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Orthocentric simplices and their centers 

AlllUl L. &\monds, Mowaffaq Hajjal , Horst Martinil 

Abstract 

A simplex is said to be orthocelll rie if its IlItitudes intersect in a common point, called 
itt orthocenter. III this paptr it i. pr(M.'d that if any two of the traditional centers of IU, 
orthooentrie simplex (ill any dimeusion) coincide, then the simplex is regular. Along the way 
orthocentrie simplices ill whieb all fac:ets have the same eireumtadil,lll are ehsraeteriu:d, and 
the pOSSible h.arycelltrie ooordin&te& of the orthoeellter life described precil!ely. In particular 
these barycentrie COOfdin&1.e8 are lISed to parametrize the shapes of orthocentrie simplices. The 
substantial, but widespread, literature 011 ortloocentrie simpl ices is briefly surveyed in order to 
place the new results in their proper context, IIIId some of the previously known results are given 
with new proofs from the pralCll! perspective. 

K eywords: barycentric coordinates, centroid, circumcenter, equiareal simplex, equifac:etaJ 
simplex, equiradiaJ simplex, Gram matrix, i1lCenter, Monge point, orthocenter, ortbocentric 
simplex, rectangular simplex , regular simplex 

o Int roduction 

This paper is a study of the geometric consequences of assumed coincidences of renfer" of a d· 
dimensional orthocentric Jimple% (or, simply, ort/'wanfric d-simplt%) S in the d-dimensional Eu
clidean space, d ;:: 3, i.e., of a d-airnplex S whose d + 1 altitudes have a common point ?t, called 
the orthocen!er of S. The centers under discussion are the centroid g, the circumcenter C, and the 
incenter 1 of S. For triangles, these centers are mentioned in Euclid's Elements, and in fact they 
are the only centers mentioned there, It is interesting that the triangle's orthoeenler 1i, defined as 
the int.ersection of the three altitudes, is never mentioned in the Elements, Md that nothing shows 
Euclid's a ... -areness of the fact that the three altitudes are concurrent, see I24J, p. 58. It is also 
IIo'Orth mentioning that one of the most elegant proofs of that concurrence is due to C. F. GaU58, 
and A. Einstein is said to have pri1.ed this concurrence for iUl nontriviiUity and beauty. However, 

'The -.ond named ."thor .. ,.. supported by • grant from YlUlOOuk Uaiwnity, and the third nM>l!d au thor by 
a OFG grant. 
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in contrast to the planar situation, the d + I altitudes of a d-simplex are not necessarily concurrent 
if d ?: 3. We may think of this as a first manifestation of the reality that general d-simpJiccs, d ?: 3, 
do not have all the nice properties that triangles have. 

It is natural that, besides {;,e, and I, we will also consider the orthoeenter 1{ of a d--simplex 
S regarding its coincidence with the other three centers. It is well-known that for d = 2 the 
coincidence of any two of the four mentioned centers yields a regular (or equilateral) triangle; see 
[38J, page 78, and for triangle centers in general we refer to [5] and [33]. For d ?: 3 this is no 
longer true, i.e., only weaker degrees of regularity are obtained, see [i4] and [IS] for recent results 
on this. One of these weaker degrees is the equifacetality of a d·simplex S, i.e., the congruence of 
its (d - I)-faces, which does not imply regularity, see [43J and, for a deeper study of cquifacetal 
simplices, [14J. From [IS], Theorem 3.2., it follows that equifacetality implies {; = C = I , and 
there it is also shown that the oppooite implication, although true for d E {2,3}, does not hold 
for d = 4 (and expectedly also not for d ?: 5). Also the coincidence of two of these three centers 
does not imply that all three coincide. Specifically, the existence of a non-cquifacetal 4-simplex 
with 9 = C = I follows from [28], [lSI, Theorem 3.2 (iv) and Theorem 4.5, while the existence of 
4-si\llpliccs with 9 = C #- I , C = I '" g, and 9 = I '" C follows from [28], !IS], T heorems 3.4 and 
4.3, respectively. This emphasizes once again the feeling that arbitrary d-simplices, d ?: 3, are not 
the most faithful generalizations of t riangles. It turns out that orthocentr ic d-simplices do resemble 
triangles closely in significant ways. Namely, " .. e will prove that if Sis orthocentric, then 

S is regular = S is equifacetal , 
= g=C""I = 1{ , 
= any two of these four centers coincide. 

l-urther simliar results, related to other degrees of regularity of S, wiil be added, and also for a 
class of speciaJ orthocentrie simplices, caJled rectangular simplices (for which 1{ is a vertex), various 
results will be presented. 

The class of orthocentric simplices has a long history. T he literature on these special polytopes 
is large, and there is no satisfactory survey showing the current state of knowledge about t hem. 
We therefore give below a short survey of the literature on orthocentric simplices. The reader will 
observe that there is still much room for finding new properties of this interesting class of simplices. 

1 Preliminaries 

1.1 D e finitio ns 

By Ed we denote the d·dimell3ional Euclidean space with origin O. We write capital letters, e.g. 
A;, for points or their position vectors, and small letters, like OJ , for their barycentric coordinates 
in a suitably defined system. Also " .. e write IIAj - Ajl! for the usual distance between the points Aj 
and A j . 

A (non-degenerate) d·simplex S:: [AI, ... ,Ad+d, d ?: 2, is defined as the convex hull of d + I 
affine!y independent points (or pCEition vectors) A l> ... ,Ad+l in t he Euclidean space Ed. T he 
points Ai are the vertices, the line segments Eij = A;Aj Uoining t .... 'O different vertices A;,Aj) the 
edges, and all k-simplices whose vertices are k + I vertices of S the k·faces of S. The facets of S 
are its (d - I).faces, and the j· th facet F; is the facet opposite to the vertex A;. 
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The antwid 9 of S is the average of its vertices, the circumcenter C is the center of the unique 
sphere containing all vertices, and the incenter I is the center of the unique sphere that touches all 
facets of S. The corresponding radii are called the circumrodius R and the inmdiWJ T, respectively_ 
For d == 2, the altitudes of S have a common point, the orthounter 1t of S. For d ;::.: 3 the 
altitudes of S are not ne<:esSari ly concurrent, but if they are, S is called orthocentric, and the point 
'H of concurrence is called the orthoctmter of S. A special class of orthoccntric d·simpJices, also 
investigated here, is that of rectangular d-5implicts; in this case the orthoccnter coincides with a 
vertex of S. The last center to be defined here exists again for any d-simplex. Namely, for each 
edge E;j of S there is a unique hyperplane If'j perpendicular to Eij and containing the centroid 
9; j of the remaining d ~ I vertices. These (d;l) hyperplanes have a. C(lmmon point, the Monge 
point M of S. This point is the reHe<:tion of C in 9 and eoincides, if S is orthocentric, with the 
orthocenter. For the history of the Monge point we refer the reader to j55], § 21, and jll]. 

Ad-simplex S is said to be regular or equilateral if all its edges have the same kngth. Note that 
this is the highest degree of symmetry that S can have, in the sense t hat the group of isometries 
of a regular d-simplex is the full symmetric group of permutations on the set of its vertices, see 
[4], Proposition 9.7.1. Several weaker degrees of regularity of simplices are discussed in the present 
paper, too. In particular, a. d-simplex S is said to be equifacetal if all its facets are C(lngruent (or 
isometric) , and it is ealled equiareal if all its facets have the same (d - I)-volume, i.e., (d ~ 1)
dimensional Lebesgue measure. furthermore, a d-simplcx satisfying 9 = C = I may be referred to 
as (9, C,I)- equirentral. (Note that for d = 2 the latter three degr~ of regularity are equivalent to 
equi!aterality.) 

1.2 Some results on centers of general simplices 

Interesting results on equifacetal, equiareal and related simplices are contained in the papers [121, 
[13]' [221 , 144], 1541, [43], (14J, and [15J. For d 2: 2 we have 

S is regular = S isequifacetal =S is (9,C,I) ~ equ icentral, 

I = 9 <=* S is equiareal, 

(1) 

(2) 

see [151, Theorem 3.2. The other coincidences 9 = C and C = I tu rn out to have other geometric 
interpretations that are worth recording. Thus, cal ling ad-simplex equimdial if all its facets have 
equa1 circumradii, and of well-distribt<ted edge-lengths if the sum of the squared edge-lengths is the 
same for all facets, it follows from [15), Theorem 3.2, that for d ?: 2 

9 = C <=* S has well-distributed edge-lengths, 

C "" I <=* C is interior and S is cquiradial . 

1.3 T he Gram matrix of a simplex 

(3) 

(4) 

We continue wi t h the representation of a tool that relates the geometry of a simplex S to the 
algebraic properties of a certain matrix associated to S (see [31] and [37)). Namely, for ad-simplex 
S = [AI, ... , Ad+l ) in Ed one defines the Gmm matrix G to be the symmetric, positive semidefinite 
(d + 1) )( (d + I) matrix of rank d whose (i,j)-th entry is the inner product A; . Aj (we mean the 
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ordina.ry inner product, say), d. 1311 , p. 407. Given C, one can calculate the distances II A, - Ajll 
for every i, i using the formula 

According to the last part of Proposition 9.7.1 in 141, G determines 5 up to an isometry of Ed. 
Also one recovers 5 from G via the Cfwlesky factorization G = H H! , where the rows of H are the 
vectors Ai coordinati~cd with respect to some orthonormal basis of Ed. In fact, if G is a symmetric, 
semidefinite, real matrix of rank T, say, then there exists a unique symmetric, positive semidefinite, 
real matrix of rank T with H2 = G, d. 131], Theorem 7.2.6, p. 405, and the symmetry of JI implies 
G = JlJ[!. 

2 Basic proper ties of orthocentric simplices and a survey of known 
results 

We start this section with a short survey of known results about orthocentric d-simplices. Since the 
case d = 3 is not in our focus here, we mention only some basic references referring to orthoccntric 
(and closely related) tetrahedra, namely 1551. § 21, 1521, § 30, III, 121, 191, 1531, 131 , Chapters IV 
and IX, and the recent paper 1301. (Even J. L. Lagrange 1361 obtained results about orthocentric 
tetrahedra over 200 years ago.) So the following short survey refers to results on orthocentric 
d-simplices for all dimensions d 2:: 3. 

A first basic property of orthocentric simplices is the fact t hat they are closed under passing down 
to faces. (T his sometimes a.!lows one to use induction on the dimension for establishing certain 
properties in high dimensions.) More precisely, roch k -face of an orthocentric d-simplex is itself 
orihocentric, 2 -:::: k < d, Even more, in this passing-down procedure the feet of all a.!titudes of any 
(k + I )-face F are t he orthocenters of the k-fa.ces of F. These observations were often rediscovered, 
see 1391, 1161, 1351, ISOI, [34], and 148], § 1.3, Problems 1.28, 1.29 and their solutions. 

Another fundamenta.! property of orthocentric simplices is the perpendicularity of non-intefSCCting 
edges. It can also be formulsted as follows: Bach edge of an orlJr.orentric d-BimpJex, d ;;0: 3, is 
perpendicular to the oppo$ite (d - 2) -face, and any d-simplex with that property is orihQ(%ntric, cf. 
139], 1351, 150], 134], [8j, and [481, § 1.3, for various approaches. Also in [481, § 1.3, one can find 
the follOWing property of an orthocentric simplex S = [A I, . .. ,Ad+ll regarding its circumcenter: 
~ + ... + CAd+1 = (d - l)CH (d. Problem 1.29 there). One of the oldest and most elegant 
disooveries in the geometry of triangle centers is Euler's proof that the centroid Q of a triangle ABC 
lies on the line segment C'H. and divides it in the rat io I : 2, see [10), p . 17. fbr an orthocentric 
d-simplcx 5 we have the analogolls situation: The points C,9 and 'H. aTe on a line (the Elller line 
of 5), and 9 divides the segment C'H. in the 1lltio (d - 1) 2. This result and its analogue for 
genera.! d-simplices (where the Monge point M replaces 'H.) were a.!so rediscovered several times, 
see [451, 139], P6], 129], [35], [46], 18], and [71 for different proofs and extensions. Also in some other 
situations, theorems on orthocentric simplices have analogues for general simplices if the missing 
point'H. is replaced by M, ~uch as in the case of Feuerbach spheres discussed in the sequel. Once 
more we mention that if a simplex is orthocentric, then M coincides with 1i, see [45] and [46]. 

It is well known that the (~!D centroids of all k-faccs, k E {O, ... ,d - I}, of an orthocentric d
simplex 5 lie on a sphere, the FeueTOOch k-sphere of 5, see lSI] and [35]. Also for general simplices, 
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H. Mehmke 145) investigated the case /;; = d - 1: the center :F of the respe<:tive Feucrbach sphere 
lies on the Euler line through g and C, and 9 divides the segment :Fe in the ratio 1 : d. The 
radius of that sphere is ~ times the circumradillll of S. If S is orthocentric, then the Feuerbach 
sphere also oontains the feet of the altitudes, and it divides the "upper" parts of the altitudes 
in the ratio 1 (d - 1), see also [491, [39], (42) , [461, [23]. (19], and [7) for analogous results. 
In [16), 1171, [29], [35]. and [261 the whole sequence of all Feuerbach k-spheres of orthocentric 
d-simplices is studied. AU their oorresponding centers Fo, ... , fd_l lie on the Euler line, with 
IHFkl : I1iQI = (d+ 1) : 2(k + 1), and their radii Tt satisfy simple relations depending only on d and 
k. These papers contain more related results (see also (32), e.g. ob:;ervations referring to Feuerbach 
spheres of so-called orthocentric point systems. Considering the set of d+ 2 points 1-l,.A!, . .. , Ad+! 
of an orthocentric d-simplex as a whole, one observes that each of them is the orthocentcr of the 
simplex fonned by the d+ 1 others. Thus it is natural to speak about orihocentric systems of d + 2 
points. Such point sets (and their analogues of larger cardinality) were studied in (49), [16), (19), 
and [8) . For example, E. Egerv:iry [16) proved that a point ~et {Po . PI. ... , Pd+l} C Ed, d ~ 2, is 
an ortJuxentric system if and only if the mutwl distances liP; - Pjll (i ,j = 0, 1, ... ,d + 1; i i- j) 
con be expre~sed by d + 2 symmetric parometers A; in the form 

d+1 1 

1IP; - Pj Il2 =A;+Aj, with Lr = O' >..; + Aj>O , ii-j, 
; ", 0 • 

(5) 

see also (48), § 1.3, Problem 1.28. Based on this, Egerv:iry showed that d + 1 points in Ed, whose 
cartesian coordinates are the elements of an orthoganal matrix, form together with the origin 
an orthocentric point system. If, conversely, the "interior pointn of an orthocentric system of 
d + 2 points is identified with the origin, then an orthogonal matrix can be found from which the 
coordinates of the remaining d + 1 points can be easily described. In (8) it is shown that the d + 2 
Euler lines of an orthocentrie system {Po, Pl. ... , Pd+d C Ed, d ~ 2, have a common point, called 
its orthic point, and that the d+2 centroids as well as the d+ 2 circumcenters of that set form again 
orthocentric systems, both homothctic to {Po, PI , ... , Pd+l } with the orthic point as homothety 
centCI. 

M. Fiedler (19) defines equilatenU d-hyperbolas as those rational curves of degree d which have all 
their d asymptotic directions mutually orthogonal. Two such d-hyperbolas are called independent 
if both d-tuples of asymptotic directions satisfy the following: In no k-dimensional linear subspace 
(k = I, .. . , d - 2), which is determined by k directions from one of these d-tuples, more than 
k asymptotic directions of the other are contained. He proves that if there are two independent 
equilateral d-hyperbolas both containing a system of d + 2 distinct points in Ed, then this system is 
orihocentric, and every d-hyperbola containing this system is equilateral. 

Another type of results refers to chamcterizations of orthocentric simplices os extreme simplices 
regarding certain metrical problems, going back to J. L. Lagrange (36) and W. Borchardt (6), 
and ooilneded with the symmetric parameters in (5), see [I6) and (25). In the latter paper the 
foliowing (and further) results are shown; The maximum [minimum) volume of a d·simplex S = 
[AI, ... , A.!+I1 containing a point Q and with prescribed distances IIQ - A;1l ;::: 0, i = 1, . .. , d+ 1, is 
attained by an orthocentric d-simplex. The maximum volume of ad-simplex S with given (d - \) _ 
volumes of its facets is attained if S is orthocentric. For getting these result<;, L. Gerber [25[ 
establishes some purely geometric properties that orthocenters of orthocentric simplices must ha.ve, 
e.g.: The point 1i. of an orthocentric simplex lies closer to a facet than to the opposite vertex on all 
except possibly the shortest altitude. Further geometric properties of orthocentric simplices were 
derived in (19), (20), and (21), § 7. Going back to the parameters >..; ill (5), Fiedler (19) calls an 
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orthocentric simplex negatively orthocentric if one of the \;'s is negativ~ , positively orthocentric if 
all of them are positive, and singularly orthocentric if one is zero (the first two cases together are 
called mm-singularly Vrthorentric). He shows that a d-simp/u, d?: 2, with dihedral interior angles 
</Iij is nem-singularly vrthocentric if and emly if there exist mU nem-uro numbers c;, i = 1, ... , d+ 1, 
such that COS<Pij = eoCj for ail i , j with i #- j. 

A reciprocal tronsfonnation with respect w the simplex S is such that for the homogeneous barycen
tric coordinates of the image X' = «) of a point X = (xd the relation x: = eo x Xi holds, where 
the eo's are fixed non-zero numbers. The hannonic polar of Y = (Yi) not contained in any face 
of S is the hyperplane with equation L ~ "" 0 in barycentric coordinates. In [19J it is proved 
that ad-simplex 5 is vrthocentric if ond emly if there exists an interior point P of 5 such thot for 
every selfadjoint point Q (if different from P) of the reciprocal tronsfonnotion, for which P and 
the centroid of S correspond, the line through P and Q is pvpendicular to the harmemic polar of Q 
with re3pect to S. The point P is then the orthocenter of S. The paper JI9] contains also a. number 
of theorems on natural generalizations of positively orthocentric simplices. In t he booklet [2l[ the 
polarity of a point quadric (in a projective space) with equation E aikXixk = 0 and a dual quadric 
Ebi*~;~k are defined, as usual, by the condition Ea;~bi~ = 0, d. Def. 1.8 there. A point quadric 
in Ed is then called equilateral (d. Def. 1.9 in [21)) if it is a polar to t he absolute dual quadric. 
In the case of homogeneous barycentric coordinates the dual absolute quadric has the equation 
E qik~i~k = 0, where the matrix (qik) is the Gram matrix of the outward normals of the d-simplex 
S normalized so that the sum of the normals is the wro vector. Fiedler [2l[ pr0W8 that for a 
non-singularly orthoc.entric d-simplex, d ?: 2, every equilaterni qu4dric containing all its vertices 
contairt3 the arth.oc£nter as well, and that, conversely, every quadric containing aU vertices and the 
orthocenter is necessarilll equilateral. And going back w equilateral d-hyperbolas (see above), he 
prOV€S in [19J the following: Suppose that in a nem-singularly arth.oc£ntric d-simplex S, d?: 2, the 
orthocenter is not cont4ined in anll hyperplane orthogemally bisecting an edge. Then there exists 
exactly one equilateral d-hyperbola containing all vertices, the or/hoc.enter and the centroid of S. 

More general classes of simplices which are still closely related to orthoccntric ones were studied 
by S. R Mandan (see [40] and [41)) and M. Fiedler (d. [i9J and [20)). The simplices under 
consideration in the papers of Mandan have two (or more) subsets of t heir set of altitudes, each 
subset having a common point. And Fiedler [19J obtains theorems on a family of simplices having 
the class of p06ilively orthocentric simplices as subfamily. In (20] he investigates the related class 
of cyclic simplice~. Also the paper [26J should be mentioned here. 

From the literature we also know theorems all special types of orthocentric simplices, in particular 
on the subfamily of regular simplice~. So we know that an orthocentric d-simplex S = [A L. ... ,A.I+lJ 
is regular if and only if C "" g [46J, if and only if g = H. [23), if and only if 1i coincides with the 

'" unique point minimizing E IIX - A,II, X E Ed (the Fermat,.. Torricelli point of 5, see [47)), and if 
i=1 

S is equiarcai [25]. Also the paper [7J should be mentioned here. Furthermore, there exist some 
results on rectangular (or right) simplices as special orthocentric ones, S€e again [25J. 
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3 The barycentric coordinates of the orthocenter and the Gram 
matrix of an orthocentric simplex 

3.1 Barycentric coordinates and obtuseness 

In this section, we show that a non-rectangular orthocentric simplex can essentially be parametrized 
by the barycentric coordinat.es of its orthocenter, and we give several useful characterizations of 
such simplices. We start with a simple but basic theorem. 

Theorem 3.1: Let S = [AI"" , Ad+ll be ad-simplex. 

(a) S is orihocentric if and only if for eve'1l k the quantity (Ai - Al;)' (Aj - Ak) does not depend 
on i and j as long as i,j and k are painnise distinct. 

(b) If P is a point in the affine hull of S, /hen S is orthocentTic with orl.hocenter P if and only 
if the quantity (Ai - P)· (Aj - P) does not depend on i and j as long as i'" j. 

If Ck denotes the quantity in (a) and c the quantity in (b), then we have 

c = 0 = S is rectangular at AI< for some k. 

Ck = 0 = S is rectangular at At. 

(6) 

(7) 

Proof: For (a), see [48], Problem 1.28, pages 30, 217. To prove (b), we may assume, without loss 
of generality, that P is the origin O. If S is orthoccntric with orthocenter 11, and if i,j, and k 
arc pairwise distinct indices, then Ai is normal to the i-th facet, and therefore Ai ' (Aj - Ak) = 0, 
and Ai . Aj = A; . At, as desired. Conversely, if Ai . Aj docs not depend on i and j as long as 
i ." j, then Ai . (Aj - AI;) = 0, for all pairwise distinct i, j, and k, and therefore Ai is normal to 
every edge of the j·th facet, and hence to the i-th facet. Therefore 0 lies on every altitude and ha.s 
to be the orthocenter. Finally, if c = 0, and if 1i is the orthoccnter of S, then the d + 1 vectors 
1i - A l , . .. ,1i - Ad+! in Ed arc normal to each other, and therefore one of them must be the zero 
vector, I.e., 1i '" Ai for some i . The other implications follow from the definitions. 0 

Definition 3.2: For an orthocentric d-simplex S = IA h ... , Ad+!l with orthocenter 'Ii , we define 
O'(S) of S by 

(8) 

By Thoorem 3.I(b), O'(S) is well-defined. Note that in view of (6), O'(S) is zero if and only if S is 
rectangular_ We shall see later that the sign of O'(S) is negative if and only if all the angles between 
any two edges of 5 are acute. Because of this and for lack of a better term , we propase to call O'(S) 
the Qbtusene3s of S. This may conceal the fact that if S is enlarged (by a factor of >.., say), then 
also O'(S) increases (by a factor of >.2) , although the shape of S remains unchanged. 

The next technical theorem will be freely used. Among other things, it expresses the edge-lengths of 
an orthoccntric non-rectangular d·simplex S in terms of the obtuseness 0'(5) of S and the barycen
tric coordinates of its orthocenter 'H, showing that these quantities are sufficient for parametrizing 
such simplices. Clearly, this does not apply to rectangular simplices, since these numbers do not 
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carry any information at all ahout the simplex other than its being rectangular. Thil; is the main 
rcason why rectangular simplices are temporarily excluded and thei r study is postponed to a later 
section. 

T heorem 3.3: Let 5 = [A] , ... ,A./+li be a nOJH'eCtanguiar orthocentric d-simplex, and let 
al, . .. ,ad+1 be the barycentric coordinates of its orthocenter 1{ with respect to S. LeI c = u(5) 
be the ootusenes,' of S defined in (8) . Then no ai is equal to 0 or 1 and, for any real numbers 

(9) 

In particular, 

(10) 

(11) 

Also, if Bi is the foot of the perpendicular /rom the vertex Ai to the i-th facet , and if hi = IIAi - Bill 
is the corresponding altitude, then 

B; - 1{ ~ (12) -(A, - H) 
a; - 1 

h' 
, 

(13) , a;(a; I) 

Proof: Without loss of generality, we may assume t hat the orthocenter 1{ of S lie; at the origin O. 
Taking the scalar product of Ai with La;Ai =0, wesoo that a;IIA,!l2 + (I - a;)c= O. Ifai = 0, 
then c:: O. If a; = 1, then II Aili = O. In hoth cases S would be rectangular. Therefore no ai is 0 
or 1, and 

as claimed in (10). It follows that 

liE b, A, II' 

as claimed in (9). 

Lo?IIAdI2 + 2 L bibj(A;· A j) 
i<j 

'[Eh1 (~~ I) +2,~ "'J] 
= C[Lbf-L~+2~Mj] 
= C[(L~)2 _ L~]' 

Next, let 'H' = BM ] be the projection of Ad+l on the Cd + I)-th facet Fd+1 of S. Since 'HI lies on 
the (well-defined) line joining the vertex Ad+! and the origin 0, and also in the affine hull of Fd+\, 
it follows that there exist t, a;, ... , ad such that 

'H' =tA,I+1 and 'H' =a; A1 + ... +adAd, 
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with a~ + ... + (.I~ = 1. Set ad+! = - to Then we have 

From the uniqueness of the dependence relation among A I, ... , Ad+l it follows that the (d + 1)
tuples (a'I> ' " , ad+l) and (al, " " (ld+ I ) are proportional. Since a~ + ... + ad = 1 '# 0, it follows 
that al + .. + ad #- 0, and that 

Therefore 
0' a; 
....! = - --, 
1 l - ad+l 

~, 'A °d+ 1 A 
" = - a"+l d+ l = ---I d+ l· 

ad+! -

This proves (12) for i = d + 1, and hence for all i. Finally, 

(14) 

as claimed in (13). 0 

Theorem 3.4: ut S = [AI"", Ad+ll be an orihOl;e1ltric d-simplu, and let 01, ... ,(1.<1+1 be the 
barycentric coordinate$ of its orthocenteT 1i with respect to S. Let u(S) be the obtuseness of S 
defined in (8). Then S is non-roc/angular if and only if any 0/ the following condiuons hold. 

(a) 0'($) '# O. 

(b) N()I1e of the faces of S is rectangular. 

(e) 1i is not in the affine hull of any proper face of S. 

(d) There dQe$ not exi3t any nonempty subset I of {I, ... ,d + I} such that I:(a; : i E l) "" O. 

(e) There does not exist any proper subset I of {I , ... , d + I} such that I:(Oi : i E l) "" 1. 

Proof: Without loss of generality, we ma.y assume that the orthocenter 11. of S lies at the origin 
O. Note that property (a) has already been mentioned in (6). To prove (b), suppose that 5 has a 
rectangular face F. For simplicity, .... -e may assume that F = [AI, . .. ,Ak+l], 2 :5 k: :5 d, and that 
AI is the orthoccnter of F. Then (AI - A2 ) . (AI - AJ) = 0. Since S is orthocentric, it follows 
from Theorem 3.1 (a) that (AI - Ai) . (AI - Aj) = ° for all i '" 1 and j f= 1. Therefore the 
edges of 5 emanating from Al are normal to each other, and hence S is rectangulru-. To prove (c) , 
suppose that the orthocenter of S is in the affine hull of a proper face F of S . Without loss of 
generality, we assume that 11. = O. If Ai is a vert.ex of F, and Ak is not a vertex of F, then the 
segment Akrt, being normal to F , is normal to A;1t. Thus 0(5) = 0, and 5 would be rectangular. 
This proves (e). To prove (d), suppose that al + ... + Uk = 0 for some k: ~ 1. By (9), we have 
fialAI + ... + okAkll = 0, and therefore alAI + ... + OkAk = 0 and 11. = Ok+ IAk+1 + .. . +Od+IAd+l. 
Thus 11. is in the affine huH of the proper face [Ak+! , .. . , A.:l+ll, contradicting (c). This proves (d) 
and its equivalent (e). Thus non-rectangular orthocentric simplices satisfy all the conditions above. 
The converse is trivial. 0 
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3 .2 The Gram matrix of an orthocentric simplex and characterizing the barycen. 
tric coordinates of its orthocenter 

We now characterize t hose tuples that can occur as the barycentric coordinates of a non- rectanglular 
orthocen~ric simplex, and we see how the signs of these coordinates bear on the ~acuteness" of its 
vertex angles. The first theorem describes the Gram matrix (see our Subsection 1.3) of a non
rectangular orthocentric simplex, and the lemma that follows records the value of a determinant 
that we shall need in several places. This lemma appears M Problem 192 on page 35 (with a hint 
on page 154, and an answer on page IB7) of PB]. 

Theorem 3.5: If S = [AI, ... , AdH ) is a non-rectangular orlhocentric d-simplex, then its Gmm 
matrix is of the farm ee, where every entfl/ of G that lies off the diagonal is 1. Converse/y, if G 13 
a (d + 1) )( (d + 1 )-matrix of mnk d such that its nan-zero eigwvalues are real and have the same 
sign, and such that all off-diagonal entries are equal, say, the entries C 'ij of C are given by 

G .. _ ( c(\ + x;) 
' J - c 

if i = j, 
if i #0 j, 

then ±G 13 the Gmm matrix of a non-roctangular arthocentric d-simplex S whose orlhoccnter lies 
at the origin and for which 

(15) 

Proof: This is a restatement of the fact that [Aj, ... , Ad+d is orthocentric with orthocenter 0 if 
and only if Ai' Aj is a constant c independent of i and j for i oF j, and that c = 0 if and only if S 
is rectangular. 0 

Lemma 3.6: leU = J(aj, ... ,a,,; b), .. . ,b,,) be the n)( n matrix whose WHh entry J ij is defined 
by 

J .. _ {a,+b; 
., - ai 

Th," 

if i =j, 
if i#j. 

where the right hand side is appropriate/y interpreted if b, = 0 JOT same i. [n parlicular 

det (J (a, ... ,a; b, . .. ,b)) == b"-I (b + no). 

Proof. We proceed by induction, assuming that the statement is true for n == k. Since det is 
continuous, we may confine ourselves to t he domain where no b; is O. By dividing the i- th row by 
b; for every i, ",-e may also assume that b; == 1 for all i. T hen 

det(J(al ,' ",at+j,;I, " ,1») 

1 +a\ a, "' a, 
a, I +a2 a, a, 

ak+1 ak+1 ak+1 1 + akH 
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" " " " 1 " " " ., 1 +., ., " 0 I + a2 ., 
" = + 

(lk+1 ak+! Ok+! I + ak+l 0 Ok+1 '''' 1 + (It+! 

" 0 0 0 ., 0 0 
= + dCt(J (U2, ···,atHil,'·', l» 

Ok+1 0 0 

= 1l1+ ( I + ~+ +Ok+1)::: I + (11 +42+ ... + Clk+11 as desi red . 0 

T he next t hoorem describes t he somewhat surprising restrictions tha.t the barycentric coordinates 
a J, .. . ,ad+! of the orthocenwr of a. non-rectangular orthocentric simplex S must obey. We fi nd 
it more convenient to include in it the relations among the signs of al," ., Od+l, the sign of the 
obtuseness eftS), and the acuteness of the angles between the edges. Note in particular that the 
sign of the obt useness u{S) of S can be read off the barycentric COO£dinates of the ort hocenter of 
S. 

Defin itio n 3.1: A polyhedral angle with vertex at 0 and with ~arms" OVil ... , OV" is cal.led 
5trrmgly acute (respectively, strongly obt"",!:, right) if and only if LViO\lj is acute (respectively, 
obtuse, righq for all i '" j. 

Theore m 3.8: The rml number;, (1\, ... ,0.1+1 with (1] + ... + 0.1+1 "" I occur !l-' tilt; ba11lcentnc 
coordinatu of the orthocentu of a non-rectangular o-rtIIottntnc d·simplex if and onl~ if al l of them 
are positive, or e:ttlCUy one of thwt i.!: JlNilive and tilt; other' are ~atiVf:. In tilt; fir,t COle (1(5) < 0, 
and aU ~ vena anglu 0/5 an: .tnmgly OG'uk. In ~ .eoond cwe ,,(5) > 0, and one vena angle 
of S is $tronglV oot",e while the otheN ore ' tnmgly acute. 

Proof: lA!t S "" [A], . . . , A.!+ll be a non-re<:tangu!ar orthoccntric d-simplex, and 0], .•. ,lld+1 be 
t he barycentric coordinates of t he orthoccnter 'H of S. Assulne tha.t 'H is a.t t he origin O. We use 
the facts t hat if i #- j, thell 

2 c(a, - I) 2 ( 1 1 ) Aj·Aj=c, HAili =--, I1 Ai - Ajll =-c -+- . 
a; a; OJ 

If c < 0, then a;(o. - I) < 0 for all i, and therefore 0 < 0, < 1 for all i. III this case, '>\'C haw for 
pairwise distinct i,j, IlIId k 

c(a; - 1) -c 
(A;- Aj)·(Ai - Ak) = - c - c+c=-> O. 

(Ii (Ii 

If c > 0, IlIId if Il] and (12 afe positive, then IIA! - A2112 would be lIegati\'C. T herefore at most one 
of the a;'a is positive. Since the sum is I , it follows that exactly one 0i is posith·e. Here again, if 
i,j, and k afe pairwise distinct, IlIId if I, = (A, - Aj)' (A; - Ak), thell f; < 0 if a, > 0, IlIId ti > 0 
if a; <0. 

Conversely, suppose that (1], ... , (1.1+1 are nOli-zero real numbers whose sum is l. Let %i = - 1/a;, 
IlIId let G be the (d + I) x (d + l)·matrix whose (ij)-th entry Gii is given by 

G _ (1+%, 
IJ - 1 

if i = j, 
if i 1: j. 
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By Lemma 3.6, the characteristic polynomial of G is given by 

F(A ) (A-xd' ( A - Xd+d (l +~+ "' + - I ) 
"' - Xl ), Xd+l 

/(A) -J'IA), 

where 
I(A) = (A - xll'" (A - Xd+l)' 

Let g(A) = -e-~ I{A). Then g'(A) = e-~(f{A) - f'(A » = e- ~F(A). The assumption Ul +. +Ud+l = 
I is equivalent to saying that g'(0) = O. 

If all the ai 's are p06itive, then all the Xi'S are negative, and therefore 9 has d + I negative zeros. 
Hence g' has d negative 7.crOS. ThiiS d of the zeros of g' are negative and t he remaining one is 
O. Therefore F has the same property, and hence - 0 is the Gram matrix of some d-simplex S. 
It is easy to see that 8uch a simplex S is orthocentric with orthocentcr 0 and with barycentric 
coordinates of 0 as desired. If exactly one of the aj's is positive, say 

then 
Xl "2: ... ;:>: Xd > O>Xd+L , 

and 9 has d positive zenX'> Xl, ... , Id' Therefore g' has d - I positive zeros in (O,XI)' Also, g' has a 
zero in (XhOO) since g(Xl) = g(oo) = O. Thus d of the zeros of g' are positive, and the remaining 
one is O. Therefore F has the same property, and hence G is the Gram matrix of some d-simplex S. 
It is easy to see that such an S is orthocentric with orthoccnter 0 and wit h barycentric coordinates 
of 0 as desired. 0 

Corollary 3.9; If ad-simplex S = IAJ, ... ,A.i+L1 is art/ween/ric, then at least d of il$ vertex 
polyhedrrd angles are strongly acute, while the remaining one is either right, strongly acute, or 
strongly obtuse. 

This gives us II. seemingly clear-cut idea of which orthocentric simplices ought to be called acute 
and which ought to be called obtuse. On the other hand, we do not get the criterion that the 
orthoccntcr is interior if and only if the circumcenter is. 

Theorem 3.10; Let S = [AJ, ... , Ad+1J be an orthocentric d-simplez. Then the cin:umcenteT C of 
S is interior if and only if S is non-rectangular and if the barycentric c.oonlinates al, . .. , ad+1 of 
the orlhocenler'H. of S are such that 0 < aj < I/(d - 1) for alii. Consequently, if the cin:umcenter 
is interior, then so is the orthocenter, but not CQ7\VeT~e/y. 

Proof; We wi!! see in Section 5 that the circumcenter of a rectangular d-simplcx S lies on the 
hypotenuse facet jf d = 2, and lies outside S if d > 2. So let S = 1A 1, ... ,Ad+11 be non-redangular 
orthocentric, and let a ], • .. ,ad+1 be the barycentric coordinates of the orthocenter 'H. of S. Assume 
that 'H = O. Then it follows from the Euler line theorem (see, e.g., [161 and [29]) that the 
circumcenter C of S js given by 

and therefore 
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T hus the i4h barycentric coordinate of C is (1 + (I - d)u;)/2, and C is interior if and only if 
a; < l/(d - I). It remains to show that the aj's must be all positive. If not, then exactly one of 
them is positive (and less than l /(d - I)) and the others !lIt negative, contradict ing the fact that 
o[+", + Ud+!""l. 0 

4 Coincidence of centers of non-rectangu lar orth ocentric simplices 

4 .1 Center coincidences except circumccnter = inccnter 

We start with a simple application of the fact that orthocentric simpliCC!! are closed under pas.<;ing 
down to faces. Note that the part of Thoorem 4.1 connected with the assumption 1i = 9 is known, 
see [23]. Note also that a stronger result will be established later, in Theorem 4.3. 

Theorem 4.1: Let S be an ortIioamtnc d-simplex. If tht: orthocenler 0/ S coincides with the 
cireumcenter or with the centroid of S, then S is reytlla:r. 

P roof: Being t rivially true for a triangle, the statement immediately follows for all d by induction, 
using the facts that the circumcenter and the orthocenter of a facet of S are the orthogonal pro
jections of t he respective centers of S on that facet, and that the centroid and t he orthocenter of 
a facet of S are the intersections of the respective cevians of S with the facet. 0 

Remark 4 ,2: The proof of Theorem 4.1 above does not work if t he circumcenter or the centroid 
L<; repla.ced by the incenter, since the incenter of a facet F of a simplex S is neither the projection 
of the incenter of S on the fa.cet, nor the intersection of the respective cevian through the incenter 
of S with that facet. However, we shall see in Theorem 4.3 that the statement itself remains valid 
also in that case. 0 

The following theorem will be strengthened later to include the case C =: I and to include rect
angular simplices. Note that t he part pertaining to 'H. := 9 is treated in 1231, and that the part 
pertaining to g:= C is treated in 146). However, we include them in order to give a unified approach. 

T heore m 4.3: Let S be a non-rectangular orIhocentnc d-simplex. If'H. = g, 'H. =: C, 'H. '" I, 9 = I, 
(IT 9 == C, then S is regular. 

Proof: Let al. . .. ad+! be the harycentric coordinates of the orthocenter 1i of S with respect to 
S and assume, without loss of generality, that 'H. lies at the origin O. We freely use the facts that 
Ai' Aj =: c for all i of- j and IIA;1I2 =: c(a; - 1)/a.: for all i. The cases 11 = 9 and 'H. = C are 
dealt with in Theorem 4.1. Alternatively, if'H. = g, then the ai's arc all equal, and therefore the 
edge-lengths are equal, by (11). If 11 = C, then II Aili does not depend on i, and therefore II A; - Aj ll 
does not depend on i and j, as long as i of- j, and S is regular. If 'H. = I, then ai is proportional to 
the (d - I)-volume of the i-th facet which in turn is inversely proportional to the altitude hi from 
the i-th \'ertex. T hus a;h; is independent of i. From (13) .... 'C have 

Since x/(x - I) is 1 - 1, it follows that the ai's are equal, and S is again regular. 
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If 9 = I, then S is equiareal by «(lSI. Theorem 3.2 (iii)), and therefore the altitudes are equaL 
Hence a;(a; - 1) = ai(aj - 1) for all i and j. Therefore (a; - aj)(a; +aj - 1) = O. By Theorem 3.4 
(e), ai + aj cannot be equal to t. Therefore the ai's are all equal, and S is regular. (This case is 
also treated in [47\. ) 

If 9 = C, then S has ",-ell-distributed edge-lengths (by [I5J, Theorem 3.2 (i». Using (11), one can 
easily see that the sum of the squares of the edge-lengths of the i-th facet is given by 

Therefore, having well-distributed edge-lengths is equivalent to saying that the ai's are equal, and 
that S is regular. Alternatively, if C = g, then the eircumcenter is given by 

d+ 1 1 

C=Ld + I A;, 
; .. 1 

and IIC - Aill does not depend on i. Then 

(d + I)I1C - A;IIZ = l1(d + I)C - (d+I)A;1I2 

'" = (d + 1)211CIIZ + (d + 1)211Ad12 - 2(d + 1) E Ai' Aj 
j~ 1 

(d + IfllCII 2 + (d + l)211Ai1l2 - 2(d+ I)(UAiIl2 + de) 

(d + 1)211C1I2 + «.(2 - 1)IIAi1l2 - 2(d + I)de. 

Thus ilA;1I is independent of i, and 0 is the eircumcenter of S. Therefore 1f. = C, and S is regular. 
This completes the proof. 0 

4.2 Equiradia l ort hoccnt r ic simplices and ki tes 

In this subsection vre begin a geucral study of equiradial orthocentric simplices. In view of the fact 
that 

C = I if and only if C is interior and the simplex is cquiradial , 

it is natural to study the broader class of equiradial simplices and then to single out those for which 
C is interior. 

It is convenient to give a name to those d-simplices in which d vertices fornt a regular (d - 1)
simplex 1', called the base, and are at equal distances from the remaining vertex, called the apex. 
We propose to call such a d-simplex a d-dimemional kite, or simply a d-kite, and to denote it by 
Kd[S, tJ, where s is the side-length of each edge of T, and where t is the length of each remaining 
edge. The subscript d may be omitted if no confusion is caliSOO. The quotient tj 8 carries all the 
information about the shape of the kite, and will be called the eccentricity of the kite. Note that a 
kite is automatically orthocentric, since the altitude from its apex meets the base in its orthocenter. 
Note also that all the facets of a kite are themselves kites. 

Lemma 4.4: For d .:5 3 an equimdial orthocentic d-simplex is regular. For d > 3 there exists a 
unique siimilarity class of equirodial d-simplices S such thaI d of its vertices form a regular (d - 1)
simplex T (of edge-length s, say) and are at the same distance (t, say) from the remaining vertex. 
Its eccentricity is given by 

~ "" t Is "" J(d 2)jd. (\6) 
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Proof: F'or d = 2, the result is trivia!, so suppose d 2:': J. Suppose there is a non-regular equiradial 
d-kite K with base T. Then it has to arise in the following way. inocribe the regular (d - l)-simplcx 
T::: [AI,"" Ad] in a (d - 2)-hypersphere centered at the origin in Ed- I , and having radius p, the 
circumradius of T. Each facet of T is the base of exactly two (d -:- 1 )-kites of circumradius p: T 
itself, and one other, which we now describe. Let Ai be the point diametrically opposite to Ai 
for I :::; i :::; d. Thus A; = - A,:. Let s = IIA; - Ajll and t = [IAi - Ajll, where i #- j. By 
taking the illner product of each side of the equation Al + ... + Ad = 0 with itself, we obtain 
p2d + d(d - I)(A;· Aj) = 0, and therefore Ai . Ai = -1/{d - 1), and 

52 = IIA;_AjIl2=2p2 (1 + d~l) =2p2C~I) (17) 

(18) 

It is clear that 
t=p=d=3 and that t>p=d>3. 

But if t = p, then K degenerates, with the apex lying at the circumcenter of T. On the other 
hand, if t > p, then an actual equiradial d-kite of positive height can be formed from T and the 
kites over the facets of T and the above ca.l.culations of s2 and t2 yield the indicated formula for 
the eccentricity. 0 

(n view of the above calculations, if K is a d-dimensional kite whose regular base has edge-length 
sand circumradius p, then p2js2 = (d- l )j(U), and therefore the eccentricity of a d-kite can take 
any value larger than I(d l)j(U). 

Lemma 4.5: A kite K[5,t[ in which the circumc.enter coincides with the inc.enter must be regular 
(i.e., s = t). 

Proof: If h is the altitude of ad-kite K = K[s, tl to its regular base T, and if p is the circumradius 
of T, then, by Lemma 4.4, 

the circumccllter of K is illterior 

h2 >r? =- t2 _p2 > p2 -= t2 > 2p2 

d - 1 
t' > -,-52 (by (17)) 

t2 d - I 
7i > - d-

By (18), the eccentricity of the non-regular equiradial d-kite is given by I(d 2)/d, which is less 
than I(d 1 lId. Therefore such kites do not have interior circumccnters, and their circumccnters 
and inccnters cannot coincide. Thus kites in which C = I must be regular. 0 

We record some basic formulas for quantities associated with a kite. These formulas have fairly 
simple proofs essentially based upon the Pythagorean Theorem, and they are also based on some 
related ca.l.culations for the regular d-simplex which we give first. 
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P roposition 4.6 : LeI R = Rd = R.i . ., r = rd . ., h = hoi ... and V = Vd, $ denote, respectively, the 
drcummdius, the inmdius, the altitude, and the volume of a regular d-simplex of edge-length s . 
Then 

R = ~ $ 2(d + l) 
(19) 

h ~Jd:l$ (20) 

V = l~d d! "'"'2'1$ (21) 

, = J 2d(d
i
+ 1) s. 

(22) 

Proof: To verify these formulas, let S = (AI" ,Ad+ll be our regular simplex, and assume that 
the center of S is the origin O. T hen Al + ... + Ad+! = O. Taking the scalar product with AI. we 
see that R2+d(A I . A2) = 0, and therefore Al ·A2 = _ R2Id. Also, 82 = (AI - A2)2 = 2R2 +2R2/d. 
Therefore 

This proves (19). By Pythagoras' Theorem, we have 

This proves (20). 

Using (20), we ha\'C 

Vd = ~hdVd_ l = ~f{Jd:lsVd_ 1 = d(d~l) (~r J~ ~ ~S2Vd_2 
= ~(!Od-1Jd;18d- 1VI = ~(ArId+l8d. 

T his proves (21). 

F'inally, to calculate r , we usc the fact that Vol = (d + l)(r Vol_lId) to obtain 

d Vol d i fd+T fl ,---I 
r = d + 1 Vd-I = d + 1 JY ----;r-- d-Y '2 s = V'2d((i+l) s. 

Now we are ready to prove the announced 

o 
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Theore m 4.7: Let K be a d-kite whose regular (d-I) -base S hM side-length s and whose remaining 

verlex P is at distance t from the verticu o/S. Let R = Rd, >, I, r = rd,A,j, h"" hd .•• j , and V = Vd",j 
denote, respectively, the circumrodius, the inmdiu,s, the altitude, and the volume oj K. Then 

R ~ " 
d 

2 (2t2d 52(d I)) , 

h ~ 
J2t2d 52 (d \) 

2d 

V ~ 
..!.. J2t

2
d s2(d 1) d- I 

" 
' , d' 

J2t'd 5'(d \) , ~ , 
J2 ( .Jds + dJ2t2(d 2)) \) s2(d 

Proof: Let t! be the circumradius and u the volume of S. Then 

h2 = t2 _u2 = t2 _s2(d - l) = 2t2d _s2(4 _ 1) 
2d 2il' 

This proves (24). On the other hand, h = R ± ~. T herefore, 

R' 

This proves (23) . Aio>, 

V ~ 

~ 

(R ± JR2 _ttZf == 2R2-u2±2RJR2_ u2. 

'" 4R2(R2 _ ,,2) 

_ 4Jilu2 = _4RzS2(d-l) 
2d 

4RZ (2t2d - i(d - 1)) 
,'d 

2 (2t2d s2(d \))' 

.!.hv = .!.J2t2d s2(d 

d d 2d 
\) 1 a. d- l 

(d I)! 2'i-1 s 

.!..V2t2d s2(d \) d- l 

" 
' , d' 

This proves (25). It remains to prove (26). We use 

v "" Vd,.,! = ~V+d(JVd-l,.,t) 

~ (d ~ 1)1 J '}:J~1 sd- l + d (J~Jc2t~'~(d,---~I;~'_~,F"~(~d--=2") sd- 2) 

"" ~sd-2 (sJd + dJ2t2(d 1) s2{d 2») , 
d!V'}:J-i 

Therefore 

~ / 2t2d s2(d 
d1 V zd \) 

(23) 

(24) 

(25) 

(26) 
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and hence 

J2t
2
d s2(d 1) 

r(sv'd + dJ2t2(d 1) s2(d 2») 2 , 
Therefore 

~ 

J2t~d s'i(d 1) , , 
J2 (sv'd + dJ2t1(d 2»), 1) s'l(d 

all de;;ired. o 

Addendum to Theorem 4.7: The formulas derived above lead to t he following statements about 
the eccentricity (= ~, interior nature of the circumcenter, equiradiality, and the interior nature of 
the orthocenter for a general kite: 

(2 can take any value in the interval (d ~ 1 ,00). 
d - 1 

The circumcenter of K is interior if and only if (2) -d-. 

K is equiradial if and only if ( 2 = d ~ 2 or f = 1 (i.e., t = s). 

1 
The orthocenter of K is inter ior if and only if f2 > "2 . 

4.3 Tools 

The following theorems are needed in the proof of Theorems 4.11 and 4.13. Theorem 4.8 describes 
how the barycentric coordinate;; (I), •.• , (ld+ l of the orthocenter of a non-rectangular orthocentric 
d-simplex 5 are related to those of the orthocenter of a face F of 5, and also how o-(F) and 0-(5) 
are related. Theorem 4.9 expresses the circumcenter of such an 5 in ter ms of its vertices, and the 
circumradii of 5 and of its faces in terms of (I), ... ,ad+l and 0(5) . Lemma 4.10 deals with t he 
Gram matrix of a special type of a non-rectangular orthocentric d-simplex S. This will be used 
in the proof of Theorem 4.lla,b which gives a characterization of non- rectangular orthocentric 
d-simplices which are equiradial, and in the proof of Theorem 4.13 which proves that orthocentric 
simplices with I = C are regular. 

T heorem 4.8: Let 1-£ be the orlilOa nter 0/ a non-rectangular orthoa:ntric d-s1mplex 5 = [A 1, ... , AM I], 
and 1e/11' be the orthoa:nter o/the/aceS' = [A1, . .. ,Ak+11 0/5. Leta), ... , ad+l be the barycen-
tric coordinates 0/11 with rr:spect to 5, and a~, . .. , a~+1 be the barycentric C()(lrdinates 0/1-£' with 
respect to 5'. Let c(S) /Ie the obtuseness 0/5 as defined in (8). Then a 1 + ... + UHI '" 0, and 

, aj 

aj"" u)+"'+(I,,+I' 
c(S') = 0(5) 

a)+"' + U,,+I' 
(27) 

Proof: It is clearly sufficient to prove our theorem for k = d - I. Also, we may assume that 11 is 
the origin O. Then it follows from (14) in the proof of Theorem 3.3 that 

, a, 
11;"" , 

al + · · · +ad 
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as desired. 

To oompute 0'(5'), we set c = O'(S) and s = (Ii + ... + ad (= 1 - (ld+Jl. Take i and j such that i,j, 
and d + I are pairwise distinct. Using (14), we see tha.t 

and therefore 

Ai ·Aj 

'H" Ai 

0(8') = (H' - Ai)' (?i' - Aj ) 

= (;) (-ad+1 + 2ad+l + l - a<l+d=;, 

as claimed. 0 

T heorem 4.9: ut S = [A\, ... ,Ad+ll be a non-rectangular ortJwcentric d-simplex, and let 
Ill, ... '0cf+! be the oorycentric ct.>Onlinates of its orIhocenttr 1i. ut c = q(S) be the obtuseness of 
S defined in (8). Let C be the circumcenter and R the circummdius of S. Then 

d - I 1 
(28) c+-- 'Ii =i(A! + ··· + Ad+l), 

2 

4n' d+l 1 

, (d - I)' - L: -. (29) 
isl a; 

Consequently, C is interiori/and oniyija; < I/(d - I) . AlsO', ifF= [Al> ... ,Ak+l1 is a/ace of 
S, and if s = s(F) = III +, .. + 0Hl, then the circummdius RF of F is gillen by 

~ = (k - 1)2 _ (..!.. +. 1) 
c S 01 - + a~+l (30) 

Proof: For simplicity, "'~ assume 1-£ = 0 (by replacing Ai and C by A;-1-i and C-1i, respectively), 
and we Ict P = (AI + ... + Ad+I)/2. We use the facts that A;· Aj = e for all i t j, and that 
IJ Aill2 = e(a; - 1)1a;. Then 2(P - Ad+l) = Al + ... + Ad - Ad+1 and 

= "'(""'c' ---,"I) - + a, 
. + e(ad+l - I) + (J! _ 3d)e 

ad+l 

_, (~ + ... + _1_) + (d + I )e + (J! - 3d)e 
a] ad+1 

_, (~ + ... + _1_) +e(d_I)2. 
a] ad+l 

Similarly for 411P - A;1I2 for every i. Therefore P is equidistant from the vertices of S, showing 
that P is the circumcenter, and proving (28) and (29). 
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Letting 

we see that 
C = b1A\ + ··· + bd+IA.:!+1 and bl + ··· + bd+l = l. 

Therefore bl , . .. ,bd+ l are the barycentric coordinates of C. T hus C is interior if and only if bi > 0, 
i.e. , if and only if (Ii < l/(d - I), as claimed. 

finally, the statement pertaining to RF follows from (29) using T heorem 4.7. 

Lemma 4.10: Let G be the (d + I) x (d + I )-mo.trix whose entries G i j are gillen by 

I + Xi 

where the Xi'S o.re non- zero num~s. 

(a) The chamcteristic polynomial of G is gillen by 

if 
if 

i #- j, 
i = j. 

(A- X!l . .. (A - Xd+l )(I +-- _I_+ ... + - I ) 
A - Xl A xd+l . 

(b) Let X o.nd y be distinct non- zero real numbers, and suppose that 

if 
if 

i $ m, 
i> m. 

o 

(31) 

(32) 

(33) 

(I) If m = 0, then dJ for some c is the Gram matrix Qf ad- simplex S if and omy if 
y = - d - 1. In this case, S is regular. 

(ii) Ifm = I, then dJ for some c is the Grom matrix Qf 0. d- simplex S if and only if 

(i)xy + dx+my = O and (ii)x<O. (34) 

In this case, S is a kite having eccentricity (x + y)/(2yx) . 

(iii) If 2 $ m $ d - 1, then dJ for some c is the Gram matrix of ad- simp/ex S if and Qnly 

if 
(i)xy + (d+l - m)x + my=O and (ii)x+m<O. (35) 

Proof. Statement (a) follows immediately from Lemma 3.6, since the characteristic polynomial of 
G equals 

det(A! - G) 

det(J ( - I, ... , -1 ; A - XI. ... , A - Xd+ tl) 
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To prove (b), we use (32) and ~he fact that ±G is the Gram matrix of a d-simplcx if and only if 
one of its eigenvalues is 0 and the others all have the same sign. 
(i) If m "" 0, then the characteristic polynomial of Gis 

(,\ _ y)d+l (1 _ d + 1) = (,\ _ y)d(,\ _ Y _ (d + 1», 
A-y 

and the eigenvalues are y and y + d + I. Also, y :F O. Therefore, ±G is the Gram matrix of a 
d-sirnplex S that is necessarily regular if and only if y + d + L = o. 

(til If m = I , then the characteristic polynomial of Gis 

I(A) = {>._X)(.:I_y)d (1- -'- _ -'-) 
A-X >' -1.' 

( ,\ - y)d- I(,\2 _ (x + y + d + 1)'\ + y+ xl.' +dx), 

and one of the eigenvalues is 0 if and only if 

y + xy+d:t"=o. (36) 

Assuming (36), we see that x + 1 :fi 0 (since dx # 0), and that the remalning eigenvalues of G are 

- dx - dx (x+l)l+d '= --, and x+y + d + l =x+--, +d+l = " x+ x+ x+ 

These have t he same sign if and only if x + 1 and -x(x + 1) do, which ha.ppens if and only if x < O. 

One can recover the squares of the edge-length of a simplex from its Gram matrix by the formula 
IIA; - Aill 2 "" G;; +Gjj - 2G;j. A d-simplex S whose Gram matrix is G is thus a d-kite whose base 
is a regular (d - I)-simplex of side-length (1 + y) + (1 + y) - 2 = 2y and whose remaining edges 
have edge-lengths (1 + x) + (I + y) - 2 = (x + y). Its eccentricity is therefore (x + y)/(2y) . 

(iii) If 2 :5 m :5 d - 1, then, setting n = d+ 1- m, we have m, n 2: 2. The charact.eristic polynomia.! 
or G is 

I(A) = (>. - x)"'(>' - y)" (1 -~ -~) 
>.-x >' - y 

(>. - x)"' - I(>. - y),, - I(>.2 _ (x + y + d + 1)>' + xy + my + nx), 

and one of the eigenvalues is 0 if and only if 

my + xy + nx=O. (37) 

A&suming (37), we see that x + m f. 0 (since nx i- 0), and that the remaining eigenvalues of G are 

- m; (x + m?+mn 
x,y=--,andx+y +d + l = . 

x+m x+m 

These have the same sign if and only if x, - x(x + m), and x + m do, which happens if and only if 
x +m<O. 0 
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4.4 Complete classification of equiradial orthocentric s implices 

Here W(l complete the study of orthocentric simplices in which the circumcenter coincides with the 
incenter. 

Theorem 4.11 a: Let S = [A), ... , Ad+l[ be a n01l-regular, n01l-rectangular, equiradial orthocrn
tric d-simplu, and let al,"" a"+1 be the barycentric coortIinates of its orthocenter with respect to 
S. Then there are two possibilities 

1. S is a kite of eccentricity J(d 2)/d, in which Clll!e d ;::: 5, or 
2. There exists an m with 2 :5 m :5 d - 1 such that, after relabelling vertices, 

al = ... = Urn, Um+1 = ... = ad+1 (38) 

("'-3d+4)' . .. mid + I - m) $ 2(d 2) , which Implies d ?: 9. (39) 

Proof: We may l\S8ume d > 3 since equiradial orthocentric simplices of lower dimensions are known 
to be regular. Let S = [A I , ... , A,,+ II and suppose that the orthocenter is 0, and that a I , ... , ad+ I 
are the barycenric coordinates of 0 with respect to S. Suppose that S is equiradial. Then it follows 
from (30) in Theorem 4.9 that 

(d _ 2)2 I (d _ 2)2 I 
---+-=---+-

I -a; ai I-aj aj 

for every i and j. Therefore 

which simplifies into 

1+(d- 3)(d - I)a; 

a;(l a;) 

1+(d - 3)(d - l)aj 
aj(1 aj) 

(a; - aj)«d - 3)(d - 1}a;aj + a; + aj - 1) = O. 

If (d - 3)(d - l)a;aj + a; + aj = I and (d - 3)(d - l)aiak + a; + ak = I then, multiplying the first by 
ak and the socond by aj and subtracting, " .. e obtain (a; - I)(ak - aj) = 0, and therefore ak = aj, 
since no ai can be 1. Therefore the ai's can take at most two different values a and b that satisfy 

(d - 3)(d - l)ab + a + b - 1 = o. (40) 

Since S is not rcguJ.a.r, it follows that the ai's are not all equal, and therefore we may a.<;sume that 

al = ... = a", = a, a",+ l = ... =ad+1 = b 

for some m with 1 $ m $ d, and with a and b satisfying (40). Letting n = d + 1 - m, x = -l/n 
and y = - l ib, and using rna + nb = 1 and (40), we obtain (37) and 

xy+x + y=(d - 3)(d - I). (41) 

Also, using Ai . Aj = c for i '" j, and II A;1I2 = cia; - l)/a;, we see that the Gram matrix of S is of 
the type described in Lemma 4. 10 (b), where x and y satisfy (41). 
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Again we usc Lemma 4.10 (b). If m = 1, then it follows from (34) and (41 ) that x = 3 - d and 
x < O. Substituting m "" 1,1"1 = d, and x = J - d in (37), we see that d 2: 5 and that 

d(d - 3) 
, ~ --d - 4 . 

This corresponds to the kite whose ~ntricity { is given by 

2 x+y (d - 2)2 , ~--~---
2, " 

in conforma.nce with Theorem 4.7. Thus we are left with the case 

2 :::; m :::; d - t , 

' od 
x +m <O, xy + my+nx=O, x + V+ xy = (d-3){d - l). 

The last two of these can he rewritten as 

(x + m)(y + nl mo, 

(x + m)(l - n) + (y + n)(l- m) Jl - 3d +4 - 2mn. 

Setting 
~ = (x + m)(l - nl, 1} = (y + n)( \ - m) , 

we see that (42) can be rewritten as 

{> 0, 1J > 0, ~ +'1 = d2 - 3d + 4 - 2mn,{J) = mn(mn - d). 

Now 

This simplifies into 

or, equivalently, 

(d2 _ 3d + 4)2 - 4mn(d2 - 3d + 4) + 4mnd ?: 0 

< (tP -3d + 4)2 
mn - 4(d 2)2 

as desired. It remains to prove that d 2': 9. Since mn ?: 2(d - 1), it follows that 

2(d - 1) < (dl - 3d+4)2 
- 4(d 2)2 

and thl->rcforc 

0:5 ~ - 14if + 57d2 - 88d + 48 = (d - 3)(d(d - 3)(d - 8) - 16) . 

Since d > 3 by assumption, this happens if and only if d ~ 9, lIS claimed. 

(42) 

(43) 

(44) 

(45) 

(46) 

o 
The kites have already been completely analyollCd in Subsection 4.2. In the other case we have the 
following converse. 
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Theorem 4.11 b: If 2 :s ill :s d - 1, and if m and d sat~fy (39), then there exist exacUy 
two non-simiwr non·nxtangular orthoantric equimdial d-simplices whose orthocenler's OOryCClltriC 
coordinates a], . .. ,ad+! satisfy (38). This happens for any given value of ill if d is large enough; 
in particular when m = 2 and d :::.. 9_ 

Proof: Suppose that 2 :s m :s d - I and that (39) holds. Note first that equality cannot take 
place in (39), since (tP - 3d + 4)/(2(d - 2)) is not an integer. This can be seen by taking the 
cases d :::::: 1 (mod 2), d :::::: 0 (mod 4), and d == 2 (mod 4). Then it follows immedia.tely that the 
discriminant of 

Q(Z):= Z2 - (rP - 3d + 4 - 2mn)Z + mn(mn - d) 

is strict ly positive. Therefore Q(Z) has two distinct real zeros which are necessarily positive since 
their sum tP - 3d + 4 - 2mn a.nd product mn(mn - d) are. Letting X and Y be the zeros of Q(Z), 
"'"C find x and y by solving the system 

X = (x + m)(1 - n) , Y = (y + m)(l - n) (47) 

or the system 
Y = (x + m)(1 - n), X = (y + m)(I - n). (48) 

Since X and Y are distinct, these systems give risc to two distinct pairs (x, y). The Gram matrices 
corresponding to these values give rise to the desired simplices, as in the proof of Lemma 4.10. This 
completes the proof. 0 

Remark 4.12: Consideration of the corresponding Gram matrices shows that these orthocentric 
equiradial d·simplices may be thought of as generalized kites. They ma.y be described as the join 
of a regular (m - I)·simplex of edge-length a with a regular (d - m)-simplex of edge-length b such 
that all intervening edges have edge-length c, for suitable values of the parameters d, m, a, b, c. 

4.5 Orthocentric s implices with circumcenter = incenter are regular 

Here we complete the study of orthocentric simplices in whi~h the cir~umCf)nter coincides with the 
i"center. 

Theorem 4.13: If S ~ an orthocentnc d-simplex in which the cin:llmunter and the incenter 
coincide, then S is regular. 

Proof: We shall treat the simpler case when S is rectangular in Section 5. So we suppose that S 
is a non.rectangular orthocentric d-simplex. Let a], .. ,ad+ ] be the barycentric coordinates of its 
orthocenter with respect to S. If the incenter and the circumcenter of S coincide, and if S is not 
regular, then, being necessarily cquiradial, S is of one of the two types in Theorem 4.11. The first 
is a d-kite of eccentricity V(d 2) / d, and therefore has an exterior circumcenter by Theorem 4.7. 
The other type satisfies 

al = .. = am "" a, <lm+] = ... "" ad+] = b , 

where x "" -I/o and y = - lib are such that 

x+m < O, y + n<O, xy+x+y",,(d - 3)(d - I) . (49) 
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[n particular, x and y are negative and 

the circumcenter of S is interior = 
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1 
a,b < -, - , by Theorem 3,10, 

, - I 

¢==> x,y < l - d 

¢=> x + l , y + l < 2 - d 

=> (x+ l )(y + I) > (d _ 2)2 

=> xy + x + y> (d - l)(d-3) , 

contradicting (49). Therefore here again the circumcenter is not interior, and cannot coincide with 
the incenter. 0 

Remark 4. 14: We have seen in 115), Theorem 2.2, that there are non-equifacetal tetrahedra whose 
facets have equal inradii. T his prompts the still open question whether there exist non-regular 
orthoccntric tetrahedra (or higher dimensional Simplices) with this property. 

5 Rectangular simplices 

In the previous section, we have coordinatized a non-rectangular orthocentric d-sirnplex S = 
IA h .·. , ~+lJ by the barycentric coordinates OJ, ... ,ad+! of its orthorenter, together with the 
obtuseness 0"(8) defined ill (8). It was noted that u(5) = 0 if and only if 5 is rectangular, and 
it is easy to see that if 5' is similar to 5 with a similarity factor p, then u(5') = Vu(5). Thus 
1.,.(5)1 is not releV3nt as far as the shape of 5 is concerned, and 5 can be scaled 80 t hat .,.(5) = U 
or .,.(5) = ± l. In view of (10) it is obvious that u(5) < 0 if and only if 0 < 0; < 1 for all i , i.e. , if 
and only if the orthocenter of 5 is an interior point. Note that, for a triangle, this is equivalent to 
5 being acute-angled. 

Rectangular d-simplices are charactcri7.ed as those orthorentric d-simpliC>ffi S with .,.(5) = O. How
ever, the barycentric coordinates of the orthocenter of such ad-simplex 5 carry no information 
about 5 (except for locating the vertex at which the orthocenter oc<:u.rs), and therefore cannot 
serve to parametrize S. On the other hand, the lengths bJ , . • . , bd of the legs of a rectangular 
simplex do carryall the essential information about 5 . Here a leg is an edge emanating from the 
vertex at which S is rectangular. If ad-simplex 5 = [AI, ... , A,:l+IJ is rectangular, say at Ad+l, 
then one can place it in Ed in such a way that A.!+I lies at the origin and such that the legs Ad+ J A; 
lie on the positive coordinate axes. Then the i-th cartesian coordinate of A; is b, and the other 
coordinat.es are 0, and 

(50) 

The volume, the circumra<iius, the inradius, and other elements of 5 can be easily computed in 
terms of the b;'s, as illustrated in Theorem 5.1 below. These formulas will then apply to , but only 
to , the rectangular faces of S, i.e., to those faces of S that have A M I as a vertex. To understand the 
remaining faces, note that they are necessarily faces of the hypotenuse facet [A J , "' , Ad], and thllli 
it is sufficient and important to understand this facet. It follows from (57) below t hat this facet , 
which is necessarily orthocentric, cannot be rectangular, and therefore it yields tolhe results of the 
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preceding section. The natural question that arise; is whether every non-roc\angular orthocentric 
(d - I)-simplex occurs as a facet (necessarily the hypotenuse faceq of a rectangular d-simplex. 
Theorem 5.3 below provides a satisfactory answer. 

T heore m 5.1 ut S = [AI,"', A.,+11 be 0. d-simp/e$ Mat is rectangular at A,,+!, and let b\, ... ,b" 
be 1M leng/Jl.$ of it..! /egJ A"+IA\, ... , A"+IA.!, respectivel!l. ut the oo/urne, Ihe circumrndius, and 
1M inradius of S be denoled by V, R, and r , respectivel!l. For each i, let V, be /he (d - l )-oolume of 
the i-th facet of 5 , and let h be 1M alW"de of S ro /he (d + l )-th facet [A,,··· ,04.,,1. Then 

v • 

, -

bl ··· b" 
~ 

If _ bJ+ "' +~ 
- 4 . 

1 
+ il.' , 

Also, if 04.4+1 = 0, Men the circumcenter C of 5 and Me or1hocenter 8 of the facet [AI, 
given b!l 

C AI +·· ·+A" 
= 

2 

B = e lre bi+"'+~ bi A1 +' "+~Ad)' 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

P roof: The equation (51) is obvious. Using (51) and the d-dimensional Pythagoras' Theorem, we 
obtain 

Vi+! = (b,b,), .. 
(d l )!bd + 

. (b,b,), + (d l )!bd 

= (~)'('-(d-I)! bi + "'+k) 
This proves (52). Then we use dV = Vd+1h to get (53). For (54), v .. e use the preceding formulas 
and the fact that dV = r(V1 + V2 + ... + V"+1)' To prove (56), we use IlCII2 = IIC - A;1I2 to conclude 
that 2C . Ai = II Ail12 = I?" and therefore the i-th coordinate of C is b;/2. Then we use (56) and 
Pythagoras' Theorem to obtain (55). Finally, (57) follows from the fact that 8 is the projection of 
.4.1+1 on the facet. [A Io ..• , A.I! and thus 8· (Ai - Aj) = 0 for 1 ~ i < j ~ d. 0 

Theorem 5.2: If 5 is redangular, then its four classiool centen t;,C,r, and 1{ are poirwise 
distinct. 
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Proof: Let S = [AI, . . . ,Ad+11 be rectangular at Ad+!_ In view of (55) the circumcenter lies on the 
hypotenuse facet of a rectangular d-simplex if and only if d = 2. Also, the barycentric coordinates 
of C with respoct to AI>"" Ad+! are (l/2, ... , 1/2, (2 ~ d)/2), and therefore C is never interior 
(since (2 ~ d)/2 S 0 for all d ~ 2). Therefore, of the orthocenter, the circumccnter, the incenter, 
and the centroid of S, the only two that eM possibly coincide a.re the last two. This cannot happen 
either. In fact , it is dear t hat T = (r, ... ,r) and Q = (bl, .. . ,",H al/(d + 1), and therefore the 
equality I = 9 would imply that bi = (d + l)r for all i. Using (53), we arrive at the contradiction 

d+l=d + Jd. (58) 

Therefore no two the four classical centers can coincide. 0 

Theore m 5.3: Let T = [A I, ... , Adl be an Qr'fhocentric (d - I)-simpla:. Then the following 
conditiOfl9 are equivalent. 

(a) There exists a d-simpla: S = [A J , •• • ,Ad, Ad+1[ that is rectangular at Ad+l . 

(b) The orthocenter of Tis interior. 

(c) a(7') < o. 

Proof: We already know that (b) and (c) are equivalent by Theorem 3.8. Let tl, ... ,td be the 
barycentric ooordinat.es of the orthocenter B of T . If (a) holds, then (57) implies that the ti'S are 
all positive, and therefore B is interior. Thus 0 < ti < 1 for all i. In view of (10), this implies that 
otT) < O. Conversely, if c = aCT ) < 0, then 0 < ti < 1 for all i. Let bl, ... , bd be the positive 
numbers defined by 

b;ti = - c, (59) 

and let S = [P], . . . , Pd+ l[ be the d-sirnplcx that is roctangular at Pd+ l and whose leg-lengt hs are 
bj, ... , bd. Then for I ::; i<j ::; d we have 

by (11) 

= bl+b; by (59) 

[J Pi - Pj ll2 by Pythagoras' Theorem. 

Therefore T is congruent to the facet [PI , . . , PdJ of S. This proves (a). o 

Finally we mention that the case d = 3 of Theorem 5.3 is Problem 1938.3 (pp. 132-134) of [38J. 
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