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Abstract

Over the last decade, the numerical simulation of incompressible fluid-

structure interaction has been a very active research field and the subject of

numerous works. This is due, in particular, to the increasing interest of the research

community in the simulation of blood flows in large arteries. In this context, the

fluid equations have to be solved in a moving domain and the incompressibility

constraint makes the coupling sensitive to the added-mass effect. As a result, the

solution procedure has to be designed carefully in order to guarantee efficiency

without compromising numerical stability. In this paper, we review some of the

coupling schemes recently proposed in the literature. Some numerical results that

show the effectiveness of the novel approaches are also presented.

1 Introduction

Computational Fluid-Structure Dynamics (CFSD) is of great importance in practically

all engineering fields, from aeroelasticity to biomechanics (see, e.g., [40, 93, 99, 85,

92, 113, 59, 118, 14, 70, 28, 42, 114, 8, 120, 33]). The work summarized in this

review stems from the numerical simulation of the (mechanical) interaction between

blood flow and the vessel wall in large arteries. Over the last decade, this topic has

been a very active field of research and the subject of numerous works (see, e.g.,
[96, 59, 118, 87, 51, 121, 76, 77, 53]). The underlying motivation is that computer

based simulations of blood flows, in patient-specific geometries, can provide valuable

information to physicians (e.g., in order to enhance diagnosis and therapy planing).

Moreover, such simulations can also be a major ingredient in the design/optimization

of medical devices.

The numerical simulation of the fluid-structure phenomena involved in blood flows

raises many issues. Among them, the displacement of the wall cannot be supposed to

be infinitesimal, geometrical nonlinearities are therefore present in the structure and

the fluid has to be solved in a moving domain. On the other hand, since blood is an

incompressible fluid, the arteries are slender and the vessel and blood densities close,

the coupling has to be tackled carefully in order to avoid numerical instabilities.
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In large (or medium size) arteries, blood is commonly modeled as a homogeneous,

viscous, Newtonian and incompressible fluid (see, e.g., [115, 53]). Although the artery

wall has a viscoelastic behavior (see, e.g., [56]), we limit the presentation to the case

of a non-linear elastic solid. Yet, the coupling strategies discussed below are not

restricted to this structural behavior. As a mathematical model, we consider therefore

the system of partial differential equations involving the Navier-Stokes equation (in a

moving domain), the non-linear elastodynamics equation and the following coupling

conditions on the interface Σ:

• continuity of displacements (fluid domain and structure):

df = ds on Σ; (1)

• continuity of velocity (fluid and structure):

uf = us on Σ; (2)

• equilibrium of stresses (structure and fluid):

σsns = −σfnf on Σ. (3)

This paper concerns the numerical resolution of this coupled problem.

The time semi-discretizations of this system exploit, in general, the heterogeneous

structure of the coupled problem. That is, the fluid and the solid are time

semi-discretized by different time-marching schemes, tailored by their different

mathematical properties. On the other hand, the time semi-discretization of the

interface coupling conditions (1)–(3) defines the coupling scheme.

One of the most elementary coupling schemes (perhaps the most popular in the

aeroelastic community) is based on the following explicit treatment of (1) and (2):⎧⎪⎨⎪⎩
df,n+1 = ds,n on Σ,

uf,n+1 = us,n on Σ,

σs,n+1ns = σf,n+1nf on Σ.

(4)

This yields the procedure reported in Algorithm 1. This algorithm is known

as conventional serial staggered scheme (see, e.g., [100, 86, 102, 42]). Note that

Algorithm 1 is very appealing in terms of computational cost, since it allows a fully

uncoupled (sequential) solution of the discrete problem.

Explicit coupling (weakly or loosely coupled) schemes are those in which (2) or

(3) are explicitly treated. A spurious numerical power is therefore generated at the

interface (energy is not exactly balanced due to the explicit treatment), which has to be

controlled in order to guarantee stability. Algorithm 1 is an explicit coupling scheme,

since it treats (2) explicitly. Although explicit coupling algorithms are widely and

successfully used in aeroelasticity (see, e.g., [101, 102, 55, 42]), a number of numerical

studies (see, e.g., [91, 85, 105, 96, 59]) have shown that Algorithm 1 is unstable under

certain choices of the physical parameters. Typically, this happens when the fluid is
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Algorithm 1 Explicit coupling (weakly or loosely coupled) scheme.

1. Update the fluid domain configuration (mesh) and velocities via (4)1;

2. Advance in time the fluid with the interface Dirichlet condition (4)2;

3. Advance in time the structure with the interface Neumann condition (4)3;

4. Go to next time-step.

incompressible, the fluid and solid densities are comparable or when the domain has

a slender shape, irrespectively of the choice of the time-step size. Blood flows are a

popular example of such a situation.

Theoretical explanations of this issue have been reported in [25] (see also [54]).

In particular, the following instability condition is established in [25] for a simplified

framework:

ρsε

ρfλadd
< 1, (5)

where ε and λadd are pure geometrical quantities. The former is related to the thickness

of the structure, whereas the latter increases with the length of the domain (it is the

largest eigenvalue of the so-called added-mass interface operator). Note that the left

hand-side of (5) is a pure physical quantity, it measures the amount of added-mass
effect in the system. In particular, since (5) is independent of the time-step size,

reducing it does not cure the instabilities (as mentioned above).

Implicit coupling schemes are those that time semi-discretize (1)–(3) implicitly.

The schemes that treat (2) and (3) in an implicit fashion are also known as strongly
coupled. The implicit coupling schemes are therefore strongly coupled. These schemes

have been, for years, the unique way of circumventing the above mentioned numerical

instabilities. Somehow, this explains why the development of efficient methods for

the resolution of the coupled non-linear systems, arising in implicit coupling, has been

(and still is) a very active field of research.

Some of these implicit coupling procedures are described in §3. In particular, we

present the Newton algorithm proposed in [49]. The rest of the paper is devoted to

the problem of avoiding strong coupling, without compromising stability. This issue is

addressed from two different perspectives. In §4, we present the semi-implicit coupling

paradigm proposed in [48]. A different point of view is considered in §5, where we

review the schemes recently proposed in [22, 5], that are based on the weak treatment

of the interface conditions at the (space) discrete level. Some final remarks and lines

of future work are drawn in §6.

The next section contains introductory material. We review there the main

ingredients of the general mathematical model used to describe the interaction of a

viscous incompressible Newtonian fluid and an elastic structure.



62 M.A. Fernández

2 Preliminaries

The modeling of fluid-structure interaction systems under large displacements

involves, in a general way, the coupling of two formulations: the solid classically

treated in Lagrangian formulation, and the fluid described by an arbitrary Lagrangian-

Eulerian (ALE) formulation (see, e.g., [40, 98, 90, 85, 45]).

Figure 1: Geometrical fluid-structure configurations.

We consider a mechanical system occupying a moving domain which consists

of a deformable structure Ωs(t) (e.g., the vessel wall) interacting with a fluid under

motion (e.g, the blood) in the complement Ωf(t) of Ωs(t), see Figure 1. We denote

by Σ(t) the current configuration of the fluid-structure interface, that is, Σ(t)
def
=

∂Ωf(t)∩∂Ωs(t). Let Ωf∪Ωs be a reference configuration of the system (e.g., the initial

configuration). We denote by Σ
def
= ∂Ωf ∩ ∂Ωs the reference fluid-solid interface and

∂Ωf = Γin ∪ Γout ∪Σ, ∂Ωs = Γd ∪ Γn ∪Σ, are given partitions of the fluid and solid

boundaries respectively. The fluid external boundaries Γin and Γout are supposed to be

fixed. The corresponding outward normal vectors to the fluid and solid boundaries are

denoted by n and ns, respectively (the same notation is used for their reference and

current configurations).

2.1 Fluid equations

The dynamics of the (moving) control volume Ωf(t) are parametrized in terms of a

smooth injective map A : Ωf × R+ → Rd, the so-called ALE-map, such that

Ωf(t) = At(Ω
f),

with the notation At
def
= A(·, t). The corresponding deformation gradient and

Jacobian are denoted by F
def
= ∇At and J

def
= detF , respectively. Moreover, we shall

use the notation w
def
= ∂tA for the fluid domain velocity, and df(x̂, t)

def
= At(x̂)− x̂,

x̂ ∈ Ωf , for the fluid domain displacement.

Remark 1 Thanks to the invertibility of At, we can define all the physical quantities
on the reference or on the current configuration, the choice being a matter of
convenience. When the same field is evaluated in both the current and the reference
configurations, we adopt the superscript ̂ to indicate that it is defined in Ωf ×R+ and
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we have the relations

q̂(x̂, t)
def
= q(At(x̂), t) ∀x̂ ∈ Ωf ,

q(x, t)
def
= q̂(A−1

t (x), t) ∀x ∈ Ωf(t).

In the rest of situations (i.e., a field is only used in one of the configurations), the
superscript ̂ is not used.

We assume the fluid to be homogeneous, Newtonian and incompressible. Its

behavior is described in terms of its velocity û : Ωf × R+ → Rd and pressure

p̂ : Ωf ×R+ → R fields, which are governed by the following Navier-Stokes equations

(written in ALE form):{
ρf∂tu|A + ρf(u−w) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),
(6)

where ρf stands for the fluid density, ∂tu|A for the ALE time derivative and σ(u, p)
def
=

−pI + 2με(u) for the fluid Cauchy stress tensor, with μ the fluid dynamic viscosity

and ε(u)
def
= 1

2

(∇u+∇uT
)

the strain rate tensor.

System (6) has to be supplemented with boundary conditions, for instance,{
u = uin on Γin,

σ(u, p)n = −poutn on Γout,

and initial condition u|t=0 = u0. Here, uin, pout and u0 are given boundary and initial

data. The conditions to be enforced on the fluid-structure interface Σ(t) are discussed

in §2.3.

Remark 2 Note that the importance of the presence of the ALE time-derivative
∂tu|A in (6) emerges in the context of the numerical discretisation (we recall that

∂̂tu|A def
= ∂tû). Indeed, when computing numerically a solution in a moving domain

we are usually interested in the time variation of quantities collocated at the nodes of
a computational mesh (not at a particular fixed position), and the latter necessarily
follows the evolution of the computational domain.

2.2 Solid equations

The dynamics of the structure are parametrized in terms of its displacement d :
Ωs × R+ → Rd. Its evolution is generally governed by the non-linear elastodynamics

equations {
ρs∂tḋ− div

(
Π(d)

)
= 0 in Ωs,

ḋ = ∂td in Ωs,
(7)

where ρs represents the solid density, ḋ the velocity and Π(d) the first Piola-Kirchhoff

stress tensor of the structure. The latter being related to d through an appropriate
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constitutive law (see, e.g., [66, 30, 82]). For instance, for an hyper-elastic material, we

have

Π(d) = F s ∂W

∂E

(
Es
)
,

where F s def
= I+∇dt stands for the gradient of deformation, Es def

= 1
2

(
(F s)TF s−I

)
for the Green-Lagrange strain tensor and W : Rd×d → R+ is a given density of elastic

energy.

The solid equation (7) has to be supplemented also with boundary conditions, for

instance, {
d = 0 on Γd,

Π(d)ns = 0 on Γn,

and initial conditions d|t=0 = d0, ∂td|t=0 = ḋ
0
. The boundary conditions to be

enforced on Σ are discussed in the next subsection.

2.3 Interface coupling conditions

In order to ensure a correct energy balance, both the kinematic and the kinetic

continuity need to be enforced across the fluid-structure interface at all times (see, e.g.,
[85] and [45]). The equilibrium of stresses is given (in the reference configuration) by

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ.

The continuity of the velocity is enforced by setting

û = ∂td on Σ. (8)

The fluid domain displacement is taken such that

df = d on Σ,

that is, the fluid and solid domains remain sticked at all times. This last equality with

(8) yields u = w on Σ(t).
Note that, since we have assumed (for simplicity) that the inlet and outlet

boundaries (Γin, Γout) remain fixed, we have

df = 0 on Γin ∪ Γout. (9)

Therefore equations (2.3) and (9) constrain the value of df on the whole boundary

∂Ωf . Inside Ωf , however, the displacement df (and hence the map A) is arbitrary: it

can be any reasonable extension of d|Σ over Ωf (subjected to (9)). In the sequel we

will denote this operation by

df = Ext (d|Σ) .
For instance, the operator Ext can be given in terms of an harmonic extension, by

solving: ⎧⎪⎪⎨⎪⎪⎩
−Δdf = 0 in Ωf ,

df = 0 on Γin ∪ Γout,

df = d on Σ.
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In summary, the interface coupling conditions are given by:⎧⎪⎨⎪⎩
df = Ext (d|Σ) , ŵ = ∂td

f in Ωf ,

û = ∂td on Σ,

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ.

(10)

Remark 3 The main ingredients of the ALE (arbitrary Lagrangian-Eulerian)
formalism can be inferred from (10). Indeed, the conditions (10)1,2 impose that the
interface points must follow the same displacement as the fluid, thus the Lagrangian
terminology. In contrast, the motion of the remaining points is not necessarily related
to the fluid kinematics, so the Eulerian terminology.

2.4 Summary of the equations and global energy balance

As mathematical model, we consider therefore the system of partial differential

equations involving the Navier-Stokes equations (6), the non-linear elastodynamics

equations (7) and the interface coupling conditions (10). This yields the following

problem: find the fluid domain displacement df : Ωf × R+ → Rd, the fluid velocity

û : Ωf×R+ → Rd, the fluid pressure p̂ : Ωf×R+ → R and the structure displacement

d : Ωs × R+ → Rd such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρf∂tu|A + ρf(u−w) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = uin on Γin,

σ(u, p)n = −poutn on Γout,

(11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρs∂tḋ− div

(
Π(d)

)
= 0 in Ωs,

ḋ = ∂td in Ωs,

d = 0 on Γd,

Π(d)ns = 0 on Γn,

(12)

⎧⎪⎨⎪⎩
df = Ext (d|Σ) , ŵ = ∂td

f in Ωf ,

û = ∂td on Σ,

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ,

(13)

with the initial conditions u|t=0 = u0, d|t=0 = d0 and ∂td|t=0 = ḋ
0
. We refer to

[88] for a recent review on the mathematical analysis of this type of coupled problems.

This review paper is devoted to the numerical resolution of (11)-(13).

The next result (see, e.g., [94] and [46] for a proof) shows that the coupled system

(11)-(13) ensures a correct balance of the mechanical energy.

Lemma 1 Assume that the structure is hyper-elastic (with energy density function W )
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and that the coupled fluid-structure system is isolated, i.e., u = 0 on Γin ∪ Γout. Let

E(t)
def
=

∫
Ωf (t)

ρf

2
|u|2 +

∫
Ωs

ρs

2
|ḋ|2︸ ︷︷ ︸

Kinetic
energy

+

∫
Ωs

W
(
Es(d)

)
︸ ︷︷ ︸

Elastic
potential energy

be the total mechanical energy of the fluid-structure system described by (11)-(13).
Then, the following energy identity holds:

E(t) = E(0)−
∫ t

0

∫
Ωf (t)

2μ|ε(u)|2︸ ︷︷ ︸
Viscous work

.

As expected, dissipation only comes from the fluid viscous effects and the power

exchanged by the fluid and the structure exactly balance at the interface. This balance

is a direct consequence of the interface coupling conditions (13).

3 Implicit coupling

In what follows, τ > 0 denotes a given time-step size and xn an approximation

of a given time-dependent field x at time tn
def
= nτ , with n ∈ N. Moreover,

∂τx
n+1 def

= (xn+1 − xn)/τ denotes the first order backward difference and xn+ 1
2

def
=

(xn+1 + xn)/2 the mid-point value approximation.

The time semi-discretizations of (11)-(13) exploit, in general, the heterogeneous

structure of the coupled problem. That is, (11) and (12) are time semi-discretized by

different time-marching schemes, tailored by their different mathematical properties.

To fix the ideas, we consider an implicit scheme for the ALE Navier-Stokes equations

(11),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρf∂τu
n+1|A + ρf(un+1 −wn+1) ·∇un+1

−divσ(un+1, pn+1) = 0
in Ωf,n+1,

divun+1 = 0 in Ωf,n+1,

un+1 = uin(tn+1) on Γin,

σ(un+1, pn+1)n = pout(tn+1) on Γout;

(14)

and a mid-point rule for the structural equation (12),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρs∂τ ḋ
n+1 − divΠn+ 1

2 = 0 in Ωs,

ḋ
n+ 1

2 = ∂τd
n+1 in Ωs,

dn+1 = 0 on Γd,

Πn+ 1
2ns = 0 on Γn,

(15)
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with the notation Πn+ 1
2

def
= 1

2

(
Π(dn+1) +Π(dn)

)
.

As mentioned in the previous section, explicit coupling schemes may lead

to numerical instabilities. These numerical instabilities have been traditionally

circumvented by considering fully implicit time-discretizations of (11)-(13). For

instance, by combining (14) and (15) with the following implicit treatment of (13):⎧⎪⎪⎨⎪⎪⎩
df,n+1 = Ext(dn+1|Σ), ŵn+1 = ∂τd

f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf),

ûn+1 = ∂τd
n+1 on Σ.

Πn+ 1
2ns = −Jn+1σ̂(un+1, pn+1)(F n+1)−Tn on Σ.

(16)

This yields the time-marching procedure summarized in Algorithm 2.

Algorithm 2 Implicit coupling scheme.

1. Solve the coupled problem (14), (15) and (16);

2. Go to next time-step.

Note that Algorithm 2 is an implicit coupling (so, strongly coupled) scheme, since

(13) is enforced exactly at each time-step. As a result, the scheme can be proved to

satisfy a discrete counterpart of Lemma 1 and, therefore, is energy stable (under a GCL
condition, see [94, 85, 83] and [46]). The payoff of this enhanced stability is that the

equations (14), (15) and (16) yield a highly nonlinear coupled system at each time-

step. As a matter of fact, in addition to the common nonlinearities of the fluid and

solid equations, implicit coupling induces geometrical nonlinearities within the fluid

equations, due to the dependence of Ωf,n+1 on df,n+1.

The solution procedures for this coupled non-linear problem (and for coupled

problems, in general) are commonly classified into two distinct categories: monolithic
and partitioned (see, e.g., [43]). An ad hoc single solver whose purpose is to

simultaneously solve (14)-(15) and (16) leads to a monolithic procedure (see, e.g.,
[105, 113, 70, 14, 72, 51, 15, 11, 77, 58]). A solution method that couples independent

fluid (14) and structure (15) solvers is termed a partitioned procedure (see, e.g.,
[104, 92, 85, 89, 59, 38, 80, 36, 78, 9, 73, 32, 33]).

Remark 4 Needless to say that Algorithm 1 is a partitioned procedure.

Monolithic methods are, by construction, less modular than partitioned approaches

and do not allow the use of legacy software. Partitioned methods, on the contrary,

facilitate the reuse of existing code. Moreover, because of their inherent modularity,

new models and numerical schemes can be introduced while keeping everything else

the same (see, e.g., [117, 39, 6]). All these advantages come, however, with a price:

computational efficiency over a monolithic approach is not necessarily guaranteed (see

[71, 11, 77]).
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3.1 Variational setting

In variational form, the non-linear coupled system (14), (15) and (16) can be

formulated as the following monolithic problem (see, e.g., [46]): for n ≥ 0, find

df,n+1 ∈ H1
Γin∪Γout(Ωf), ûn+1 ∈ H1(Ωf), p̂n+1 ∈ L2(Ωf) and dn+1 ∈ H1

Γd(Ωd)
with un+1|Γin = uin(tn+1), satisfying (16)1,2 and such that

ρf

τ

(∫
Ωf,n+1

un+1 · vf −
∫
Ωf,n

un · vf

)
+ρf
∫
Ωf,n+1

(
un+1−wn+1

) ·∇un+1 ·vf

−ρf
∫
Ωf,n+1

(
divwn+1

)
u ·vf +

∫
Ωf,n+1

σ(un+1, pn+1) : ∇vf +

∫
Ωf,n+1

q divun+1

+
2ρs

τ2

∫
Ωs

(
dn+1 − dn − τ ḋ

n) · vs +

∫
Ωs

Πn+ 1
2 : ∇vs

= −
∫
Γout

pout(tn+1)v
f · n (17)

for all (v̂f ,vs, q̂) ∈ H1
Γin(Ωf)×H1

Γd(Ωs)× L2(Ωf) with v̂f |Σ = vs|Σ.

Partitioned methods for the numerical solution of (17) typically stem from

a domain-decomposition reformulation of this problem. Let L̂f : H
1
2 (Σ) →

H1
Γin∪Γout(Ωf) be a given continuous linear lift operator and consider the following

splitting of the test functions space

{
(v̂f ,vs) ∈ H1

Γin(Ωf)×H1
Γd(Ωs) : v̂f |Σ = vs|Σ

}
=
{
(v̂f ,0) : v̂f ∈ H1

Γin∪Σ(Ω
f)
}

⊕{(L̂f(vs|Σ),vs
)
: v̂s ∈ H1

Γd(Ωs)
}
.

By applying this decomposition to (17) we recover the following equivalent

formulation, involving two coupled subproblems:

{
F(df,n+1, ûn+1, p̂n+1,γn+1

)
= 0,

S(dn+1,μn+1
)
= 0,

(18)

where γn+1 def
= dn+1|Σ is the interface displacement and μn+1 def

=
Rf
(
df,n+1, ûn+1, p̂n+1

)
the variationally consistent representation of the fluid stress

at the interface (whose expression is given below). In short, equation (18)1 ensures the

fluid balance subjected to the interface displacement γn+1, whereas (18)2 enforces the

solid balance subjected to the interface fluid stress μn+1.

The fluid operator

F : H1
Γin∪Γout(Ωf)×H1(Ωf)× L2(Ωf)×H

1
2 (Σ)

→ (H1
Γin∪Σ(Ω

f)× L2(Ωf)×L2(Γin ∪ Σ)×L2(Ωf)
)′
,
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is defined as

〈F(df , û, p̂,γ
)
, (v̂f , q̂, ξ, ζ)

〉 def
=

ρf

τ

(∫
Ωf (df )

u · vf −
∫
Ωf,n

un · vf

)

+ ρf
∫
Ωf (df )

(
u−w(df)

) ·∇u · vf − ρf
∫
Ωf (df )

(
divw(df)

)
u · vf

+

∫
Ωf (df )

σ(u, p) : ∇vf +

∫
Ωf (df )

q div vf +

∫
Γout

pout(tn+1)v
f · n

+

∫
Ωf

(
df − Ext(γ)

) · ζ +

∫
Σ

(
û− ∂τγ

) · ξ +

∫
Γin

(
u− uin(tn+1)

) · ξ (19)

for all (v̂f , q̂, ξ, ζ) ∈ H1
Γin∪Σ(Ω

f) × L2(Ωf) × L2(Γin ∪ Σ) × L2(Ωf). Here,

we have used the notations ŵ(df)
def
= (df − df,n)/τ , ∂τγ

def
= (γ − γn)/τ and

Ωf(df)
def
= (IΩf + df)(Ωf).

The interface fluid residual operator Rf : H1(Ωf) × H1(Ωf) × L2(Ωf) →
H− 1

2 (Σ) is then defined by〈Rf
(
df , û, p̂

)
,λ
〉 def
=
〈F(df , û, p̂,γ

)
, (L̂fλ, 0,0,0)

〉
(20)

for all λ ∈ H
1
2 (Σ).

Remark 5 Note that the test function v̂f in (19) vanishes on the boundary Γin ∪Σ, so
that Dirichlet boundary conditions are strongly imposed. The last two terms of (19) are
not included in practice in the variational formulation. They have been incorporated
in the definition of the fluid operator in order to facilitate the presentation. The same
observation applies to the third last term.

Similarly, the solid operator

S : H1
Γd(Ωs)×H− 1

2 (Σ) → (H1
Γd(Ωs)

)′
,

is defined as

〈S(d,μ),vs
〉 def
=

2ρs

τ2

∫
Ωs

(
d− dn − τ ḋ

n) · vs +
1

2

∫
Ωs

(
Π(d) +Π(dn)

)
: ∇vs

+
〈
μ,vs|Σ

〉
for all vs ∈ H1

Γd(Ωs).
Finally, problem (18) can be reformulated as an interface problem in terms of the

nonlinear fluid and solid Steklov-Poincaré operators (see [36]). The fluid Steklov-

Poincaré operator Sf : H
1
2 (Σ) → H− 1

2 (Σ) (also called Dirichlet-Neumann map) is

defined by

Sf(γ)
def
= Rf

(
df(γ), û(γ), p̂(γ)

) ∀γ ∈ H
1
2 (Σ), (21)
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where (df(γ), û(γ), p̂(γ)
)

is the solution of the Dirichlet fluid subproblem:

F(df(γ), û(γ), p̂(γ),γ
)
= 0. (22)

In other words, Sf(γ) gives the interface fluid stress associated to the displacement γ
of the interface. Analogously, the nonlinear solid inverse Steklov-Poincaré operator

Ss : H− 1
2 (Σ) → H

1
2 (Σ) (also called Neumann-Dirichlet map) is given by

Ss(μ) = d(μ)|Σ ∀μ ∈ H− 1
2 (Σ),

where d(μ) is the solution of the Neumann solid subproblem:

S(d(μ),μ) = 0.

From the above definitions, it follows that problem (18) (or, equivalently, (17)) is

equivalent to the following interface problem: find γn+1 ∈ H
1
2 (Σ) such that

Ss
(
Sf(γn+1)

)
= γn+1. (23)

This equation is the so-called interface Dirichlet-Neumann formulation of (17). The

composition of (24) with the inverse operator (Ss)−1, gives rise to the so-called

Steklov-Poincaré equation (see [36]):

(Ss)−1(γn+1)− Sf(γn+1) = 0. (24)

Remark 6 For the sake of conciseness, we have limited the presentation to the time
semi-discrete problem (17). Nevertheless, the discussion also applies to the fully
discrete case, for instance, after space discretization of (17) with finite elements.

3.2 Partitioned solution methods

These methods are generally based on the application of a particular nonlinear iterative

method to the interface formulations (23) or (24). In this subsection we discuss some

iterative procedures applied to (23). Some solution methods for the non-linear problem

(24) are introduced in [36]. Alternative partitioned procedures, based on Robin-

Neumann transmission conditions, have been recently introduced in [9, 10].

The formulation (23) reduces problem (18) to the determination of a fixed point

of the Dirichlet-Neumann operator Ss ◦ Sf . This motivates the use of fixed-point

(e.g., non-linear Richardson) based iterations, as shown in Algorithm 3 (see, e.g.,
[91, 92, 85, 96, 35, 107, 78]), where ωk ∈ (0, 1] is a given relaxation parameter which

is chosen in order to guarantee convergence. At the fully discrete level (i.e., after

discretization in space), an expression for this parameter (which significantly improves

the convergence) is given by the following multi-dimensional Aitken’s formula (see

[92, 35, 78]):

ωk =

(
γk − γk−1

) · (γ̃k+1 − γk + γ̃k − γk−1

)
|γ̃k+1 − γk + γ̃k − γk−1|2

, k ≥ 1. (25)
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Algorithm 3 Relaxed Dirichlet-Neumann fixed-point iterations.

1. Initialize γ0

2. For k ≥ 0 until convergence of γk

(a) Solve fluid (including domain update):

μk = Sf(γk);

(b) Solve solid:

γ̃k+1 = Ss
(
μk);

(c) Relaxation:

γk+1 = ωkγ̃k+1 + (1− ωk)γk.

Algorithm 3 can be considered as the simplest way of solving implicit coupling

in a partitioned fashion: existing fluid and solid solvers (possibly black-box) can be

straightforwardly coupled, without significant modifications of the two solvers. The

method, however, may suffer from a poor convergence behavior, which is dictated

by the amount of added-mass effect in the system. Indeed, increased relaxation is

required when the solid density decreases or the domain length increases, which can

compromise efficiency in real applications. Theoretical explanations of this issue

have been reported in [25] using a simplified model (see also [85, 34, 74, 31]).

The limitations of Algorithm 3 have led to the development of new variants: for

instance, based on the use of transpiration techniques [37], reduced order models

[116], vector extrapolation [79], interface artificial compressibility [104, 73, 33], and

Robin-Neumann coupling [9]. It is worth noticing that these last two variants achieve

convergence without the need of relaxation and have a low sensitivity to the added-

mass effect.

Alternatively, one can apply a Newton based method to (23), for a fast convergence

towards the solution (see, e.g., [59, 60, 32, 49]). This yields Algorithm 4, which

involves the Jacobian DγR of the coupled operator

R(γ)
def
= Ss

(
Sf(γ)

)− γ. (27)

In practice, the linearized fluid-structure problem (26) is solved using an operator-

free (Krylov) iterative method, as GMRES, which only requires repeated evaluations

of DγR(γ) against given interface displacements λ. In other words, the Jacobian

operator DγR(γ) is not explicitly needed.

Approximate evaluations of DγR(γ)λ (or resolutions of (26)) lead to the so-called

inexact (or quasi-) Newton methods (see, e.g., [59, 78, 32]). For instance, we can use

as an approximation the difference quotient

DγR(γ)λ ≈ 1

ε

(
R(γ + ελ)−R(γ)

)
, (28)

with ε > 0 a given small enough parameter (see, e.g., [19]). Note that this approach
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Algorithm 4 Interface Dirichlet-Neumann Newton’s method.

1. Initialize γ0

2. For k ≥ 0 until convergence of γk

(a) Solve fluid (including domain update):

μk = Sf(γk);

(b) Solve solid:

γ̃k+1 = Ss
(
μk);

(c) Evaluate residual:

R(γk) = γ̃k+1 − γk;

(d) Solve tangent problem:

DγR(γk)δγk = −R(γk); (26)

(e) Update rule:

γk+1 = γk + δγk.

facilitates the use of black-box solvers (as Algorithm 3), since (28) only requires

residual evaluations. Nevertheless, as noticed in [59, Remark 5.1] (see also [78]), such

a strategy may lead to inefficient Newton iterations.

Using the chain rule, we have

DγR(γ)λ = DμS
s(Sf(γ))DγS

f(γ)λ− λ, (29)

so that the exact evaluation of DγR(γ)λ can be split into the following three sequential

steps:

(i) Solve the linearized fluid subproblem:

ζ = DγS
f(γ)λ;

(ii) Solve the linearized solid subproblem:

η = DμS
s(Sf(γ))ζ; (30)

(iii) Update: DγR(γ)λ = η − λ.

Steps (i) and (ii) require the linearized versions of the fluid and solid solvers. Note

that step (ii) is standard in solid solvers. Step (i), on the contrary, is non-standard

and usually not available in most fluid solvers. For this reason, this step is usually

approximated (see, e.g., [59, 60]).
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In the rest of this subsection, we present the procedure proposed in [49] for

the evaluation of DγR(γ)λ, based on shape-derivative calculus (see [108, 1]). By

derivation of (21) with respect to γ in the direction λ, we have

〈
DγS

f(γ)λ, θ
〉 def
= −〈DdfF(df(γ), û(γ), p̂(γ),γ

)
δd̂

f
, (L̂fθ, 0,0,0)

〉
− 〈D(û,p̂,γ)F

(
df(γ), û(γ), p̂(γ),γ

)
(δû, δp̂,λ), (L̂fθ, 0,0,0)

〉
, (31)

for all θ ∈ H
1
2 (Σ) and with the notations δd̂

f def
= Dγd

f(γ)λ, δû
def
= Dγû(γ)λ and

δp̂
def
= Dγ p̂(γ)λ. While the second derivative in the right hand-side of (31) is standard

(e.g., a classical Fréchet derivative), the cross-Jacobian DdfF requires shape-derivative

calculus, since it involves the derivation with respect to df of Eulerian integrals over

Ω(df). This yields the following expression (see [49] for details):

〈
DdfF(df , û, p̂,γ)δd̂

f
, (v̂, q̂, ξ, ζ)

〉
=

1

τ

∫
Ω(df )

ρf(div δdf)u · v

+

∫
Ω(df )

ρf(div δdf)
(
u−w(df)

) ·∇u · v −
∫
Ω(df )

ρf
[∇u∇δdf

(
u−w(df)

)] · v
− 1

τ

∫
Ω(df )

ρfδdf ·∇u · v +

∫
Ω(df )

σ(u, p)
[
I div δdf − (∇δdf)T

]
: ∇v

−
∫
Ω(df )

μ
[∇u∇δdf + (∇δdf)T(∇u)T

]
: ∇v

−
∫
Ω(df )

q div
{
u
[
I div δdf − (∇δdf)T

]}
+

∫
Ω

δd̂
f · ζ, (32)

for all (v̂, q̂, ξ, ζ) ∈ H1
Γin∪Σ(Ω

f) × L2(Ωf) × L2(Γin ∪ Σ) × L2(Ωf). Note that

the above terms (see also (see [38, 15]) are not standard in a fluid research code,

which explains why these terms have been usually neglected, or approximated by finite

differences (see, e.g., [113, 89, 70]).

On the other hand, δd̂
f
, δû and δp̂ can be obtained by implicit derivation of (22).

This yields

δd̂
f
= DγExt(γ)λ, (33)

and (δû, δp̂) solve the linearized fluid subproblem:〈
D(û,p̂)F

(
df(γ), û(γ), p̂(γ),γ

)
(δû, δp̂), (v̂, q̂,0,0)

〉
= −〈DdfF(df(γ), û(γ), p̂(γ),γ

)
δd̂

f
, (v̂, q̂,0,0)

〉
(34)

for all (v̂, q̂) ∈ H1
Γin∪Σ(Ω

f) × L2(Ωf), with the boundary conditions δû|Σ = λ/τ ,

δû|Γin = 0.

In summary, for each interface displacement λ, the sensitivity DγSf(γ)λ can be

evaluated as follows:

(i) Compute the fluid domain displacement sensitivity δd̂
f

from (33);
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(ii) Compute the fluid sensitivities (δû, δp̂) from (34) and (32);

(iii) Evaluate DγS
f(γ)λ from (31) and (32).

Remark 7 Note that each operator-free evaluation (29) (one per GMRES iteration in
(26)) requires the resolution of the linearized fluid subproblem (34) and the linearized
solid sub-problem (30).

We conclude this subsection with a few numerical illustrations from [49], involving

the coupling of the ALE Navier-Stokes equations with the linear elasticity equations.

The reported results correspond to the simulation of a pressure wave propagation in a

compliant straight vessel (see [52, 59]). The following procedures are compared:

• FP-Aitken: Algorithm 3 with Aitken’s dynamic relaxation (25);

• Newton: Algorithm 4 with exact Jacobian evaluation described above;

• Inexact-Newton: Algorithm 4 with the inexact Jacobian evaluation obtained by

neglecting the cross-Jacobian DdfF (shape terms) in (34) and (32).

Figure 2 (left) reports the number of iterations per time-step, performed by each

procedure. The superior convergence behavior of both Newton algorithms is clearly

visible. Figure 2 (right) shows that both Newton algorithms are about 2 times faster

than the fixed-point algorithm (see [49] for a detailed discussion). Note that the cost of

each Newton iteration is higher than the cost of a fixed-point iteration (see Remark 7).

Figure 2: Left: number of non-linear iterations per time-step. Right: dimensionless

elapsed CPU time (τ = 10−4 s). From [49].

The impact of the exact Jacobian evaluations in Algorithm 4 can be highlighted by

increasing the time-step size. Figure 3 (left), reports the number of iterations per time-

step obtained with τ = 10−3 s. The fixed-point and inexact-Newton algorithms fail to

converge after two time steps (the allowed maximum number of iterations is reached)

whereas the exact Newton method converges and requires a low number of iterations.

Figure 3 (right) shows the evolution of the residual during the iteration process in both

Newton algorithms at the third time step. While the exact Newton only requires 3

iterations to reach the convergence threshold, the inexact-Newton algorithm is unable

to reduce the residual.
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Figure 3: Left: number of non-linear iterations per time-step. Right: Newton residuals

(τ = 10−3 s). From [49].

Remark 8 Numerical evidence shows that the convergence of the GMRES iterations
involved in (26) is sensitive to the amount of added-mass effect in the system (see
[11]), whereas the number of Newton iterations is practically unaffected. The overall
sensitivity is, however, remarkably lower than that of Algorithm 3 (see [11, §6.1]). Note
that, for linear fluid and solid solvers, Algorithms 3 and 4 can be viewed as, Dirichlet-
Neumann preconditioned, Richardson and GMRES iterations, respectively. Hence, the
superiority of Algorithms 4. At last, let us mention that the added-mass sensitivity of
the GMRES iterations can be reduced by using Robin-Neumann preconditioners, as
proposed in [10].

4 Semi-implicit coupling

A first approach to reduce the computational complexity of implicit coupling consists

in treating the fluid domain geometry explicitly (see, e.g., [96, 110, 97, 111]). This

corresponds to the following explicit-implicit treatment of (13):

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf), (35){

ûn+1 = ∂τd
n+1 on Σ,

Πn+ 1
2ns = −Jn+1σ̂(un+1, pn+1)(F n+1)−Tn on Σ,

(36)

which, combined with (14) and (15), yields the time-marching scheme detailed in

Algorithm 5. Although not fully implicit, this scheme is strongly coupled since the

transmission conditions (13)2 and (13)3 are treated implicitly via (36). As a result, the

stability of Algorithm 5 is not compromised by the amount of added-mass effect in the

system (see [110, 97, 111]).

At each time-step, Algorithm 5 involves the resolution of the non-linear system

(14), (15) and (36). This coupled problem enters the abstract framework of the previous

section (by simply removing the unknown df,n+1 in (18)) and, therefore, can be solved

by means of the partitioned procedures discussed therein. Note however that, due to

the explicit treatment of the fluid geometry, the corresponding fluid operator Sf does

not involve the computation of the displacement df . Hence, the shape terms, involved
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Algorithm 5 Semi-implicit coupling scheme via explicit geometry treatment.

1. Update the fluid domain configuration (mesh) and velocities via (35);

2. Solve the coupled problem (14), (15) and (36);

3. Go to next time-step.

in the cross-derivative DdfF , are no longer needed for the exact evaluation of DγS
f

in the tangent problem (26) of Algorithm 4.

4.1 Projection-based semi-implicit coupling

As mentioned above, Algorithm 5 is still a strongly coupled scheme, in the sense that

(13)2 and (13)3 are exactly enforced at each time-step. In this subsection we present the

alternative semi-implicit coupling scheme proposed in [47, 48]. Though not strongly

coupled, this scheme exhibits very good stability properties. Basically this scheme

relies upon the three following ideas:

• the pressure-structure coupling is treated implicitly in order to avoid instabilities.

This observation is motivated by the analysis reported in [25], which shows that

explicit pressure-structure coupling yields a scheme whose stability is dictated

by the amount of added-mass effect in the system;

• the remaining terms of the fluid equations (dissipation, convection and

geometrical non-linearities) are explicitly coupled to the structure. This

drastically reduces the cost of the coupling without compromising the overall

stability of the scheme;

• this implicit-explicit coupling can be conveniently performed using a Chorin-

Temam projection scheme (see, e.g, [112, 29, 63]) in the fluid. Indeed, at each

time step we propose to couple implicitly the projection sub-step (carried out

in a known fluid domain) with the structure, so accounting for the added-mass

effect in an implicit way, while the ALE-advection-viscous sub-step is explicitly

coupled.

The detailed steps of the semi-implicit coupling scheme proposed in [48] are given

in Algorithm 6. Here, the scheme is presented in its (non-incremental) velocity-

correction version and with a pressure-Darcy formulation of the projection step (see

[63, Section 4.1]).

Remark 9 Alternatively, the projection step (37) can be formulated as the pressure-
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Algorithm 6 Semi-implicit coupling projection scheme ([48]).

1. Implicit step (pressure-structure coupling):

• Fluid projection sub-step:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

τ

(
un+1 − ũn)+∇pn+1 = 0 in Ωf,n,

divun+1 = 0 in Ωf,n,

un+1 · n = uin(tn+1) · n on Γin,

pn+1 = pout(tn+1) on Γout,

ûn+1 · n = ∂τd
n+1 · n on Σ.

(37)

• Solid: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs∂τ ḋ
n+1 − divΠn+ 1

2 = 0 in Ωs,

∂τd
n+1 = ḋ

n+ 1
2 in Ωs,

dn+1 = 0 on Γd,

Πn+ 1
2ns = 0 on Γn,

Πn+ 1
2ns = −Jnσ̂(ũn, pn+1)(F n)−Tn on Σ.

(38)

2. Explicit step (viscous-structure coupling):

• Update fluid domain:

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1,

Ωf,n+1 = (IΩf + df,n+1)(Ωf).
(39)

• Fluid viscous sub-step:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf
ũn+1 − un+1

τ

∣∣∣∣
A

+ ρf(ũn −wn+1) ·∇ũn+1

−2μdiv ε(ũn+1) = 0

in Ωf,n+1,

ũn+1 = uin(tn+1) on Γin,

2με(ũn+1)nf = 0 on Γout,̂̃un+1
= ∂τd

n+1 on Σ.
(40)

3. Go to next time-step.
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Poisson problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δpn+1 = −ρf

τ
div ũn in Ωf,n,

∂np
n+1 = −ρf∂tuin(tn+1) · n on Γin,

pn+1 = pout(tn+1) on Γout,

∂np
n+1 = −ρf

τ

(
∂τd

n+1 − ũn) · n on Σn.

(41)

Moreover, the divergence free velocity unknown un+1 can then be eliminated in (40)

via the relation
ρf

τ
un+1 =

ρf

τ
ũn −∇pn+1 in Ωf,n.

Note that step 2 of Algorithm 6 is performed only once per time-step. Step

1 involves the resolution of a coupled problem ((37)-(38) or (41)-(38)) of reduced

computational complexity (compared with step 1 of Algorithm 2 or with step 2 of

Algorithm 5). This coupled problem can be solved, in a partitioned fashion, with

simplified versions of the procedures discussed in §3. As a matter of fact, the main

advantages of Algorithm 6 are its simplicity of implementation (specially compared

to sophisticated Newton-like methods) and its efficiency compared to the solution

procedures presented so far. Obviously, its main limitation is that it assumes the fluid

to be solved with a projection-based scheme.

Remark 10 The ideas presented here can be generalized to other fractional step
schemes in the fluid. For instance, extensions in the framework of algebraic
factorization methods have been reported in [103, 12].

Algorithm 6 is based on the following implicit-explicit time discretization of the

coupling conditions (13):{
Πn+ 1

2ns = −Jnσ̂(ũn, pn+1)(F n)−Tn on Σ,

ûn+1 · n = ∂τd
n+1 · n on Σ,{

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf),̂̃un+1

= ∂τd
n+1 on Σ.

Note that (13)3 is not exactly enforced at each time-step and, therefore, Algorithm 6

is not a strongly coupled scheme. Yet, this scheme is also not loosely coupled since

(13)3 is not treated explicitly (namely, the solid displacement and the fluid pressure are

implicitly coupled).

Stability analysis (linear case)

In [48], the stability of Algorithm 6 has been analyzed in the framework of the

following linear model problem, coupling the Stokes equations with a linear elastic
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solid model: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

u = uin on Γin,

σ(u, p)n = poutn on Γout,

(42)

⎧⎪⎨⎪⎩
ρs∂ttd− divσ(d) = 0 in Ωs,

d = 0 on Γd,

σ(d)ns = 0 on Γn,

(43)

{
u = ∂td on Σ,

σ(d)ns = −σ(u, p)n on Σ.
(44)

Though simplified, the linear coupled problem (42)-(44) contains the key features of

more complex fluid-structure problems involving an incompressible fluid, as regards

the stability of the coupling schemes (see, e.g., [25]).

Since the analysis is carried out in the fully discrete case, we need to introduce

some notation for the discretization in space. We define Qf
h as an internal continuous

Lagrange finite element approximation of L2(Ωf). Similarly, V f
h (resp. V f

ω,h, with

ω ⊂ ∂Ωf , and V s
H ) is an internal continuous Lagrange finite element approximation of

H1(Ωf) (resp. H1
ω(Ω

f) and H1
Γd(Ωs)). Since the fluid and solid space discretizations

do not necessarily match at the interface Σ, we introduce an interface matching

operator Πh : V s
H(Σ) → V f

h(Σ), where V s
H(Σ) (resp. V f

h(Σ)) stands for the

trace finite element space associated to V s
H (resp. V f

h). The operator Πh can be,

for instance, the standard Lagrange interpolant (nodal-wise matching) or a projection

based operator (see, e.g., [41, 61, 7]).

The fully discretized problem writes as follows: for n ≥ 0,

1. Implicit step (pressure-structure coupling): find (un+1
h , pn+1

h ,dn+1
H ) ∈ V f

h ×
Qf

h × V s
H such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
h = uin(tn+1), on Γin,

un+1
h = Πh

(
∂τd

n+1
H

)
, on Σ,

ρf

τ

∫
Ωf

(
un+1
h − ũn

h

) · vf
h −
∫
Ωf

pn+1
h div vf

h +

∫
Ωf

qh divu
n+1
h

= −
∫
Γout

poutv
f
h · n ∀(vf

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h,⎧⎨⎩
ρs

τ2

∫
Ωs

(
dn+1
H − 2dn

H + dn−1
H

) · vs
H + as

(
dn+1
H ,vs

H

)
= −〈Rμ(ũ

n
h), Lh(v

s
H)
〉− 〈Rp(u

n+1
h , pn+1

h ), Lh(v
s
H |Σ)
〉 ∀vs

H ∈ V s
H ;

(45)
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2. Explicit step (viscous-structure coupling): find ũn+1
h ∈ V f

h such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ũn+1
h = uin(tn+1), on Γin,

ũn+1
h = Πh

(
∂τd

n+1
H

)
, on Σ,

ρf

τ

∫
Ωf

(
ũn+1
h − un+1

h

) · ṽf
h + 2μ

∫
Ωf

ε(ũn+1
h ) : ε(ṽf

h)

= 0

∀ṽf
h ∈ V f

Σ∪Γin,h.

(46)

Here, as(·, ·) stands for a general solid stiffness bilinear form and the fluid stress at

the interface are given in terms of the (variationally consistent) residuals Rμ and Rp,

defined as〈
Rμ(ũ

n+1), ṽf
〉

def
=

ρf

τ

∫
Ωf

(
ũn+1 − un+1

) · ṽf + 2μ

∫
Ωf

ε(ũn+1) : ε(ṽf),

〈Rp(u
n+1, pn+1),vf

〉 def
=

ρf

τ

∫
Ωf

(
un+1 − ũn) · vf −

∫
Ωf

pn+1 div vf ,

and Lh : V s
H(Σ) → V f

h stands for the standard discrete lifting operator, satisfying

Lh(bH)|Σ = Πh(bH |Σ) and Lh(bH)|Γin∪Γout = 0 for all bH ∈ V s
H(Σ).

Remark 11 Note that, in (45), we impose un+1
h = Πh(∂τd

n+1
H ) on Σ (instead of

(37)5) which is also optimal in the framework of finite element approximations (see
[62]).

Remark 12 We have considered here a simplified version of the coupling scheme given
by Algorithm 6. The fluid domain being fixed, no ALE terms appear in the equations.
Moreover, we assumed that the solid equations are discretized in time with a (non-
conservative) leap-frog scheme. In spite of that, the main feature of the coupling
scheme is preserved: the diffusion step is explicitly coupled with the structure. Without
these simplifications, the stability analysis does not seem to be straightforward.

Let

En def
=

ρf

2
‖un

h‖20,Ωf +
ρs

2
‖∂τdn

H‖20,Ωs +
1

2
as(dn

H ,dn
H),

be the discrete energy of the system at time-step n. In what follows, the symbol �
indicates an inequality up to a multiplicative constant independent of the discretization

and physical parameters.

The following result (from [48]) provides the conditional stability of the coupling

scheme (45)-(46).

Theorem 2 Assume that pout = 0, uin = 0, Rμ(ũ
0
h) = 0 and that the interface

matching operator Πh : V s
H(Σ) −→ V f

h(Σ) is L2-stable. Then, under the condition(
ρf

h

Hα
+ 2

μτ

hHα

)
� ρs, with α

def
=

{
0, if Ωs = Σ,

1, if Ωs �= Σ,
(47)
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there holds,

En + μ
n−1∑
m=0

τ‖ε(ũm+1
h )‖20,Ωf � E0

for n ≥ 1.

Some observations are now in order:

• The assumption on the L2-stability of the interface matching operator is satisfied

by the standard finite element interpolation operator, for example, whenever

the fluid interface triangulation is a sub-triangulation of the solid interface

triangulation. This includes, in particular, the case of interface matching meshes.

By construction, a mortar based matching operator also fulfills that assumption

(see [17]).

• The sufficient condition (47) can be satisfied by reducing the ratios h/Hα and

τ/(hHα). The later might be thought as a CFL-like condition. Note that this

is a major advantage compared to the (in)stability condition (5) for the explicit-

coupling scheme.

• In the case Ωs = Σ (thin structure model), i.e., α = 0, condition (47) becomes

independent of the solid mesh size H . In particular, we may set H = h, and

stabilize the scheme by reducing h (and τ ).

• In the case Ωs �= Σ, i.e., α = 1, the stability of the scheme can be ensured

provided that the fluid mesh size h is small enough compared to the structure

mesh size H . Numerical simulations performed in 2D and 3D, with h = H ,

showed however that this condition seems to be not necessary, when dealing

with physiological parameters.

Remark 13 We refer to [7] for an a priori error analysis of (45)-(46) which ensures
an overall O(τ

1
2 +hk+Hm+hl) convergence rate in the energy norm. Here, k,m are

respectively the polynomial degrees of the fluid and solid discretizations and l depends
on the choice of the matching operator Πh.

COUPLING ALGORITHM CPU time

FP-Aitken 24.86

Implicit Inexact-Newton 6.05

Newton 4.77

Semi-Implicit Newton 1

Table 1: Elapsed CPU time (dimensionless): straight cylinder, 50 time steps of length

τ = 2× 10−4 s. From [48].

We conclude this section with a few numerical illustrations, involving the coupling

of the ALE Navier-Stokes equations with a non-linear shell model (based on MITC4

shell elements [26]). Table 1 shows a comparison of the elapsed CPU times
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COUPLING CPU time

Implicit 9.3

Semi-Implicit 1.0

Table 2: Elapsed CPU time (dimensionless): blood flow in a idealized abdominal aortic

aneurysm, 2 cardiac cycles (1000 time-steps of length τ = 1.68× 10−3 s).

(dimensionless) obtained in the simulation of a pressure wave propagation in a

compliant straight vessel (see [52, 59]). We can notice that the semi-implicit coupling

is 4.7 times faster than the best implicit coupling. This performance rises much more

when considering a more physiological situation. In Table 2 we have reported the

the elapsed CPU times (dimensionless) obtained in the simulation of two cardiac

cycles of blood flow in a idealized abdominal aortic aneurysm (see Figure 4 (left))

under physiological conditions (see [106]). The accuracy of the semi-implicit coupling

scheme is highlighted in Figure 4 (right), in terms of the outflow rate.

Figure 4: Left: idealized abdominal aortic aneurysm. Right: comparison of implicit

and semi-implicit coupling schemes, outflow rate.

5 Nitsche’s based interface treatment

The coupling schemes described in the previous sections treat the interface condition

(13)2 as a (strongly imposed) Dirichlet boundary condition in the fluid, and (13)3 as a

Neumann boundary condition in the solid, respectively. We shall see, in this section,

that an appropriate weak treatment of these interface conditions, based on Nitsche’s

interface method [16, 67], benefits from:

• a specific treatment of the viscous contributions;

• further insights on the instability of explicit coupling (Algorithm 1).

These key features motivated the derivation of a stabilized explicit coupling scheme,

in [22], and of a new semi-implicit coupling scheme, in [5], whose stability properties

are independent of the added-mass effect. These schemes are presented in §5.1 and in

§5.2, respectively.
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5.1 Stabilized explicit coupling

For the sake of simplicity and without loss of generality (see Remark 21 below), in

this subsection we limit the presentation to the case of the linear coupled problem

(42)-(44). We shall also make use of some of the notations introduced in §4.1 for the

discretization in space.

Space semi-discretization: interface Nitsche’s formulation

Originally, Nitsche’s method [95] is a technique for enforcing Dirichlet boundary

conditions in a weak sense (instead of being built into the finite element space).

The method has recently been generalized to other boundary conditions [75]. The

extension of Nitsche’s method to the approximation of elliptic and parabolic problems

with discontinuous piecewise polynomials is known as discontinuous Galerkin (DG)

method (see, e.g., [13, 119, 2, 3]). In [16], Nitsche’s method was proposed for

the approximation of an interface problem arising in the framework of domain

decomposition with non-matching grids. Since then, it has been extended to different

multi-physics problems (see, e.g., [24, 23], and [67] for a review). In the context of

fluid-structure interaction, using implicit coupling, some results are given for vibration

problems (acoustics) in [68] and for transient fluid-structure interaction problems with

moving fluid domains in [69].

The space semi-discrete Nitsche’s interface formulation of (42)-(44) proposed in

[22] is given as follows: find (uh, ph,dh, ḋh) ∈ V f
h × Qh × [V s

h]
2, with uh = uin

on Γin, such that

Af
(
(uh, ph), (v

f
h, qh)

)
+As

(
(dh, ḋh), (v

s
h, rh)

)
−
∫
Σ

σ(uh, ph)n · (vf
h − vs

h

)− ∫
Σ

(
uh − ∂tdh

) · σ(vf
h,−qh)n

+
γμ

h

∫
Σ

(
uh − ∂tdh

) · (vf
h − vs

h

)
= −
∫
Γout

poutv
f
h · n (48)

for all (vf
h, qh,v

s
h, rh) ∈ V f

Γin,h × Qh × [V s
h]

2. Here, γ > 0 is a dimensionless

penalty parameter (specified below), and the fluid and solid volume contributions are

given by

Af
(
(uh, ph), (v

f
h, qh)

) def
= ρf
∫
Ωf

∂tuh · vf
h + 2μ

∫
Ωf

ε(uh) : ε(v
f
h)−

∫
Ωf

ph div v
f
h

+

∫
Ωf

qh divuh,

As
(
(dh, ḋh), (v

s
h, rh)

) def
= ρs
∫
Ωs

∂tḋh · vs
h + as

(
dh,v

s
h

)
+ ρs
∫
Ωf

(
ḋh − ∂tdh

) · rh.
Remark 14 Note that, in (48), uh and ∂tdh (and vf

h and vs
h) do not necessarily match

at the interface (interface DG formulation). The interface integrals involving the fluid
stress σ(uh, ph)n are computed face-wise, as broken integrals.
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By taking alternatively (vf
h, qh) = 0 and vs

h = rh = 0 in (48), this monolithic

problem can be reformulated (in a partitioned fashion) in terms of two interface

coupled problems:

• Solid subproblem: find (dh, ḋh) ∈ [V s
h]

2 such that

As
(
(dh, ḋh), (v

s
h, rh)

)
+

γμ

h

∫
Σ

∂tdh · vs
h

=
γμ

h

∫
Σ

uh · vs
h −
∫
Σ

σ(uh, ph)n · vs
h (49)

for all (vs
h, rh) ∈ [V s

h]
2;

• Fluid subproblem: find (uh, ph) ∈ V f
h ×Qh, with uh = uin on Γin, such that

Af
(
(uh, ph), (v

f
h, qh)

)− ∫
Σ

σ(uh, ph)n · vf
h

−
∫
Σ

uh · σ(vf
h,−qh)n+

γμ

h

∫
Σ

uh · vf
h = −

∫
Σ

∂tdh · σ(vf
h,−qh)n

+
γμ

h

∫
Σ

∂tdh · vh −
∫
Γout

poutv
f
h · n (50)

for all (vh, qh) ∈ V f
Γin,h ×Qh.

Time semi-discretization: implicit and explicit coupling

As in §1, we consider a first order backward difference discretization in the fluid and

a mid-point rule for the structure. The fully discrete fluid and solid volume terms at

time-step n are then given by

Af
τ

(
(un+1

h , pn+1
h ), (vf

h, qh)
) def
= ρf
∫
Ωf

∂τu
n+1
h · vf

h + 2μ

∫
Ωf

ε(un+1
h ) : ε(vf

h)

−
∫
Ωf

pn+1
h div vf

h +

∫
Ωf

qh divu
n+1
h ,

As
τ

(
(dn+1

h , ḋ
n+1

h ), (vs
h, rh)

) def
= ρs
∫
Ωs

∂τ ḋ
n+1

h · vs
h + as

(
d
n+ 1

2

h ,vs
h

)
+ ρs
∫
Ωs

(
ḋ
n+ 1

2

h − ∂τd
n+1
h

) · rh
and (49)-(50) can be discretized in time as follows: for n ≥ 0,

• Solid subproblem: find (dn+1
h , ḋ

n+1

h ) ∈ [V s
h]

2 such that

As
τ

(
(dn+1

h , ḋ
n+1

h ), (vs
h, rh)

)
+

γμ

h

∫
Σ

∂τd
n+1
h · vs

h

=
γμ

h

∫
Σ

u�
h · vs

h −
∫
Σ

σ(u�
h, p

�
h)n · vs

h (51)

for all (vs
h, rh) ∈ [V s

h]
2;
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• Fluid subproblem: find (un+1
h , pn+1

h ) ∈ V f
h ×Qh, with un+1

h = uin(tn+1) on

Γin, such that

Af
τ

(
(un+1

h , p+1
h ), (vf

h, qh)
)− ∫

Σ

σ(u�
h, p

�
h)n · vf

h

−
∫
Σ

un+1
h ·σ(vf

h,−qh)n+
γμ

h

∫
Σ

un+1
h · vf

h = −
∫
Σ

∂τd
n+1
h ·σ(vf

h,−qh)n

+
γμ

h

∫
Σ

∂τd
n+1
h · vf

h −
∫
Γout

poutv
f
h · n (52)

for all (vf
h, qh) ∈ V f

Γin,h ×Qh.

If (u�
h, p

�
h) = (un+1

h , pn+1
h ), the scheme (51)-(52) corresponds to an implicit coupling

scheme. On the contrary, for (u�
h, p

�
h) = (un

h, p
n
h) the coupling scheme is explicit (i.e.,

loosely coupled).

Let En denote the total discrete energy of the system at the time level n, defined

by

En def
=

ρf
2
‖un

h‖20,Ωf
+

ρs
2
‖ḋn

h‖20,Ωs
+

1

2
as(dn

h,d
n
h).

The next result (from [22]) summarizes the energy based stability of the coupling

schemes given by (51)-(52).

Theorem 3 Assume that the fluid-structure system is isolated (i.e., uin = 0 and
pout = 0) and let (un+1

h , pn+1
h ,dn+1

h , ḋ
n+1

h ) be given by (51)-(52).

• Implicit coupling: For (u�
h, p

�
h) = (un+1

h , pn+1
h ), γ ≥ 16CTI and n ≥ 1, there

holds

En + μ

n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γμ

h

n−1∑
m=0

τ‖um+1
h − ∂τd

m+1
h ‖20,Σ � E0;

• Explicit coupling: For (u�
h, p

�
h) = (un

h, p
n
h), γ ≥ 256CTI and n ≥ 1, there

holds

En + μ
n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γμ

h

n−1∑
m=0

τ‖um+1
h − ∂τd

m+1
h ‖20,Σ

+
γμτ

h
‖un

h‖20,Σ � E0 +
γμτ

h
‖u0

h‖20,Σ + μ‖ε(u0
h)‖20,Ωf

+
h

γμ

n−1∑
m=0

τ‖pm+1
h − pmh ‖20,Σ. (53)

As expected implicit coupling is unconditionally stable. As regards explicit

coupling, Theorem 3 shows that the Nitsche interface penalty and the viscous

dissipation control the artificial interface viscous perturbation, generated by the explicit

treatment of the coupling. Unfortunately, the artificial interface pressure contribution
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cannot be directly controlled by the discrete energy of the system En, since we not

have control on the time pressure fluctuations at the interface. Somehow this illustrates

the already mentioned infamous numerical instability featured by the explicit coupling

scheme, when dealing with incompressible fluids (see §1 and [25, 54]). Yet, the energy

estimate (53) suggests that the scheme can be stabilized by the addition of perturbations

giving enough control on the time pressure fluctuations at the interface.

Remark 15 The consistency term − ∫
Σ
σ(un

h, p
n
h)n · vh in (52) could also be

evaluated at time level n+1, as originally proposed in [21]. However, in this case the
artificial interface viscous perturbation can not be controlled by the viscous dissipation
and the Nitsche’s penalty term.

Remark 16 The energy estimate (53) still remains valid if we neglect the viscous
contribution of the (symmetrizing) term − ∫

Σ
(un+1

h − ∂τd
n+1
h

) · σ(vf
h,−qh)n in

(52), giving the consistent term
∫
Σ
qh
(
un+1
h − ∂τd

n+1
h

) · n. As a result, the explicit
coupling scheme (and the mentioned variant) can be formally viewed as a space
discrete counterpart of the following Robin-Robin based explicit treatment of (44):

σ(dn+ 1
2 )ns +

γμ

h
∂τd

n+1 =
γμ

h
un − σ(un, pn)n

σ(un+1, pn+1)n+
γμ

h
un+1 =

γμ

h
∂τd

n+1 + σ(un, pn)n

⎫⎬⎭ on Σ. (54)

We will come back to this observation in §5.2.

Remark 17 Note that the scaling γμ/h of the so-called Robin parameter in (54) is
provided by the Nitsche interface method. This choice differs from the Robin-Robin
scaling proposed in [9], based on simplified models and which aims at accelerating
partitioned iterative solution methods within a fully implicit coupling framework. At
last, it is worth mentioning that (54) also differs from recent Robin-Robin procedures
proposed for time-dependent problems, in the framework of waveform relaxation
methods (see, e.g., [57]).

Stabilized explicit coupling

The spurious oscillations of the fluid pressure at the interface, arising in the energy

estimate (53), can be controlled by the following weakly consistent penalty term:

S(pn+1
h , qh)

def
=

γ0h

γμ

∫
Σ

(
pn+1
h − pnh

)
qh, (55)

with γ0 > 0 a (dimensionless) parameter to be chosen sufficiently large (see Theorem

4). Hence, in [22], we propose to add (55) to the fluid subproblem (52). The resulting

stabilized explicit coupling scheme is given in Algorithm 7.

The next theorem (from [22]) provides an energy estimate for the stabilized explicit

coupling scheme (Algorithm 7).
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Algorithm 7 Stabilized explicit coupling ([22]).

1. Solid subproblem: find (dn+1
h , ḋ

n+1

h ) ∈ [V s
h]

2 such that

As
τ

(
(dn+1

h , ḋ
n+1

h ), (vs
h, rh)

)
+

γμ

h

∫
Σ

∂τd
n+1
h · vs

h

=
γμ

h

∫
Σ

un
h · vs

h −
∫
Σ

σ(un
h, p

n
h)n · vs

h

for all (vs
h, rh) ∈ [V s

h]
2;

2. Fluid subproblem: find (un+1
h , pn+1

h ) ∈ V f
h ×Qh, with un+1

h = uin(tn+1) on

Γin, such that

Af
τ

(
(un+1

h , p+1
h ), (vf

h, qh)
)− ∫

Σ

un+1
h · σ(vf

h,−qh)n

+
γμ

h

∫
Σ

un+1
h · vf

h + S(pn+1
h , qh) =

∫
Σ

σ(un
h, p

n
h)n · vf

h

−
∫
Σ

∂τd
n+1
h · σ(vf

h,−qh)n+
γμ

h

∫
Σ

∂τd
n+1
h · vf

h −
∫
Γout

poutv
f
h · n

for all (vf
h, qh) ∈ V f

Γin,h ×Qh.

3. Go to next time-step.

Theorem 4 Assume that the fluid-structure system is isolated (i.e., uin = 0 and
pout = 0) and let (un+1

h , pn+1
h ,dn+1

h , ḋ
n+1

h ) be given by Algorithm 7. For γ ≥
256CTI, γ0 ≥ 8 and n ≥ 1, the following energy estimate holds

En + μ

n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γμ

h

n−1∑
m=0

τ‖um+1
h − ∂τd

m+1
h ‖20,Σ +

γμτ

h
‖un

h‖20,Σ

+
γ0hτ

γμ
‖pnh‖20,Σ � E0 +

γμτ

h
‖u0

h‖20,Σ + μ‖ε(u0
h)‖20,Ωf +

γ0hτ

γμ
‖p0h‖20,Σ. (56)

Therefore, Algorithm 7 is energy stable under the (hyperbolic-CFL like) condition

τ = O(h). (57)

Two observations are now in order.

• According to Theorem 4, the stability of Algorithm 7 is independent of the

added-mass effect: the fluid-solid density ratio ρf/ρs and the length of the

domain do not come into play. This observation is confirmed by the numerical

results reported in Figure 5, corresponding to the simulation of the pressure

wave propagation in a two-dimensional straight channel. The numerical solution
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remains stable irrespectively of the amount of added-mass effect. Note that this

is a major advantage compared to standard explicit-coupling schemes, whose

(in)stability is dictated by these quantities, irrespectively of the discretization

parameters (see the discussion in §1 and [25, 54]).

• The proof of Theorem 4 is based, exclusively, on the dissipation due to the

Nitsche coupling and the time pressure penalization term. As a result, the

stability result is independent of the dissipative features of the fluid and solid

time discretization schemes. This is a significant progress with respect to the

stability result stated in Theorem 2, for the semi-implicit coupling scheme

(45)-(46), whose proof depends on the dissipative properties of the solid time

discretization scheme (see Remark 12). On the other hand, as regards the fluid

time-discretization, one could use, for instance, a neutrally stable second order

scheme.

Remark 18 The discrete continuity equation in step 2 of Algorithm 7 is given by

γ0hτ

γμ

∫
Σ

∂τp
n+1
h qh +

∫
Ωf

qh divu
n+1
h =

∫
Σ

(un+1
h − ∂τd

n+1
h ) · nqh. (58)

The right hand-side being a consistent term, we can interpret the stabilization
term (55) as a weakly-consistent interface artificial compressibility. The proposed
approach has therefore clear connexions with the already mentioned interface artificial
compressibility methods [104, 73, 33] for solving implicit coupling in a partitioned
fashion. In these iterative procedures, the compressibility term vanishes at convergence
and the artificial compressibility parameter is chosen so as to optimize efficiency and
not for consistency or stability purposes.

Remark 19 From Remarks 16 and 18, we can conclude that the main ingredients in
the stability of Algorithm 7 are:

• the Robin-Robin based explicit treatment of the interface coupling conditions
(54);

• the interface artificial compressibility perturbation of the continuity equation
(58).

Remark 20 In the framework of a simplified structural behavior, given in terms of
a (d − 1)-dimensional model (e.g., plates, membranes, shells or inertial-algebraic
models), alternative explicit coupling schemes have recently been reported in [65,
64, 44] (see also [97, §4.1.1]). Since in this case Σ = Ωs, the coupling condition
(44) can be embedded into the fluid equations (as a Robin boundary condition) and,
hence, treated implicitly through a specific (inertial/elastic) time-splitting of the solid
equation. A generalization of these schemes to the case of thick structures can be found
in [50].

In [22], a formal error estimate for the stabilized explicit coupling scheme is

obtained from the energy estimate provided by Theorem 4. Let θn
h

def
= un

h − πhu(tn),
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Figure 5: Stabilized explicit coupling (Algorithm 7). Left: interface mid-point y-

displacement for different values of the fluid-solid density ratio ρf/ρs. Right: out-flow

rate for different values of the vessel length L. From [22].

Figure 6: Stabilized explicit coupling without correction: snapshots of the pressure and

solid deformation (exaggerated) at two time instants. From [22].

ynh
def
= pnh − πhp(tn), ξ

n
h

def
= dn

h − πhd(tn) and ξ̇
n

h
def
= ḋ

n

h − πhḋ(tn) be the discrete

errors, where πh denotes a suitable interpolation operator. We can derive the following

error estimate

En � E0 + r1 + r2, (59)
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Algorithm 8 Stabilized explicit coupling with K ≥ 0 corrections ([22]).

1. Set un+1,0
h

def
= un

h and pn+1,0
h

def
= pnh;

2. Correction loop: for k = 0, . . . ,K solve

(a) Solid subproblem: find (dn+1,k+1
h , ḋ

n+1,k+1

h ) ∈ [V s
h]

2 such that

As
τ

(
(dn+1,k+1

h , ḋ
n+1,k+1

h ), (vs
h, rh)

)
+

γμ

h

∫
Σ

∂τd
n+1,k+1
h · vs

h

=
γμ

h

∫
Σ

un+1,k
h · vs

h −
∫
Σ

σ(un+1,k
h , pn+1,k

h )n · vs
h

for all (vs
h, rh) ∈ [V s

h]
2;

(b) Fluid subproblem: find (un+1,k+1
h , pn+1,k+1

h ) ∈ V f
h × Qh, with

un+1,k+1
h = uin(tn+1) on Γin, such that

Af
τ

(
(un+1,k+1

h , pn+1,k+1
h ), (vf

h, qh)
)− ∫

Σ

un+1,k+1
h · σ(vf

h,−qh)n

+
γμ

h

∫
Σ

un+1,k+1
h · vf

h +
γ0h

γμ

∫
Σ

(
pn+1,k+1
h − pn+1,k

h

)
qh

=

∫
Σ

σ(un+1,k
h , pn+1,k

h )n · vf
h −
∫
Σ

∂τd
n+1,k+1
h · σ(vf

h,−qh)n

+
γμ

h

∫
Σ

∂τd
n+1,k+1
h · vf

h −
∫
Γout

pout(tn+1)v
f
h · n

for all (vf
h, qh) ∈ V f

h ×Qh;

3. Set un+1
h

def
= un+1,K+1

h , pn+1
h

def
= pn+1,K+1

h , dn+1
h

def
= dn+1,K+1

h and

ḋ
n+1

h
def
= ḋ

n+1,K+1

h ;

4. Go to next time-step.

where

En def
=

(
ρf

2
‖θn

h‖20,Ωf +
ρs

2
‖ξ̇nh‖20,Ωs +

1

2
as(ξnh, ξ

n
h) + μ

n−1∑
m=0

τ‖ε(θm+1
h )‖20,Ωf

+
γμτ

h
‖θn

h‖20,Σ +
γ0hτ

γμ
‖ynh‖20,Σ +

γμτ

h

n−1∑
m=0

‖θm+1
h − ∂τξ

m+1
h ‖20,Σ

) 1
2

.

The terms on the right hand side of (59) consists of E0, which measures the error in the

initial data, r1, which consists of the terms related to the consistency of the fluid and

solid discretizations, and r2, which contains the explicit coupling consistency error and
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the weak-consistency introduced by the time penalty stabilization operator S. For the

latter term we have

r2 = O
(
(γμ)

1
2
τ

h
1
2

+ γμ
1
2
τ

h
+

γ
1
2
0

(γμ)
1
2

(hτ)
1
2

)
.

For fixed h, the convergence order in time is imposed by the weak-consistency of the

time penalty stabilization, which scales as O(τ
1
2 ). The other two terms scale as O(τ)

but with a constant depends on 1/h. Therefore, when refining both in τ and in h, the

stability condition (57) (i.e., τ = O(h)) is not enough to ensure convergence. We must

take τ = O(h2) in order to keep r2 = O(h). Such a choice is optimal in the energy

norm if piecewise affine approximations are used in space.

In practice, the method suffers from a deterioration of the accuracy, due to the

weak consistency of the time penalty stabilization term, which rates as O(τ
1
2 ) in

a fixed mesh. As proposed in [22], accuracy can be improved by performing one

correction iteration (see, e.g., [109]). The stabilized explicit coupling scheme with

K ≥ 0 corrections iterations is given in Algorithm 8. Note that, for K = 0 (i.e.,
without corrections) Algorithm 8 reduces to the original stabilized explicit coupling

scheme (Algorithm 7). Conversely, for K → ∞ (i.e., iterating until convergence) we

recover the implicit coupling scheme (51)-(52), (u�
h, p

�
h) = (un+1

h , pn+1
h ).

One of the main features of Algorithm 8 is that, after K ≥ 0 corrections, estimate

(59) is expected to hold with (see, e.g., [81])

r2 = O
(
τK+1

h
K+1

2

+
τK+1

hK+1
+ (hτ)

K+1
2

)
. (60)

Therefore, one correction iteration (i.e., K = 1) is enough to retrieve first order time

accuracy in a fixed mesh, since (60) yields r2 = O(τ2/h+ τ2/h2 + hτ). Note that, in

this case, overall r2 = O(h) accuracy can be ensured under the (weakened) condition

τ = O(h
3
2 ).

Figure 7: Interface mid-point y-displacement: stabilized explicit coupling (with and

without correction) and implicit coupling (strongly enforced kinematic condition).

From [22].



92 M.A. Fernández

Remark 21 Algorithm 8 can be extended to the non-linear case (i.e., to problem (11)-
(13)) without major difficulty. Roughly, the idea consists in replacing steps 2 and 3 of
Algorithm 1 by the non-linear counterparts of the fluid and solid correction steps in
Algorithm 8. We refer to [22, §5.5] for the details.

We conclude this subsection with a few numerical illustrations (from [22]) in the

framework of the already mentioned straight vessel benchmark. Some snapshots of

the fluid pressure and solid deformation (half a section) obtained with the non-linear

version of Algorithm 8 are reported in Figure 6. The impact of the correction iterations

is highlighted in Figure 7, where we compare the results with those obtained with

a fully implicit coupling scheme (Algorithm 2). Figure 7 (left) shows that, without

correction, the stabilized explicit scheme is unable to accurately represent the solution

provided by the implicit coupling scheme. Figure 7 (right) shows that one correction

iteration is sufficient to recover all the local features of the implicit coupling solution

(i.e., we recover first order time accuracy).

5.2 Robin-based semi-implicit coupling

The theoretical and numerical results summarized in §4 show that the projection semi-

implicit coupling scheme drastically improves the stability properties of conventional

explicit coupling and the efficiency of implicit coupling. In spite of that, the scheme

has two flaws. From a theoretical point of view, a non-convervative solid time

discretization (i.e., with numerical dissipation) is required in the derivation of the

energy stability estimate provided by Theorem 2 (see Remark 12). Secondly, though

much less sensitive to the added-mass effect than explicit coupling, numerical evidence

shows that the stability can be sensitive to changes in fluid-solid density ratio and other

physical parameters (see the results reported in Figure 8 with the linear model (42)-

(44)). As a matter of fact, the stability condition (47) provided by Theorem 2 depends

Figure 8: Comparison of the implicit and semi-implicit coupling: interface mid-point

vertical displacement (ρf = 1, ρs = 1.2× 10−2, μ = 10). From [5].

on the solid and fluid densities. In this subsection we present an alternative semi-

implicit coupling, proposed in [5], that circumvents these two shortcomings. The key

idea consists in treating the explicit part of the coupling in a full weak sense, by using

a specific Robin-Robin coupling derived from Remark 16 (see also Remark 19).
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Let us consider the original semi-implicit coupling scheme (45)-(46) applied to

linear coupled problem (42)-(44). As we have already seen, this coupling scheme is

based on the following implicit-explicit time discretization of (44):

un+1 · n = ∂τd
n+1 · n

σ(dn+ 1
2 )ns = −σ(ũn, pn+1)n

}
on Σ, (61)

ũn+1 = ∂τd
n+1 on Σ. (62)

Note that, in (46), the kinematic interface conditions (61)1 and (62) are both strongly

imposed (i.e., built in the finite element space). Instead, we now propose to treat the

explicit part of the coupling (i.e., the viscous-structure coupling) weakly, by using the

following explicit Robin-Robin treatment, derived from (54):

un+1 · n = ∂τd
n+1 · n

σ(dn+ 1
2 )ns +

γμ

h
∂τd

n+1 =
γμ

h
ũn − σ(ũn, pn+1)n

⎫⎬⎭ on Σ,

2με(ũn+1)n+
γμ

h
ũn+1 =

γμ

h
∂τd

n+1 + 2με(ũn)n on Σ.

Note that, in contrast to (54), the pressure-structure coupling remains implicit and

the kinematic interface condition (61)1 is strongly enforced (as in the original semi-

implicit coupling scheme).

The proposed Robin based semi-implicit coupling scheme, applied to the linear

coupled problem (42)-(44), reads therefore as follows (compare with (45)-(46)): for

n ≥ 0,

• Implicit step (pressure-solid coupling): find (un+1
h , pn+1

h ,dn+1
H , ḋ

n+1

H ) ∈ V f
h×

Qf
h × [V s

H ]2 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
h = uin(tn+1) on Γin

un+1
h = Πh(∂τd

n+1
H ) on Σ

ρf

τ

∫
Ωf

(
un+1
h − ũn

h

) · vf
h −
∫
Ωf

pn+1
h div vf

h +

∫
Ωf

qh divu
n+1
h

= −
∫
Γout

pout(tn+1)v
f
h · n ∀(vf

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρs

τ

∫
Ωs

∂τ ḋ
n+1

H · vs
H + as

(
d
n+ 1

2

H ,vs
H

)
+ ρs
∫
Ωs

(
ḋ
n+ 1

2

H − ∂τd
n+1
H

) · rH
+

γμ

h

∫
Σ

∂τd
n+1
H · vs

H =
γμ

h

∫
Σ

ũn
h · vs

H − 2μ

∫
Σ

ε(ũn
h)n · vs

H

− 〈Rp(u
n+1
h , pn+1

h ), Lh(v
s
H |Σ)
〉 ∀(vs

H , rH) ∈ [V s
H ]2;

(63)
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• Explicit step (viscous-solid coupling): find ũn+1
h ∈ V f

h such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ũn+1
h = uin(tn+1) on Γin,

ρf

τ

∫
Ωf

(
ũn+1
h − un+1

h

) · ṽf
h + 2μ

∫
Ωf

ε(ũn+1
h ) : ε(ṽf

h) +
γμ

h

∫
Σ

ũn+1
h · ṽf

h

=
γμ

h

∫
Σ

∂τd
n+1
H · ṽf

h + 2μ

∫
Σ

ε(ũn
h)n · ṽf

h ∀ṽf
h ∈ V f

Γin,h.

(64)

Note that in (63) we have considered a conservative time discretization for the

structure.

Figure 9: Comparison of the implicit, semi-implicit and Robin based semi-implicit

coupling schemes: interface mid-point vertical displacement (ρf = 1, ρs = 1.2×10−2,

μ = 10). From [5].

Let us define the energy of the discrete coupled system, at time level n, as:

En =
ρf

2
‖ũn

h‖20,Ωf +
ρs

2
‖ḋn

H‖20,Ωs +
1

2
as(dn

H ,dn
H).

The following result (from [5]) states the energy based stability of the Robin-based

semi-implicit coupling scheme (63)-(64).

Theorem 5 Let (ũn+1
h , pn+1

h ,dn+1
h , ḋ

n+1

h ) be given by (63)-(64) and assume that the
system is isolated (i.e., pout = 0 and uin = 0). For γ ≥ 4CTI and n ≥ 1, there holds

En + μ
n−1∑
m=0

τ‖ε(ũm+1
h )‖20,Ωf +

γμ

h

n−1∑
m=0

τ‖ũm+1
h − ∂τd

m+1
H ‖20,Σ +

γμτ

h
‖ũn

h‖20,Σ

� E0 + μτ‖ε(ũ0
h)‖20,Ωf +

γμτ

h
‖ũ0

h‖20,Σ. (69)

Therefore, the semi-implicit coupling scheme (63)-(64) is energy stable under the
condition τ = O(h).
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Algorithm 9 Robin based semi-implicit coupling algorithm ([5]).

1. Explicit step: update fluid domain (mesh){
df,n+1
h = Exth(d

n
H |Σ), ŵn+1

h = ∂τd
f,n+1
h in Ωf ,

Ωf,n+1 = (IΩf + df,n+1
h )(Ωf).

(65)

2. Implicit step (pressure-structure coupling):

• Fluid projection sub-step: find (un+1
h , pn+1

h ) ∈ Vh
f ×Qf

h such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
h = uin(tn+1) on Γin,

ûn+1
h = Πh(∂τd

n+1
H ) on Σ,

ρf

τ

∫
Ωf,n

(
un+1
h − ũn

h

) · vf
h −
∫
Ωf,n

pn+1
h div vf

h +

∫
Ωf,n

qh divu
n+1
h

= −
∫
Γout

pout(tn+1)v
f
h · n ∀(v̂f

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h;

(66)

• Solid: find (dn+1
H , ḋ

n+1

H ) ∈ [V s
H ]2 such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

As
τ

(
dn+1
H , ḋ

n+1

H ;vs
H , rH

)
+

γμ

h

∫
Σn+1

∂τd
n+1
H · vs

H

=
γμ

h

∫
Σn+1

ũn
h · vs

H − 2μ

∫
Σn+1

ε(ũn
h)n · vs

H

+

∫
Σn+1

pn+1
h vs

H · n ∀vs
H , rH ∈ [V s

H ]2;

(67)

3. Explicit step (viscous-structure coupling): find ̂̃un+1

h ∈ V f
h such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ũn+1
h = uin(tn+1) on Γin,

Ãf
τ

(
ũn+1
h , ṽf

h

)
+

γμ

h

∫
Σn+1

ũn+1
h · ṽf

h =
γμ

h

∫
Σn+1

∂τd
n+1
H · ṽf

h

+2μ

∫
Σn+1

ε(ũn
h)n · ṽf

h ∀ṽf
h ∈ V f

Γin,h;

(68)

4. Go to next time step.
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Since the stability condition of Theorem 5 does not depend on the fluid-solid

density ratio neither on the geometry of the domain, the semi-implicit coupling scheme

(63)-(64) remains stable irrespectively of the added-mass effect. Moreover, thanks

to the natural interface dissipation of the Robin-Robin coupling, a diffusive time

marching in the structure is no longer needed to ensure stability. These observations

are confirmed by the numerical results reported in Figure 9. The numerical instabilities

shown in Figure 8, for the original semi-implicit coupling, are not present in the

solution provided by the Robin based semi-implicit coupling scheme, which accurately

predicts the results of the implicit coupling scheme.

Remark 22 Theorem 5 follows by a combination of the arguments involved in
the proofs of Theorems 2 and 3. Let us notice that, here, we do not need to
stabilize pressure fluctuations, that is, to introduce the weakly consistent artificial
compressibility at the interface (55). Indeed, due to the implicit treatment (63) of the
pressure-solid coupling, no artificial interface pressure perturbations appears in the
energy estimate (69).

Remark 23 Theorem 5 can be extended to the case in which, instead of the
pressure-Darcy formulation (63)1, we consider the pressure-Poisson formulation of
the projection step (see Remark 9). We refer to [5, §4.3] for the details.

The non-linear counterpart of the semi-implicit coupling scheme (63)-(64)

(namely, the Robin based counterpart of Algorithm 6) is detailed in Algorithm 9.

Here, Exth stands for a discrete version of the lifting operator Ext, the solid mass

and stiffness contribution are given by

As
τ

(
dn+1
H , ḋ

n+1

H ;vs
H , rH

) def
= ρs

∫
Ωs

∂τ ḋ
n+1

H · vs
H

+
1

2

∫
Ωs

(
Π(dn+1

H ) +Π(dn
H)
)
: ∇vs

H + ρs
∫
Ωs

(
ḋ
n+ 1

2

H − ∂τd
n+1
H

) · rH ,

while, for the fluid

Ãf
τ

(
ũn+1
h , ṽf

h

) def
=

ρf

τ

∫
Ωf,n+1

ũn+1
h · ṽf

h − ρf

τ

∫
Ωf,n

un+1
h · ṽf

h

+
ρf

2

∫
Ωf,n+1

(div ũn
h)ũ

n+1
h · ṽf

h − ρf
∫
Ωf,n+1

(divwn+1
h )ũn+1

h · ṽf
h

+ ρf
∫
Ωf,n+1

(ũn
h −wn+1

h ) ·∇ũn+1
h · ṽf

h + 2μ

∫
Ωf,n+1

ε(ũn+1
h ) : ε(ṽf

h).

We conclude this subsection with an illustration of the numerical results obtained

(in [5]) with Algorithm 9 (pressure-Poisson version) and the physiological test case

considered in §4. Figure 10 presents some snapshots of the wall deformation and the

fluid velocity fields at two time instants. Figure 11 shows that, even in this complex

case, both the original and the Robin based semi-implicit coupling schemes provide a

prediction that compares well to the reference implicit solution.
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Figure 10: Robin based semi-implicit coupling: snapshots of the solid deformation and

fluid velocity field at two different time instants. From [5].

Figure 11: Comparison of the implicit, standard semi-implicit and Robin based semi-

implicit coupling schemes: maximal displacement of the structure. From [5].

6 Conclusion

The work summarized in this review was devoted to the approximation and numerical

resolution of the mechanical interaction between a viscous incompressible fluid and

an elastic structure, with a strong added-mass effect. In this framework, standard

explicit (or loosely coupled) schemes are known to be unstable, irrespectively of the

discretization parameters. In the context of implicit coupling, we have seen that the

exact evaluation of the cross-derivative of the Jacobian (shape terms) leads to robust

Newton iterations. Yet, these procedures remain computationally expensive in real

applications.

We have seen that implicit coupling can be avoided, without compromising

stability, via the semi-implicit and the explicit coupling schemes described in §4 and

§5, respectively. In particular, the explicit Robin-Robin treatment derived from the

Nitsche treatment of the coupling yields added-mass effect free schemes. The price to

pay is a perturbation of the truncation error, which enforces constraints on the rate of

the discretization parameters (e.g., parabolic-CFL). Let us emphasize, that for standard

loosely coupled schemes, these constraints do not cure the instabilities!

Many aspects of the studies presented in this review are open to further
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investigations (some of them are in progress). In the context of the numerical analysis

of the schemes, the focus could be put on the convergence analysis in the linear case,

for instance, in the spirit of [84, 7]. Further investigations could also address the

generalization of the stability analysis to the non-linear case (see, e.g., [83] for implicit

coupling). Alternative explicit coupling schemes, motivated by the explicit Robin-

Robin coupling (54), can be devised [20]:

(i) stabilized explicit coupling with a residual based treatment of the fluid stresses

at the interface (instead of face-wise, as in the interface Nitsche’s method);

(ii) unstabilized explicit Robin-Robin coupling without the consistency term∫
Σ
(un+1

h − ∂τd
n+1
h ) · nqh;

(iii) explicit Robin-Robin coupling with (pressure-Poisson) projection scheme.

The variants (i) and (iii) can be proved to be energy stable. In particular, it is worth

noticing that the combination of the Robin-Robin splitting with the pressure-Poisson

treatment of the projection step, in (iii), leads to a natural stabilization of the time

pressure fluctuations. Numerical evidence suggests that also (ii) is energy stable,

but the analysis does not seem to be straightforward. The incremental displacement

and displacement-velocity correction schemes recently introduced in [44, 50] will also

be the topic of forthcoming investigations. An interesting feature of these loosely

coupled procedures is that they can be interpreted as optimally consistent kinematic

perturbations of an underlying implicit coupling scheme.

Regarding the applications, we plan to incorporate some of the proposed

procedures in the context of the simulation of the fluid-structure interaction phenomena

in the heart (see [118]), using the reduced valves models recently proposed in [4].

At last, in the context of inverse problems in blood flows (e.g., wall parameters

estimation), some promising results [18], on the estimation of the mechanical

properties of the vessel wall, have already been obtained by adapting the filtering

techniques recently developed in [27].
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