventional textbooks mostly comprise procedural tasks promoting skills rather than 
understanding. Conceptual mathematics based upon conceptual tasks (like those in Dreyfus 
& Eisenberg (1990), Haapasalo (1993) and Kadijevich (1999)) is usually missing, which 
naturally result in poorly developed conceptual understanding. According to Dreyfus & 
Eisenberg (1990), mathematics education also needs to be based upon conceptual tasks as 
they, contrary to traditional procedural tasks, can fully assessed whether genuine 
understanding of the underlying domain is really achieved. Although these researchers 
only examine caJculus requiring that this skill-oriented topic must turn into a concept 
oriented one, there is no doubt that their request is relevant to mathematics education in 
general. It is particularly true today when computer-based mathematics education is 
available. This is because computer can be used to introduce a new balance of instructional 
time by decreasing the time for procedural skills and increasing the time for conceptual 
understanding (Fey, 1989). Such a less proceduralized approach seems to promote better 
understanding (e.g., Schwarz, Dreyfus & Bruckheimer, 1990; Palmiter, 1991; cf. Simmons 
& Cope, 1997). Note that, according to Kaput (1992; p. 549), an important research question 
regarding technology and mathematics education is "How do different technologies affect 
the relation between procedural and conceptual knowledge, especially when the exercise 
of procedural knowledge is supplanted by (rather than supplemented by) machines?" 
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Fig. 2. A eoneeptual task in a CBL·program within MODEM: 
Identifieation between symbolie and graphie forms 

(downloadable at http://www.joensuu.fillenni/programs.html) 
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Searching the relation between the two knowledge types 

Recalling Shimizu's (1996; p. 234) remark that "understanding how procedural knowledge 
and conceptual knowledge relate to one another is one of the major foci in mathematics 
education", let us try to clarifY the relation between the two knowledge types. As procedural 
and conceptual knowledge cannot be measured directly, an analysis ofthe relation between 
conceptual and procedural knowledge may, before theoretical considerations, be based 
upon an analysis of the relation between success in procedural and conceptual tasks 
representing these knowledge types, which is, in itself, an important educational issue. 
Let us therefore assume students' knowledge types were successfully assessed by an 
acceptable set ofprocedural and conceptual test items, and that, for each knowledge type, 
each student's total score was classified low (L) or high (H) in respect to, for example, the 
total score mean. We find that only four of all potentialoutcomes have been empirically 
supported so far. These four outcomes are summarized in Table 1, the content of which 
just presents distinctive patterns realized through our readings. While the first outcome is 
evidenced by the absence of any correlation between the two knowledge total scores, the 
others are evidenced by a significant linear (or quadratic) correlation between these scores. 

Inactivation 
view 

x X 

X X 

low high 

Simultaneous 
activation view 

X 

X 

low high 

Dynamic inter­
action view 

X X 

X 

low high 

Procedural knowledge scores 

Genetic 
view 

X 

X 

X 

low high 

Tab. 1. Possible relations between scores in conceptual and procedural knowledge 
(X denotes "many students", empty means "none or few") 

These outcomes are characterized as follow. 

• Inactivation view: Procedural and conceptual knowledge are not related. This view 
has been evidenced by Nesher (1986) and Resnick & Omanson (1987), for example. 

• Simultaneous activation view: Procedural knowledge is a necessary and sufficient 
condition for conceptual knowledge. This view can be recogonized in Hiebert (1986), 
Bymes & Wasik (1991) and Haapasalo (1993). 

• Dynamic interaction view: Conceptual knowledge is a necessary but not sufficient 
condition for procedural know ledge. This view was thoughtfully examined in Bymes 
& Wasik (1991). 
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• Genetic view: Procedural knowledge is a necessary but not sufficient condition for 
conceptual knowledge. This view can be recognized in, for example, Kline (1980), 
Kitcher (1983), Vergnaud (1990), Gray & Tall (1993), and Sfard (1994). It is important 
to note that, to our readings, no study has reported a pattern similar to that presented 
in Tab. 1 (although such a pattern might in fact be present in some undertaken studies). 
However, it is Shimizu (1996) who documented that, because of aseparation of 
students' procedural and conceptual knowledge, good procedural knowledge can be 
demonstrated with missing or very limited conceptual knowledge, which provides 
some implicit evidence for the genetic view. 

Before looking for a suitable pedagogical interpretation of the views represented above, 
we would like to underline that these four views evidence no general conclusion regarding 
the relation between procedural and conceptual knowledge (or success in procedural and 
conceptual tasks representing these knowledge types), but we should ask ourselves if 
such a conclusion can be eventually reached in a constructivist sense at all, having in 
mind various teaching approaches, different student abilities, various mathematical topics 
and associated problems, etc. Undoubtedly, the answer is negative. Thus, instead of 
searching for this conclusion, we should: (a) make ourselves aware of various empirical 
outcomes and probable underlying P-C links constructed through, for example, categories 
classification, productions utilization, microworlds coordination or proceptual thinking 
(to be discussed latter); and (b) try to ex amine them in terms of some relevant educational 
variables (which are, to our knowledge, not clearly articulated in perhaps most research 
studies). To achieve this end, we will use two different pedagogical approaches called 
developmental and educational, being aware that some oversimplifications or somewhat 
free generalizations will occasionally be made. 

Before examining these approaches, we would like to underline that procedural and 
conceptual knowledge must be somehow related when the learning process is our focus. 
However, it is the variables in the assessment oflearning processes that promote or obstruct 
possible qualitative and quantitative links between the two types of knowledge. By 
assessment in the global sense we mean the planning, realizing and control ofthe learning 
processes, made not only by the teacher, but especially by the learners and learner teams 
themselves. So, if we happen to enter a classroom after that pupils have worked two 
weeks with fractions, for example, it would be unsound to declare that these children - or 
especially which of them - would be able to learn percentage represented in figure I. 
Paradoxally, the relevant persons who could make this prognosis are the people involved 
in this process. Maybe they are making some important investments, which will be payed 
back in the form of dynamic knowledge elements represented in figure 3, for example. 

In order to highlight the relevance ofthese variables, let us consider the planning oflearning 
processes for some important topics of mathematics (e.g. for a concept field) by using a 
sailing metaphor: IfYou can choose the starting harbour freely in a round-world-sailing 
competition, it would be unsound to declare after few days or weeks whether Your tactics 
will be successful, even less to give any prognosis about who is going to win. IfYou have 
relevant meteo-geographical knowledge (You are as teacher conscious about dynamic 
and skilful drives along concept networks) it is sometimes reasonable to start against the 
wind (to invest in conceptual knowledge) instead of choosing the most tempting alternative 
to just go with the wind (go for immediate procedures without much understanding what 
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to do andJor why to do), hoping that things would be fine as time passes. This metaphor 
seems appropriate for the issue under consideration, and its meaning will be c1arified in 
several parts of our text. We don't want to consider it in fuller detail as it may then lose its 
constructivist spirit. Although it is not easy to put constructivist elements in an artic1e 
regarding constructivism, we would like to do so for the benefit ofthe reader interested in 
a refinement of the examined topic. We therefore would like to invite the reader to bear 
this metaphor in mind when examining any effort regarding: 
• aglobai c1assification of procedural and conceptual tasks, 
• a general relation between the two knowledge types, 
• the most recommendable order for sequencing procedural and conceptual knowledge 

within a particular mathematical topics. 

Actually the teacher, and the student (or student team) involved in planning and utilization 
of the leaming process are the only relevant subjects who could do this c1assification 
through continuous dynamic assessment. 

It is important to underline that c1arifying the relation between the two knowledge types is 
still too complicated to be expressed within any single paper in fuller detail. We will 
therefore highlight here just some of the most important aspects by using all the way 
'fractions' as an example. Why has this example been chosen? It is one of the most 
fascinating conceptual fields 2 of school mathematics (see Hiebert & Behr, 1988). This 
conceptual field has therefore been achallenge for the above-mentioned MODEM-project 
(Haapasalo, 1993; see also www.joensuu.fi/lennilmodemfin.html). yielding a large 
empirical study MODEM2 reported in Haapasalo (1992). Although an examination ofthe 
relation between conceptual and procedural knowledge was not so essential in the project's 
paradigm as finding effective collaborative leaming environments, the project utilization 
does offer evidence in relation to the issues under scrutiny. 

Developmental approach 

Many researchers find that procedural knowledge enables conceptual knowledge 
development. In the sense of four views represented above, this is connected to the genetic 
view or the simultaneous activation view. An instructional interpretation might be: Utilize 
procedural knowledge and reflect on the outcome. Let us call this position developmental 
approach as it reflects the philogenesis of mathematical knowledge (Kline, 1980; Kitcher, 
1983) as well as its ontogenesis (Vergnaud, 1990; Grey & Tall, 1993), especially in early 
years of mathematical education. Although this approach is not clearly articulated in 
research studies, it seems that among its advocates are Papert (1980), Vergnaud (1990), 
Gray & Tall (1993) and Sfard (1994), at least in the sense that the teaching/leaming process 
should utilize this philogentico-ontogenetical pattern. 

Before explaining wh at this approach would mean in the case of fractions, let us take an 
"evolutionary cava1cade" as follow. 

2 " ... large sets of situations whose analysis and treatment require several kinds of concepts, 
procedures, and symbolic representations that are connected with one another." (Vergnaud, 1990; 
p.23) 
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• As regards the philogenesis of mathematical knowledge, procedural knowledge has 
still developed faster than conceptual knowledge since makers of mathematics were 
primarily guided by the pragmatic aspects oftheir discipline (e.g., Kline, 1980; Kitcher, 
1983). In other words, procedures were .devised first; conceptual clarifications have 
been undertaken latter3 - or are sti11 waiting to be done4

. Is this the reason why most 
ancient, medieval and even new-age mathematical textbooks look like "do this, do 
that" recipe books? 

• As regards the individual development of mathematical knowledge, it seems that 
aga in procedural knowledge develop faster than conceptual knowledge. Students "often 
choose the right thing to do without being able to mention the reason for it. Such 
behaviours very often reveals the existence of powerful implicit concepts and 
theorems" that may be called "concepts-in-action and theorems-in-action. Such 
knowledge cannot be properly called "conceptual", as conceptual knowledge is 
necessarily explicit." (Vergnaud, 1990; p. 20) However, "objects-in-actions" may 
eventually conceptualize procedural knowledge. 

• The dominance of procedural over conceptual knowledge seems quite natural in 
generaL As an example, recall that the first child's answer to a question "What is a 
chair?" is not "A chair is an item of furniture" but "A chair is for sitting". Other 
supportive examples are provided, for example, by Nesher (1986). By examining the 
process of counting, she concluded that its invariants are likely to be conceptualized 
only after some exercises on counting have been performed. She empirically found 
that the same holds true for the conception of the mean. 

• The developmental approach is supported by some aspects of the theories of mental 
development proposed by Piaget and Vygotsky. Arecent analysis of these theories 
undertaken by Ivic (1991) underlines that: (a) for Vygotsky, scientific knowledge is 
based upon instrumental (procedural) and structural (conceptual) components, (b) 
for Piaget, "conceptual knowledge comes developmentally later and is based on 
practical achievements [procedural knowledge J", and (c) for both Piaget and Vygotsky, 
metacognition (an awareness of one's own thinking pro ces ses) is related to "mature 
stages of development and to the appearance of conceptual systems of know ledge." 
(p. 24) This analysis clearly emphasises that it is the presence ofmetacognition that is 
crucial to conceptual knowledge development and that for this reason procedural 
knowledge acquisition is generally more accessible to human beings than conceptual 
knowledge one. 

• The developmental approach is also in accord with the theory of reification, especially 
with its component assuming that knowledge develops through the transition from 
process to object- based thinking (Sfard, 1994), e.g., from operational to structural 

3 The development of programming languages also illustrates the dominance of procedural over 
conceptual knowledge. Imperative (or procedural) languages such as BASIC and FORTRAN, which 
instruct the computer what to do in a step-by-step manner, were developed first, whereas declarative 
languages like PROLOG, which describe the logical structure of the problems leaving the task of 
deriving the result to the computer, have been developed later. 
4 Instead of appearing as separate synonymous (conceptual) words for tenths, hundredths, ... , the 
terms 'desi', 'centi', 'milli', ... are used as (procedural) prefix for units, purely. MODEMtook the 
opposite position resulting in the following outcome: pupils leamed units, and accuracy into the 
bargain, and showed significantly better understanding of decimals than the comparison group (see 
Haapasalo 1993, pp. 20-21). 
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thinking. Although this theory (inspired by the work of Piaget) may not be relevant 
to knowledge development in general (Confrey & Costa, 1996), it is clear that we 
should question "the possibility ofteaching for understanding in mathematics without 
attending to the algorithmic and procedural aspects" (Nesher, 1986; p. 8). 

We find that many aspects of the considerations included in the cavalcade above could 
benefit pedagogical planning of learning environments. The basic underlying idea of the 
developmental approach may be expressed in our sailing world in the following way: 
"Choose the starting harbour so that you have a nice wind behind you. Get used to your 
bbat, climate and have a touch for sailing. After learning to manage your boat in different 
conditions, try to find principles how the wind is acting on the sail, to optimize the sail 
positions, to learn to understand weather reports, as weil." 

What kinds of starting harbours would be available for fraction-sailing? The MODEM 
approach benefits from classifying concepts into three classes5 like Steinhöfel et al. (1976): 
• As an object concept, a fraction (e.g., 1/2) relates to areal or mental thing that can be 

characterized through its representatives. It is just a way of expressing a (real) situation 
in verbal, graphic or symbolic form, like "one ofthe two pupils in our group is girl" 
and "each oftwo hemispheres represent the same fraction 1/2 in the graphic form". 

• As an operation concept, a fraction refers to one or more operations to be carried out 
by manipulating objects. For example, "Taking one half of a tennis ball is something 
else than taking one half of a football - or of my daddy's salary." 

• As a relation concept, a fraction such as 1/2 denotes the relationship between the 
numbers 1 and 2, linking other procedural-conceptual knowledge like dividing and 
proportionality. 

Many mathematical concepts belong to all these types. For example, a 'function' is usually 
defined as an object concept by identifying it with its graph consisting ofpoints, each of 
them represents a pair of numbers determined by that function. On the other hand, this 
definition characterizes it as a relation concept. Furthermore, ifthe function is defined via 
a certain law, it can be seen as an operatorf directed to an object x producing y. 

It is clear that each ofthese concept types offers a very different starting harbour. As weil 
the content as the context impact decisively what kind of experiences a particular child 
connects to each instructions. We see from the cavalcade above that counting would offer 
a nice starting harbour for whole numbers. This would mean accelerating conceptual 
knowledge by counting procedures (and usually vice versa). The counting skills are implicit 
in the sense ofVergnaud (1990, p. 20): "A person often chooses the right thing to do with­
out being able to mention the reasons for it". Having assumed implicitly that these reasons 
will be articulated in one or another way as time passes, textbooks writers and teachers 
seem to approach most topics procedurally. As regards fractions, they like to serve them 
as numbers, and get pupils, with great hurry, to do calculations with them, without carrying 
too much what to do and why the particular procedures work. This might be the basic 
reason why several studies evidenced poor understanding of fractions (e.g. Haapasalo 
1992; 1993, p. 19). Being familiar with whole numbers, children tend to work with fractions 
by using procedures relating to whole numbers, like 2/3 + 3/4 = 5/7, for example. 

5 These classes are integrated in the proceptual thinking by Gray & Tal! (1993). 
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Another developmental starting harbour would be to utilize children's spontaneous dividing 
procedures in certain "microworlds" that have relevance to their every-day life. A symbolic 
form like 2/7 + 3/7 could be connected to a situation: "I got today two dollars to be 
divided for next week so that each day I could spent the same amount ofmoney. Tomorrow 
I am going to get three dollars more. If I estimate how much I would have to spend each 
day next week, it would be reasonable to divide five dollars by seven. Could I gather two 
dollars more, it would be easy!" These kinds ofstarting harbours, which allow producing 
a right ans wer without knowing much about fraction as a concept, can lead teacher to 
over-expectations conceming child's ability to get out of context-oriented situations. 

The same yields for the often-used starting point to visualize symbolic expressions by 
paper folding. Amismatch can occur because of data overflow: The fraction 1/2, for 
example, means simultaneously dividing by two, dividing in equal parts, the product of a 
dividing process, adenotation of the division, a take-a-half-operator, or even the relation 
between the numbers 1 and 2 (proportionality). Before seeing the situation in a holistic 
way - .which means having sufficient conceptual knowledge - children should be able to 
process many data chunks simultaneously. This strongly contradicts what we know about 
human limits in serial processing. Of cause, many beautiful elements ofthe simultaneous 
activation view could basically be involved by this approach. Real problems beg in, when 
the teacher wants to offer prototypes of a certain concept type, but a pupil is trying to 
interpret, even receive them as prototypes from another concept type. 

In spite ofthese critical considerations above we still see that conceptual knowledge does 
not need, especially in the beginning of a leaming period, to be explicit. A good teacher 
and good leamer can together produce a link from procedural to conceptual knowledge. 

By making somewhat free generalizations, we summarize the possible solutions below. 
• Assume the leamer's innate ability to divide the world (not a problem) into several 

(conceptual) microworlds enabling different fraction procedures to be applied within 
each of them, (compare: adding numbers in little worlds based upon finger 
manipulation, money facts and LOGO turtle geometry facts). We can share Papert's 
(1987) conjecture that it is basically the elaboration and coordination of these 
microworlds that enables conceptual knowledge to develop out of such fractured 
procedural knowledge. 

• Suppose the existence of"a combined mental object consisting of a process, a concept 
produced by that process, and a symbol which may be used to denote either ofboth" 
such as 'one half', 'fifty-fifty', 1/2. We can adopt the idea of proceptual thinking by 
Gray & Tall (1993; p. 8): Procedural and conceptual knowledge are related through 
utilizing "procedures where appropriate and symbols as manipulable objects where 
appropriate". 

Educational approach 

Most, perhaps the majority of, researchers/educators assume the dependence ofprocedural 
on conceptual knowledge. Among these are Anderson (1983), Carpenter (1986), Bymes 
& Wasik (1991), Hiebert & Carpenter (1992) and Haapasalo (1993). What they assume 
may brietly be summarized as: it is conceptual knowledge that enables procedural 
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knowledge development. An instructional implication is: Build meaning for procedural 
knowledge before mastering it (Hiebert & Carpenter, 1992). Let us call this position 
educational approach since it seems to fulfil educational needs typically requiring a large 
body of knowledge to be understood and to have supposed transfer effect. 

The educational approach may be supported by the dynamic interaction (D!) view or the 
simultaneous activation (SA) view, which seem to come out in many works made by the 
mathematics educators in 80's and 90's. However, several researchers including Silver 
(1986), Nesher (1986), Schoenfeld (1986) and Shimizu (1996), who seem to prefer the 
educational approach, have underlined that the developmental approach may be relevant 
as weil. Silver (1986), for example, gave two straightforward examples. The first stresses 
that one's knowledge of a concept depends on a procedure that distinguishes the concept's 
examples from its non-examples. The second, which deals with related problems, points 
out that conceptual categorizing of similar problems is primarily based upon procedural 
knowledge used in (needed for) solving them. 

Instead ofhaving a cavalcade ofresearchers' views again, we find that it is the didactical 
relevance ofthe DI and SA views that we should try to highlight in this part. Because the 
MODEM project philosophy combined both these views in a natural way, we come back 
to our fraction example again in terms of the two views. Let us first put the main idea in 
the language of our sailing metaphor: "Before just starting to sail (resp. going for a round­
world race), learn the basic idea for the relation ofthe sail and the wind. Test6 the basic 
functions in simplified situations, and learn to understand weather reports (resp. the impact 
of geographical facts on the climate, as weil). Estimate your skills for choosing the 
conditions (a starting harbour) according to that." The question is about nothing but 
regulating the balance between the theoretical knowledge of the physics beyond sailing 
and the practical experiences. For this, certain simplifications for the construction space 
(learning environment) are often necessary, still allowing a room for radical constructions 
from the learner's side. 

Keeping in mind thatfractions is an enormous conceptual field, the starting harbour was 
to let children construct fraction as an object concept (i.e. not any number, yet). The basic 
question was: "Does your team think that it would be possible to express verbally which 
part of the pupils in the team are girls?" Pupils could easily find 10-20 different kinds of 
expressions, which include the relevant attributes for a fraction as an object concept. The 
most relevant idea is that "A thing which has a Gestalt of 1 (i.e. type of a cake or a group 
which must be identified as 1, at first), can be divided in equal parts, and from these parts 
a particular amount can be taken". Some examples of the outcome are: "two of seven", 
"two sevenths", "a group is divided in seven equal parts and two is taken", "the amount of 
sevenths is two", etc. Beyond each ofthese expressions there is, of course, different kind 
of experience-based procedural knowledge (and maybe naive concepts). This means that 
at the beginning, the developmental approach is automatically involved, and we should 
not try to avoid it. lt could be compared with a wake-up-voltage, which is needed as a 
trigger for another higher voltage by an amplifier. Or coming back to our metaphor: lt 
would not be sound to go sailing when the water is as smooth as a glass. 

6 This might be quite appropriate as a basic philosophy for a sailing academy, but not in a competition. 
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We find that the DI view means organizing the (social) leaming environment so that pupils' 
radical constructions could converge towards viable, context-free expressions, to be used 
as attributes for conceptual understanding. For that, the following kinds ofproblems were 
used: "Does your team think that it would be possible to express the same thing by using 
only numbers?" The teams represented (very proudly!) express ions like 2 (7), 207, 7[2]. 
After arguing and testing own denotations (e.g., by asking someone else to explain them) 
pupils chose the viable symbolic expression 2/7, easily understood by every-man on the 
street. Now the pupils were ready to define a fraction as an object concept in symbolic (S), 
graphie (G) and verbal (V) forms, and process between these forms? (attributes) on the 
identification (I) and production (P) levels (see PXY in Fig. 3). This conceptual knowledge 
can be used not only for constructing (calculation) procedures, but also for widening the 
conceptual understanding toward fraction as an operational and relational concept types. 
SA method8 gives excellent possibilities to let conceptual and procedural knowledge 
accelerate each other. Clarifying our metaphor of using electric circuits: "Use naive 
procedural knowledge as a trigger for amplifying it to conceptual understanding with the 
DI method. Then You have enough (conceptual) power to be used in different kind of 
proceduralo-conceptual circuits (educational tasks), like represented in the figure 3." 

In the previous chapter we wamed against teacher's eagemess to decide in advance how 
particular knowledge units are to be sequenced. The most beautiful idea beyond the SA 
method is to let children plan and test their own constructions. The process does not need 
to begin from concrete to abstract, but between abstract and concrete things, and even 
between abstract things, especially when children have an opportunity to quickly manipulate 
representatives ofthese things. For example, a real situation from a child's every-day-life 
(like in Fig. 3) can offer opportunities to connect spontaneous procedural knowledge (and 
pre-concepts) with (even abstract) conceptual knowledge. In which order a particular child 
processes each ofthe suh-tasks in this kind ofleaming environment, depends on pedagogical 
variables. Before reaching the level of production (P) (assessed of course before the leaflet 
was given), children tested verbal (V), symbolic (S) and graphie (G) concept attributes on 
the level of identification (I). In all empirical studies of MODEM, this sub-phase played 
the most important role in concept building. As we underlined that any procedural 
knowledge can be interpreted as an operation concept, the identification types (lVv, IVS, 
I VG, IGG, IGS, ISS) could be assumed as useful tasks for constructing the basic attributes 
of procedures, or procepts in terms of Gray & Tall (1993), as weIl. Note that in Fig. 3, 
many kind of thinking ac ti vi ti es may be utilized: a production of conceptual knowledge 
and an identification ofprocedural knowledge, for example. On the other hand, for some 
children who have not reached the production level ofthe object concept, this kind of SA 
environment can help to find links between different kind of representation forms. 

For highlighting some advantages ofSA over that ofDI, we would like to tell the following 
true-story example. In spite of reaching via SA and DI automatie processions between V, 
G and S forms offractions 2/7 and 3/7, some pupils could not give any reasonable (verbal) 
expression for the symbolic form 2/7 + 3/7. In this case, the problem was not in the 

7 F or avoiding data overflow, it is appropriate to take only one symbolic notation, at first. A successful 
processing between (S), (V) and (G) is a symptom of a holistic conceptual structure, and children 
can easily link new denotat ions to this. Hefe slash ("I") is used (e.g., 317) to easier word-processing. 
8 Although we have defined SA and DI as views, it seems appropriate here to speak about methods. 
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conceptual understanding offraction, but in that of the operation concept +. This symbol 
made suddenly the very rich verbalizations to be degenerated to "two sevenths plus three 
sevenths", which didn't seem to trigger any cognitive resources. Those who could easily 
construct solution(s) for the addition task above used processing via very rich verbalizations 
(first PSV, then PVV, and finally PVS), like: 
• "Two of seven and three of seven make altogether five of seven. 

I ean express this in symbols, if I want: 5/7" 
• "If the amount of sevenths is two, and I inerease it by three, it makes five in all. 

I make 5/7, shortly." 

The above mentioned example shows that a link between conceptual and procedural 
knowledge can be missed in any approach. However, it is more essential to ask how this 
link can be construct in each pedagogical approach. In this MODEM example just an 
encouragement was needed, and the cognitive link appeared: "Let's take a race between 
teams for finding as many verbalizations as possible for this dead symbol + !" This activity 
would have been evidently unnecessary by using a leaflet like in Fig. 3. 

PROBLEM. During three days John ate one fourth of the bread each day. 

• Try to lind in your team 
connections between the 
verbal problem and the 
different ways 01 thinking 
on the right. 

• As You have solved the 
problem with many different 
ways, pie ase try to make a 
generalization: Wh at kind 01 
mathematical procedure are 
you actually doing? 

• Try 10 make a hYPolheses 
how this procedure might 
work direclly wilh numbers 

• Tesl Your hypothesis 

• Try 10 find prools lor your 
hypotheses 

• Think about the usefulness 
01 your procedure: lind lamiliar 
problems and maybe other 
procedures 

Which part of the whole bread did he eat in all? 

What to think? How to think? Why to think? 

I can say verbally I can make a sum 

Fig. 3. An example of eombining the DI and SA views in the MODEM projeet 
(PSG, far example, denotes produetion from symbolic form to graphie form) 

We are c10sing this chapter on the educational approach by summarizing three proposals 
regarding a link between conceptual and procedural knowledge within this approach. Before 
analyzing them, the reader may aga in examine distinctions of Byrnes & Wasik, Gelman & 
Meck, and Anderson presented in the first chapter ofthis paper. 
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• Procedures are linked to concepts by means of categories, which are partly defined in 
procedural terms by functions of objects comprising them. If an object A is classified 
as a member of category X, then rules appropriate to this category are put into practice. 
Of course, if a misclassification occurs, inappropriate procedures are applied. For 
example, categorizing fractions as whole numbers would generate unsuitable additions 
like 2/3 + 3/4 = 5/7. (Byrnes & Wasik, 1991). 

• "Conceptual competence or 'principled knowledge' is coordinated with the planning­
and procedure-generation system that makes up procedural competence and thus helps 
determine the actual procedures used" (Gelman & Meck, 1986; p. 30). In other words, 
it is utilization competence that links conceptual and procedural knowledge, enabling 
conceptual knowledge to be skilfully proceduralized. For example, in geometric tasks 
calling for locus constructions (e.g., construct a triangle, being given a + b, c, and b), 
an enabling condition (an utilization competence item) is typically the following rule: 
"To determine a point that lies on a line with certain properties, construct this line 
obtaining a locus for that point". Such rule, the existence of which is usually overlooked 
by an expert, may not be obvious to many students, especially novices. (Schoenfeld, 
1986). As regards our fraction example (2/3 + 3/4), an enabling condition may be the 
following rule: "To determine a sum by applying a common measurement unit, come 
up with such a unit enabling re-measuring ofboth addends." 

• New task-specific productions (condition-action rules) have been initially developed 
through applying the available conceptual knowledge interpretively by means of some 
general problem solving productions. It is therefore some set of general productions 
that provide a link between the available declarative knowledge (i.e. conceptual 
knowledge in our terms) and procedural knowledge being developed. For example, 
initial two-column-proof skills, for a task on writing reasons for given statements, are 
generated through interpreting the declarative data from the task (i.e., given, wanted 
and statements) and a previously examined proof sampie (e.g., given, wanted, 
statements and reasons) by means of some general problem solving productions, such 
as "IF the goal is to name a particular relation (e.g., why is AB = CD) and that relation 
is not yet known (e.g., underlying reason) THEN a sub-goal is to find out the relation". 
As regards our example (2/3 + 3/4), a relevant general production may be: "IF the 
goal is to find out a relation (e.g., the requested sum) and a set ofmethods for doing 
that is known (e.g., verbally, graphically and arithmetically) and there is a not yet 
tried method (e.g., graphic) THEN a sub-goal is to try out that method". 

Newly generated skills (i.e., task-specific productions) comprise procedural 
knowledge after knowledge compilation has been taken place.9 This compilation is 
based upon composition collapsing of a sequence of productions into a single product­
ion and proceduralization building vers ions of productions not requiring declara-tive 
knowledge retrieval (i.e. automating productions ). The compilation enables a transition 
from an interpretative to a direct declarative knowledge utilization, which deals with 
specific productions such as "IF the goal is to give a reason for a statement and that 
statement is among the given THEN POP the goal with success". (Anderson, 1983) 

9 Having completed knowledge compilation, new productions need to be properly selected in the 
course of problem solving. Proper selections are achieved through tuning productions based upon 
the processes of: generalization extending their range of appIicabiIity, discrimination restricting 
their range of applicability, and strengthening regulating their amount of activation in competition 
with other productions that seem relevant to the task at hand. For details, see Anderson (1983). 
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Closing remarks 

According to Vygotsky, procedural knowledge does precede conceptual knowledge 
ontogenetically, but it is schoolleaming that precedes intellectual development, enabling 
leaming to takes place in the leamer's zone ofproximal developmentlo . The underlying 
theoretical position for such leaming is: A higher mental activity appears first dependently 
through inter-personal social activities, re-appearing latter independently through 
intellectual actions. This mechanism for transformation of inter-psychic phenomena into 
intra-psychic phenomena is activated through imposing on the leamer developed knowledge 
and cultural tools, e.g., systems ofscientific concepts, built-in modes ofthinking; methods, 
algorithms, procedures; computers and other tools that aid thinking. (Vygotsky, 1978; 
Ivic, 1989; 1991) 

If we accept Vygotsky's theory of mental development, the educational approach is 
supposed to be more relevant to intellectual development than the developmental one. 
But it does not mean that the former approach is to be primarily used as it its cognitive 
requirements may be beyond leamer's zone ofproximal development. In other words, the 
educational approach may be quite appropriate for some topics, whereas the developmental 
approach may be more suitable for others. For example, the former approach may be 
suitable for conceptual fields as fractions, decimals, proportionality (Haapasalo, 1993) 
and two-column proof skills (Anderson, 1983). On the other hand, the latter approach 
may be appropriate for solving one-step verbal problems in addition and subtraction by 
means of verbal counting (Bergeron & Herscovics, 1990) as well as for introducing the 
concept of a limit that prornotes its dynamic definition such as "f(x) gets close to b as x 
gets close to a" (Tall, 1992). However, it should be kept in mind that the choice of an 
approach is at least person, content and context dependent. After all, a general solution of 
any leaming issue is rarely attainable in a constructivist sense. 

Ta summarize: This study has tried to clarify the relation between procedural and conceptual 
knowledge. Hoping that this ambitious goal has been at least partially achieved, we are 
directing our further research toward a framework combining the two presented approaches 
into a coherent whole. We are closing this paper with a very known proverb: "Ifyou give 
fish to your fellowman, he will have food for today. Ifyou teach hirn to fish, he will have 
food for the rest of his life." It should be used as an invitation to not only comparing 
different pedagogical approaches to the two types ofknowledge, but also thinking about 
the goals ofmathematics education more globally. 
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