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Abstract. We report recent progress in the computation of conformal map-
pings from surfaces with arbitrary topologies to canonical domains. Two major
computational methodologies are emphasized; one is holomorphic differentials
based on Riemann surface theory and the other is surface Ricci flow from geo-
metric analysis. The applications of surface conformal mapping in the field of
engineering are briefly reviewed.
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1. Introduction

Conformal mapping plays an important role in mathematics and engineering.
Historically, planar conformal mapping has been broadly applied in many engi-
neering fields [57], such as electro-magnetics, vibrating membranes and acoustics,
elasticity, heat transfer and fluid flow. Recently, with the development of 3D
scanning technology, increasing of computational power, and further advances in
mathematical theories, surface conformal mapping has been developed greatly
and applied in computer graphics, medical imaging, computer vision, geometric
modeling and networking fields. This work focuses on numerical computation of
surface conformal mappings; our methods are based on Hodge theory and surface
Ricci flow.
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1.1. Surface conformal mappings. Let S1 and S2 be two surfaces with Rie-
mannian metrics g1, g2, and φ : (S1,g1) → (S2,g2) be a diffeomorphism between
them. We say φ is conformal if the pull back metric induced by φ is proportional
to the original metric g1

φ∗g2 = e2λg1.

A conformal map preserves angles, as shown in Figure 1.

Figure 1. Conformal mappings preserve angles and infinitesimal circles.

Infinitesimally, a conformal mapping is a scaling and rotation transformation; it
preserves local shapes. For example, it maps infinitesimal circles to infinitesimal
circles. As shown in Figure 1, if a circle packing is given on the plane and pulled
back by φ, it produces a circle packing on the face surface; if a checkerboard is
given on the plane, then pulled back by φ, the checkerboard pattern on the face
surface is such that all the right angles of the squares are preserved.

All Riemann surfaces can be unified by the following theorem:

Theorem 1.1 (Poincaré-Klein-Koebe uniformization [22, p. 206]). Every con-
nected Riemann surface S is conformally equivalent to D/G with where D is one
of the three canonical spaces:

(i) extended complex plane C ∪ {∞};
(ii) complex plane C;
(iii) unit disk D = {z ∈ C : |z| < 1}
where G is a subgroup of Möbius transformations that acts freely discontinuous
on D. Furthermore, G ∼= π1(S), where π1(S) is the fundamental group of S.

Definition 1.2 (Circle domain). A circle domain in a Riemann surface is a
domain such that the components of the complement of the domain are closed
geodesic disks and points. Here a geodesic disk in a Riemann surface is a topo-
logical disk whose lift in the universal cover is a round disk in S

2, E
2 or H

2.

Theorem 1.3 (He and Schramm [36, Thm. 0.1]). Let S be an open Riemann
surface with finite genus and at most countably many ends. Then there is a
closed Riemann surface S̃, such that S is conformally homeomorphic to a circle
domain Ω in S̃. Moreover, the pair (S̃, Ω) is unique up to conformal homeomor-
phisms.
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The uniformization theorem states that the universal covering space of closed
metric surfaces can be conformally mapped to one of three canonical spaces,
the sphere S

2, the plane E
2, or the hyperbolic space H

2, as shown in Figure 2.
Similarly, uniformization theorem holds for surfaces with boundaries as shown
in Figure 3, the covering space can be conformally mapped to a circle domain in
S

2, E
2 or H

2.

Figure 2. Uniformization for closed surfaces. The universal cov-
ering space of an oriented closed metric surface can be conformally
mapped to one of the three canonical shapes: the unit sphere, the
Euclidean plane or the hyperbolic space.

1.2. Computational strategies. There are three major approaches for surface
conformal mappings. The first one is based on surface Ricci flow, the second one
is based on holomorphic differentials using Hodge theory, and the third one is
based on harmonic mapping using non-linear heat flow.

Ricci flow. Suppose we want to find a conformal mapping between two metric
surfaces φ : (S1,g1) → (S2,g2). Then the pull back metric induced by φ is
φ∗g2 = e2ug1, where uc : S1 → R is the unknown conformal factor function,
satisfying the following Yamabe equation

K2(φ(p)) =
1

e2u(p)
[K1(p) − Δg1(u(p))], p ∈ S1,
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Figure 3. Uniformization for surfaces with boundaries. The cov-
ering space of an oriented metric surface with boundaries can be
conformally mapped to one of the three canonical shapes: the unit
sphere, the Euclidean plane or the hyperbolic space, and all the
boundaries are mapped to geodesic circles.

where K1, K2 are the Gaussian curvatures induced by g1 and g2, and Δg1 is the
Laplace-Beltrami operator induced by g1. By solving the Yamabe equation, the
conformal factor u can be obtained, and then the mapping φ can be found. The
Yamabe equation can be solved directly by surface Ricci flow:

du

dt
= K2 − K1.

Holomorphic differential. Suppose the target surface (S2,g2) is a region on
the complex plane C, or a quotient space of C, then dz is a holomorphic 1-form
on S2. The pull back complex differential form ω = φ∗dz is a holomorphic 1-
form on (S1,g1). All the holomorphic 1-forms on S1 form a group Ω1,0. We can
compute the basis of this group, then find the appropriate 1-form ω = φ∗dz in
Ω1,0, and construct the mapping φ by integrating ω on S1.

Spherical harmonic maps. Harmonic maps between two surfaces minimize
the harmonic energy. For genus zero closed surfaces, harmonic maps are con-
formal. All genus zero closed surfaces can be conformally mapped to the unit
sphere; two such kinds of mapping differ by a Möbius transformation. We can
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use the non-linear heat flow method to diffuse a degree one map to a harmonic
map with special normalization to a conformal map.

1.3. Outline. The work is organized as follows: Section 2 briefly reviews exist-
ing works most related to the current one. Section 3 introduces the computational
methods: surface Ricci flow, holomorphic differential form and harmonic map.
Section 4 explains the algorithms for computing conformal moduli and confor-
mal mappings using methods in Section 3. The last section demonstrates the
applications of conformal geometric methods in several engineering fields, such
as computer graphics, geometric modeling, medical imaging, computer vision,
and wireless sensor networks.

2. Previous work

Computational conformal geometry is an inter-disciplinary field, and has a long
history. Researchers in mathematics, physics, medicine, computer science and
many other engineering fields have made great contributions to the subject. A
thorough literature review is beyond the scope of this work. In the following,
we briefly review only the most relevant work. Most conformal geometric meth-
ods are for planar domains or topological disks (genus zero surface with a single
boundary), whereas our current work focuses on methods for surfaces with com-
plicated topologies. Therefore, many important works for planar domains or
topological disks may be skipped due to the page limit.

2.1. Planar domains. Conventional computational complex analysis methods
focus on conformal mappings on planar domains. Thorough surveys can be
found in [37, 17, 40, 3, 65, 68]. Schwarz-Christoffel Mapping has been broadly
applied for computing Riemann mappings, such as in [20, 2]. Schwarz-Christoffel
mapping of multiply connected domains can be found in [18, 15]. Recently, a
geodesic zipper algorithm based on iterating simple maps has been introduced
in [51], and a linear conformal mapping algorithm based on hyperbolic geometry
can be found in [4]. A robust algorithm based on cross ratio and Delaunay
triangulation can be found in [21]. Circle packing methods lead to the theory of
discrete analytic functions [60], which is one of the few planar methods that has
actually been used for surface maps.

2.2. Genus zero surfaces. In the computer graphics field, there is vast re-
search on computing conformal mappings, mainly for surfaces with disk topology.
Discrete harmonic maps were constructed in [53], where the cotan formula was
introduced. First order finite element approximations of the Cauchy-Riemann
equations were introduced by Levy et al. [49]. Discrete intrinsic parameterization
by minimizing Dirichlet energy was introduced by [19]. Mean value coordinates
were introduced in [23] to compute generalized harmonic maps. Conformal map-
pings for topological spheres are discussed in [27, 31]. In the computer graphics
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field, thorough surveys on surface conformal mappings for topological disks or
topological spheres can be found in [24, 45].

2.3. High genus surfaces. Two major approaches for computing the confor-
mal structures of high genus surfaces are holomorphic differentials and discrete
curvature flow.

Holomorphic differential. Discrete holomorphic forms are introduced by Gu
and Yau [29] to compute global conformal structure for high genus surfaces. The
method is based on Hodge theory and uses the heat diffusion method to compute
harmonic forms in each cohomology class. All the computations are carried
out on discrete polyhedral surfaces. A different approach for constructing the
discrete Hodge star operator can be found in [53] for computing minimal surfaces.
Another approach of discrete holomorphy was introduced in [52] by discretization
of the Cauchy-Riemann equation. The method requires regular connectivity of
the mesh. General discrete exterior calculus was presented in [38].

Gortler et al. [26] used the discrete 1-form to parameterize genus one meshes [61].
Tong et al. [64] generalized the 1-form method to incorporate cone singularities,
and applied the method for remeshing and tiling. The holomorphic differential
method has been applied to compute conformal mappings of genus zero surfaces
with multiple boundaries in [77]. Quasi-conformal mapping based on holomor-
phic differentials can be found in [74].

Surface Ricci flow. Ricci flow was introduced by R. Hamilton in a seminal pa-
per [35] for Riemannian manifolds of any dimension. Ricci flow has revolutionized
the study of the geometry of surfaces and 3-manifolds and has inspired a lot of re-
search in geometry. In particular, it makes possible a proof of the 3-dimensional
Poincaré conjecture. In the paper [34], Hamilton used the 2-dimensional Ricci
flow to give a proof of the uniformization theorem for surfaces of positive genus.
This leads the way for potential applications in computer graphics.

There are many ways to discretize smooth surfaces. The one which is particularly
related to a discretization of conformality is the circle packing metric introduced
by Thurston [62]. The notion of circle packing has appeared in the work of
Koebe [44]. Thurston conjectured in [63] that for a discretization of the Jordan
domain in the plane, the sequence of circle packings converge to the Riemann
mapping. This was proved by Rodin and Sullivan [54].

Colin de Verdiere [11] established the first variational principle for circle packing
and proved Thurston’s existence of circle packing metrics. This paved a way for a
fast algorithmic implementation of finding the circle packing metrics, such as the
one by Collins and Stephenson [13]. In [10], Chow and Luo generalized Colin de
Verdiere’s work and introduced the discrete Ricci flow and discrete Ricci energy
on surfaces. They proved a general existence and convergence theorem for the
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discrete Ricci flow and proved that the Ricci energy is convex. The algorithmic
implementation of the discrete Ricci flow was carried out by Jin et al. [41].

Another related discretization method is called circle pattern; it considers both
the combinatorics and the geometry of the original mesh, and can be regarded
as a variant to circle packings. Circle pattern was proposed by Bowers and
Hurdal [7], and has been proven to be a minimizer of a convex energy by
Bobenko and Springborn [5]. An efficient circle pattern algorithm was devel-
oped by Kharevych et al. [43].

Yamabe flow on surfaces. The Yamabe problem aims at finding a conformal
metric with constant scalar curvature for compact Riemannian manifolds. The
first proof (with flaws) was given by Yamabe [69] and was corrected and extended
to a complete proof by several researchers including Trudinger [66], Aubin [1] and
Schoen [58]. A comprehensive survey of this topic was given by Lee and Parker
in [48].

In [50] Luo studied the discrete Yamabe flow on surfaces. He introduced a
notion of discrete conformal change of polyhedral metric, which plays a key role
in developing the discrete Yamabe flow and the associated variational principle
in the field. Based on the discrete conformal class and geometric consideration,
Luo gave the discrete Yamabe energy as an integration of a differential 1-form
and proved that this energy is a locally convex function. He also deduced from
it that the curvature evolution of the Yamabe flow is a heat equation.

Another recent work by Gu et al. [30], which used the original discrete Yam-
abe energy from [50], has produced an equally efficient algorithm for finding the
discrete conformal metrics. In addition, discrete hyperbolic Yamabe flow was dis-
cussed in [6]. It is applied for computing hyperbolic structure and the canonical
homotopy class representative in [72].

3. Computational methods

In this section, we briefly introduce the major computational methods. In the
next section, we will apply these methods for computing conformal mappings for
surfaces with different topologies.

3.1. Surface Ricci flow. Surface Ricci flow is a powerful tool to construct
conformal Riemannian metrics with prescribed Gaussian curvatures. Discrete
surface Ricci flow generalizes the curvature flow method from smooth surfaces
to discrete triangular meshes. The key insight to discrete Ricci flow is based
on the following observation: conformal mappings transform infinitesimal circle
fields to infinitesimal circle fields. Discrete Ricci flow replaces infinitesimal circles
by circles with finite radii, and modifies the circle radii to deform the discrete
metric, to achieve the desired curvature.
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Classical surface Ricci flow.

Definition 3.1 (Isothermal coordinates). Let S be a smooth surface with a
Riemannian metric g. Isothermal coordinates z = u + iv for g satisfy

g = e2λ(u,v)(du2 + dv2) = e2λ(z)dzdz̄.

Locally, isothermal coordinates always exist [8]. An atlas with all local coordi-
nates being isothermal is a conformal atlas, such that all the chart transition
functions are bi-holomorphic.

The Gaussian curvature of the surface is given by

(1) K(u, v) = −Δgλ,

where

Δg = e−2λ(u,v)

(
∂2

∂u2
+

∂2

∂v2

)
is the Laplace-Beltrami operator induced by g. Although the Gaussian curva-
ture is intrinsic to the Riemannian metric, the total Gaussian curvature is a
topological invariant according to the Gauss-Bonnet theorem:

(2)

∫
S

K dA = 2πχ(S),

where χ(S) is the Euler number of the surface.

Suppose g1 and g2 are two Riemannian metrics on the smooth surface S, and
they induce Gauss curvatures K1 and K2, respectively. If there is a differential
function λ : S → R, such that

g2 = e2λg1,

then the following Yamabe equation holds

K2 =
1

e2λ
(K1 − Δg1λ) .

The Yamabe equation can be solved by Hamilton’s Ricci flow. For a metric
g = (gij) given in local coordinates, Hamilton’s Ricci flow is

dgij

dt
= −Kgij.

During the flow, the Gaussian curvature will evolve according to a heat diffusion
process.

Theorem 3.2 (Hamilton and Chow [9, Thm. B.1, p. 504]). Suppose S is a closed
surface with a Riemannian metric. Then the normalized Ricci flow will converge
to a Riemannian metric of constant Gaussian curvature.
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Background geometry. In engineering fields, smooth surfaces are approxi-
mated by polyhedral surfaces, namely, a triangle mesh.

Definition 3.3 (Triangle mesh). A triangle mesh Σ is a 2 dimensional simplicial
complex, which is homeomorphic to a surface.

It is generally assumed that a mesh Σ is embedded in the three dimensional
Euclidean space R

3, and therefore each face is Euclidean. In this case, we say
the mesh is with Euclidean background geometry. Similarly, we can assume that
a mesh is embedded in the three dimensional sphere S

3 or hyperbolic space H
3,

then each face is a spherical or a hyperbolic triangle. We say the mesh is with
spherical or hyperbolic background geometry.

Discrete Riemannian metric. A discrete Riemannian metric on a mesh Σ is
a piecewise constant curvature metric with cone singularities at the vertices. The
edge lengths are sufficient to define a discrete Riemannian metric,

(3) l : E → R
+,

as long as, for each face [vi, vj, vk], the edge lengths satisfy the triangle inequality:
lij + ljk > lki for all the three background geometries, and another inequality:
lij + ljk + lki < 2π for spherical geometry.

Cosine laws. In the smooth case, the curvatures are determined by the Rie-
mannian metrics as in (1). In the discrete case, the angles of each triangle are
determined by the edge lengths. According to different background geometries,
there are different cosine laws. For simplicity, we use ei to denote the edge across
from the vertex vi, namely ei = [vj, vk], and li the edge length of ei. The cosine
laws are given as:

(4)

lk
2 = li

2 + lj
2 − 2lilj cos θk, E

2,

cosh lk = cosh li cosh lj − sinh li sinh lj cos θk, H
2,

cos lk = cos li cos lj − sin li sin lj cos θk, S
2.

Discrete Gaussian curvature. The discrete Gaussian curvature Ki at a vertex
vi ∈ Σ can be computed as the angle deficit,

(5) Ki =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π −
∑

[vi,vj ,vk]∈Σ

θjk
i , vi �∈ ∂Σ,

π −
∑

[vi,vj ,vk]∈Σ

θjk
i , vi ∈ ∂Σ,

where θjk
i represents the corner angle attached to vertex vi in the face [vi, vj, vk],

and ∂Σ represents the boundary of the mesh.
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Discrete Gauss-Bonnet Theorem. The Gauss-Bonnet Theorem (2) states
that the total curvature is a topological invariant. It still holds on meshes as
follows.

(6)
∑
vi∈V

Ki + λ
∑
fi∈F

Ai = 2πχ(M),

where the second term is the integral of the ambient constant Gaussian curva-
ture on the faces; Ai denotes the area of face fi, and λ represents the constant
curvature for the background geometry: +1 for the spherical geometry, 0 for the
Euclidean geometry, and −1 for the hyperbolic geometry.

Discrete conformal metric deformation. In the smooth case, Conformal
deformation of a Riemannian metric is defined as

(7) g �→ e2λg, λ : S → R.

In the discrete case, there are many ways to define conformal metric deformation.
Figure 4 illustrates some of them.

i

j
k

θi

θj θk

ljk

lki

lij
γi

γk

γj

i

j k

Θij

Θjk

Θkiγi

γj

γk

θi

θj θk

ljk

lki
lij

(a) Tangential Circle Packing (b) General Circle Packing
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i
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(c) Inversive Distance Circle Packing (d) Combinatorial Yamabe flow

Figure 4. Different configurations for discrete conformal metric deformation.
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Generally, we associate each vertex vi with a circle (vi, γi) centered at vi with
radius γi. On an edge [vi, vj], two circles intersect at an angle Θij. During the
conformal deformation, the radii of circles can be modified, but the intersection
angles are preserved. Geometrically, the discrete conformal deformation can be
interpreted as follows [25]: see Figure 5, there exists a unique circle, the so called

i

j k

Θij

Θjk

Θki
γi

γj

γk

θi

θj θk

ljk

lki
lij o

Θ′
ki

Θ′
ij

i′
i

j k

Θij

Θjk

Θkiγi

γj

γk

θi

θj θk

ljk

lki
lij

hjk

hki
hij

Figure 5. Geometric interpretation of discrete conformal metric deformation.

radial circle, that is orthogonal to three vertex circles. The radial circle center
is denoted as o. We connect the radial circle center to three vertices, to get
three rays −→ovi,

−→ovj and −→ovk. We deform the triangle by infinitesimally moving
the vertex vi along −→ovi to ov′

i, and construct a new circle (v′
i, γ

′
i), such that the

intersection angles among the circles are preserved, Θ′
ij = Θij, Θ′

ki = Θki.

The discrete conformal metric deformation can be generalized to all other con-
figurations, with different circle intersection angles (including zero or virtual
angles), and different circle radii (including zero radii). In Figure 4, the radial
circle is well defined for all cases, as are the rays from the radial circle center to
the vertices. Therefore, discrete conformal metric deformations are well defined
as well. The precise analytical formulae for discrete conformal metric deforma-
tion are explained as follows: let u : V → R be the discrete conformal factor,
which measures the local area distortion. If the vertex circles are with finite
radii, then ui can be formulated as

(8) ui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log γi, E
2,

log tanh
γi

2
, H

2,

log tan
γi

2
, S

2.

(i) Tangential Circle Packing Figure 4 (a), the intersection angles are 0’s.
Therefore, the edge length is given by

lij = γi + γj,
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for both the Euclidean case and the hyperbolic case, e.g. [13].
(ii) General Circle Packing Figure 4 (b), the intersection angles are acute,

Θij ∈ (0, π/2). The edge length is

lij =
√

γi
2 + γj

2 + 2γiγj cos Θij

for the Euclidean case, and

lij = cosh−1 (cosh γi cosh γj + sinh γi sinh γj cos Θij)

in hyperbolic geometry, e.g. [10, 41].
(iii) Inversive Distance Circle Packing In Figure 4 (c), all the circles intersect at

“virtual” angles. The cos Θij is replaced by the so-called inversive distance
Iij, during the deformation, Iij’s are never changed. The edge lengths are
given by

lij =
√

γi
2 + γj

2 + 2γiγjIij

for the Euclidean case, and

lij = cosh−1(cosh γi cosh γj + sinh γi sinh γjIij)

in hyperbolic geometry, e.g. [33, 70].
(iv) Combinatorial Yamabe Flow Figure 4 (d), all the circles are degenerated

to points, γi = 0. The discrete conformal factor is still sensible. The edge
lengths are given by

lij = euieuj l0ij,

in Euclidean background geometry, e.g. [50], and

sinh
lij
2

= eui sinh
l0ij
2

euj ,

in hyperbolic background geometry, e.g. [6, 72], where l0ij is the initial edge
length of [vi, vj].

Admissible metric space. In the following, we want to clarify what we mean
by the spaces of all possible metrics and all possible curvatures of a discrete
surface.

Let the vertex set be V = {v1, v2, . . . , vn}. We represent a discrete metric on Σ by
a vector u = (u1, u2, . . . , un)T . Similarly, we represent the Gaussian curvatures
at mesh vertices by the curvature vector k = (K1, K2, . . . , Kn)T . All the possible
u’s form the admissible metric space, and all the possible k’s form the admissible
curvature space.

According to the Gauss-Bonnet Theorem (see (6)), the total curvature must be
2πχ(Σ), and therefore the curvature space is n−1 dimensional. We add one linear
constraint to the metric vector u,

∑
ui = 0, for the normalized metric. As a

result, the metric space is also n−1 dimensional. For the circle packing metric, if
all the intersection angles are acute including zero, then the edge lengths induced
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by a circle packing satisfy the triangle inequality. There is no further constraint
on u. Therefore, the admissible metric space is simply R

n−1.

A curvature vector k is admissible if there exists a metric vector u, which in-
duces k. The admissible curvature space is a convex polytope. The detailed
proof can be found in [10]. The admissible curvature space for weighted meshes
with hyperbolic or spherical background geometries is more complicated. We
refer the readers to [10] for a detailed discussion.

Unfortunately, admissible metric spaces for inversive distance circle packing with
both Euclidean and hyperbolic background geometries are non-convex. The ad-
missible metric spaces for the combinatorial Yamabe flow with both Euclidean
and hyperbolic background geometries are non-convex.

For tangential and general circle packing cases with both E
2 and H

2 background
geometries, see Figure 4 (a) and (b), the correspondence between the curvature k
and metric u is globally one-to-one. This is called the global rigidity property.
For inversive distance circle packing and combinatorial Yamabe flow cases with
both E

2 and H
2 background geometries (see Figure 4 (c) and (d)) only local

rigidity holds. This is caused by the non-convexity of their metric spaces. In
practice, non-global rigidity causes many difficulties.

Discrete Ricci flow and entropy energy. In all configurations, the discrete
Ricci flow is defined as follows:

(9)
dui(t)

dt
= (K̄i − Ki),

where K̄i is the user defined target curvature and Ki is the curvature induced
by the current metric. The discrete Ricci flow has exactly the same form as the
smooth Ricci flow, which conformally deforms the discrete metric according to
the Gaussian curvature.

The discrete Ricci flow can be formulated in the variational setting, namely, it
is a negative gradient flow of a special energy form, the so-called entropy energy.
The energy is given by

(10) f(u) =

∫ u

u0

n∑
i=1

(K̄i − Ki) dui,

where u0 is an arbitrary initial metric.

Computing the desired metric with user-defined curvature {K̄i} is equivalent
to minimizing the discrete entropy energy. In the case of the tangential circle
packing metric with both Euclidean and hyperbolic background geometries, the
discrete Ricci energy (see (10)) was first proven to be strictly convex in the
seminal work of Colin de Verdiere [11]. It was generalized to the general circle
packing metric in [10]. The global minimum uniquely exists, corresponding to
the desired metric, which induces the prescribed curvature. The discrete Ricci
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flow converges to this global minimum. Although the spherical Ricci energy is
not strictly convex, the desired metric ū is still a critical point of the energy.

The Hessian matrices for discrete entropy are positive definite for both the Eu-
clidean case (with one normalization constraint

∑
i ui = 0) and the hyperbolic

case. The energy can be optimized using Newton’s method. The Hessian matrix
can be computed using the following formula. For all configurations with Eu-
clidean metric, suppose the distance from the radial circle center to edge [vi, vj]
is dij as shown in Figure 5 (right), then

∂θi

∂uj

=
dij

lij
;

furthermore
∂θj

∂ui

=
∂θi

∂uj

,
∂θi

∂ui

= − ∂θi

∂uj

− ∂θi

∂uk

.

We define the edge weight wij for edge [vi, vj], which is adjacent to [vi, vj, vk] and
[vj, vi, vl] as

wij =
dk

ij + dl
ij

lij
.

The Hessian matrix H = (hij) is given by the discrete Laplace form

hij =

⎧⎪⎨
⎪⎩

0, [vi, vj] �∈ E,

−wij, i �= j,∑
k wik, i = j.

With hyperbolic background geometry, the computation of the Hessian matrix
is much more complicated. In the following, we give the formula for one face
directly, for both circle packing cases:⎛

⎝dθi

dθj

dθk

⎞
⎠ =

−1

A

⎛
⎝1 − a2 ab − c ca − b

ab − c 1 − b2 bc − a
ca − b bc − a 1 − c2

⎞
⎠

⎛
⎝ 1

a2−1
0 0

0 1
b2−1

0
0 0 1

c2−1

⎞
⎠

·
⎛
⎝ 0 ay − z az − y

bx − z 0 bz − x
cx − y cy − x 0

⎞
⎠

⎛
⎝dui

duj

duk

⎞
⎠ ,

where (a, b, c) = (cosh li, cosh lj, cosh lk) and (x, y, z) = (cosh γi, cosh γj, cosh γk),
A is double the area of the triangle A = sinh li sinh lj sin θk.

For hyperbolic Yamabe flow case,

∂θi

∂uj

=
∂θj

∂ui

=
−1

A

1 + c − a − b

1 + c

and
∂θi

∂ui

=
−1

A

2abc − b2 − c2 + ab + ac − b − c

(1 + b)(1 + c)
.
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For tangential and general circle packing cases, with both R
2 and H

2 back-
ground geometries, Newton’s method leads to the solution efficiently. For the
inversive distance circle packing case and the combinatorial Yamabe flow case,
with both R

2 and H
2 background geometries, because of the non-convexity of

the metric spaces, Newton’s method may get stuck at the boundary of the metric
spaces; this creates some intrinsic difficulty in practical computation.

Algorithmic details for general combinatorial Ricci flow can be found in [41],
inversive distance circle packing metric in [70], and combinatorial Yamabe flow
in [72].

3.2. Gu-Yau’s method: holomorphic differentials. Gu-Yau’s method com-
putes the Holomorphic 1-form group on a metric surface based on Hodge theory.
This method is more efficient and stable than the discrete Ricci flow method.

3.2.1. Classical Hodge theory. Suppose the metric surface (S,g) is with
isothermal coordinate charts {(Uα, φα)}. On a local chart (Uα, φα), the local
coordinates are zα = uα + ivα. A real differential 1-form τ has the local repre-
sentation

τ = fα(uα, vα) duα + gα(uα, vα) dvα.

The exterior differential operator d acts on τ

dτ =

(
∂gα

∂uα

− ∂fα

∂vα

)
duα ∧ dvα.

The Hodge star operator � acts on τ

�τ = fα(uα, vα) dvα − gα(uα, vα) duα.

The co-differential operator δ is defined as δ = −�d�. If both dτ = 0 and δτ = 0,
then τ is called a harmonic 1-form.

Theorem 3.4 (Hodge [47, Thm. 5.1, p. 280]). Consider the de Rham cohomology
group Hk(S, R), each cohomologous class has a unique harmonic form.

ω is a complex differential form, such that on each local chart with complex
coordinates zα,

ω = fα(zα) dzα,

where fα is a holomorphic function,

∂fα(zα)

∂z̄α

= 0,

then ω is called a holomorphic differential 1-form. Furthermore, ω can be de-
composed as two conjugate harmonic 1-forms,

ω = τ +
√−1 � τ.

All the holomorphic 1-forms form a group, our goal is to compute the basis of
the group.
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3.2.2. Discrete Hodge theory. In the discrete case, we triangulate the surface
to a simplicial complex (a triangular mesh), and build chain complexes. The 0, 1
and 2 dimensional simplexes are vertices, edges and faces. A k-simplex, formed
by vertices {v0, v1, . . . , vk} in a specific order, is denoted as [v0, v1, . . . , vk]. The
k-dimensional chain space is defined as

Ck =

{∑
i

ziσi, zi ∈ Z

}
,

where {σi} are all the k-simplexes in the mesh. The boundary operators are
linear operators

∂k : Ck → Ck−1,

∂0vi = 0, ∂[v0, v1] = v1 − v0, ∂[v0, v1, v2] = [v0, v1] + [v1, v2] + [v2, v0]. The k-th
simplicial homology group is given by

Hk(M, Z) = Ker ∂k/ Img ∂k+1.

The co-chain spaces Ck is defined as

Ck = {linear functionals on Ck}.
The discrete exterior differential operator dk : Ck → Ck+1 is a linear operator.
Suppose σ ∈ Ck+1 is a (k + 1)-chain, ω ∈ Ck is a k-cochain, then dk is defined as

(dkω)(σ) = ω(∂k+1σ).

The k-th simplicial cohomology group is given by

Hk(M, Z) = Ker dk/ Img dk+1.

Suppose S is a triangle mesh, its Poincaré dual S̃ is its Voronoi diagram. Let
vi ∈ S be a vertex, then ṽi is a 2-cell in S̃,

ṽi := {p ∈ S : d(p, vi) ≤ d(p, vj) for all j �= i}
where d is the metric on the polygonal surface. Let σ ∈ S be an edge, then its
dual σ̃ is given by

σ̃ =
⋂

v∈∂σ

ṽ.

Let ω ∈ Ck be a k-form on S, then the discrete Hodge star operator is defined as

� : Ck(S) → C2−k(S̃), �ω(σ̃) =
|σ̃|
|σ| ω(σ),

where | · | represents the volume of the simplex σ. The discrete co-exterior-
differential operator δ is defined as δ = − � d�. A discrete harmonic k-form
ω ∈ C1 satisfies dω = 0, δω = 0.

Theorem 3.5 (Discrete Hodge). Suppose S is a polyhedral surface, then each
cohomologous class in Hk(S, R) has a unique discrete harmonic k-form.
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3.2.3. Algorithm.

Step 1. Homology basis. We compute a CW-cell decomposition of the surface
represented as a triangle mesh,

S0 ⊂ S1 ⊂ S2 = S,

where the k-dimensional skeleton Sk = Sk−1 ∪ D1
k ∪ D2

k ∪ · · · ∪ Dn
k , Di

k are k-
dimensional cells (disks), such that the boundaries of these cells are on Sk−1,

∂Di
k ⊂ Sk−1.

All the loop generators of S1 {γ1, γ2, . . . , γ2g} form a basis for the fundamental
group π1(S). These loops also form a basis of the first homology basis H1(S, Z).
Figure 6 shows the homology group generators of a genus two surface.

Figure 6. Computing homology group basis.

Step 2. Cohomology group basis. Let γk be a base loop for H1(S, Z), then
we slice S along γk to get an open surface S̃k, such that the boundary of S̃k is
given by

∂S̃k = γ+
k − γ−

k ,

γ+
k , γ−1

k are the two boundary loops on S̃k. Then we construct a function

hk : S̃k → R, such that

hk(p) = 1 for all p ∈ γ+
k ; hk(p) = 0 or all p ∈ γ−

k ;

and hk(p) is random for all interior points on S̃k. Then dhk is an exact 1-form on
S̃k. Because of the consistency along the boundaries, dhk is also a closed 1-form
(but not exact) on S, denoted as τk. Then the set

{τ1, τ2, . . . , τ2g}
forms a basis for the first cohomology group H1(S, R).
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Step 3. Harmonic 1-form basis. According to the Hodge theory, for each
closed 1-form τk, there exists a 0-form gk : S → R, such that τk+dgk is a harmonic
1-form. The 0-form gk can be obtained by solving δ(τk +dgk) = 0, where δ is the
co-differential operator. We denote the harmonic 1-form as ωk = τk + dgk. Then
the set

{ω1, ω2, . . . , ω2g}
forms a basis for the cohomology group H1(S, R).

By direct computation, the discrete co-exterior differential operator δ : C1 → C0

has the formula

δ(ω)(vi) =
∑

[vi,vj ]∈Σ

wij(ω[vj, vi]),

where wij is the cotangent edge weight 14. Figure 7 shows the harmonic 1-form
group generators of a genus two surface.

Figure 7. Computing harmonic 1-form group basis.

Step 4. Holomorphic 1-form basis. A holomorphic 1-form can be con-
structed by a harmonic 1-form and its conjugate ωk + i � ωk, where � is the
Hodge star operator. The conjugate form of a harmonic 1-form is still a har-
monic 1-form, in the space spanned by {ωi}, and thus can be expressed using
linear combinations of the ωi’s. Therefore,

�ωk =

2g∑
i=1

ckiωi,

where cki’s are unknown real numbers. By solving the following linear system

(11)

∫
S

ωj ∧ �ωk =

2g∑
i=1

cki

∫
S

ωj ∧ ωi, j = 1, 2, . . . , 2g,

we can find all the unknowns and get the conjugate form. Then the set

{ω1 + i � ω1, ω2 + i � ω2, . . . , ω2g + i � ω2g}
forms a basis for the holomorphic 1-form group of the surface.
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The discrete wedge operator ∧ : C1 × C1 → C2 is defined as follows. Given
[vi, vj, vk] ∈ Σ, ω1, ω2 ∈ C1 are discrete closed 1-forms, then

ω1 ∧ ω2([vi, vj, vk]) =
1

2

∣∣∣∣ω1([vi, vj]) ω2([vi, vj])

ω1([vj, vk]) ω2([vj, vk])

∣∣∣∣ .

Let ω, τ be two discrete harmonic 1-forms, where locally ω = c1dx + c2dy and
τ = d1dx + d2dy, then locally

ω ∧ �τ =

∣∣∣∣c1 c2

d1 d2

∣∣∣∣ dx ∧ dy.

Figure 8 shows the holomorphic 1-form group basis for the genus two surface.

Figure 8. Computing holomorphic 1-form group basis.

3.3. Non-linear heat flow. The non-linear heat flow method can be applied
to compute conformal maps between genus zero closed surfaces.

3.3.1. Classical surface harmonic maps. For the 2-sphere in the standard
metric, we have,

Theorem 3.6 (Schoen and Yau [59, Cor. p. 12]). Harmonic maps between genus
zero closed metric surfaces are conformal maps.

In order to compute a conformal map from a topological sphere S to the unit
sphere S

2, φ : S → S
2, we only need to compute a harmonic map between them.

Harmonic maps can be computed using the heat flow method,

∂φ(p, t)

∂t
= −Δpφ(p, t).

The initial map φ(p, 0) can be set as the Gauss map, where p ∈ S is a point on the
surface and n(p) ∈ S

2 is the normal at p. The Gauss map is φ(p, 0) = n(p). Be-
cause S

2 is embedded in R
3, we treat φ as a vector valued function φ = (φ1, φ2, φ3),

where each φk is a function. Then its Laplacian is given by

Δpφ(p, t) = (Δpφ1(p, t), Δpφ2(p, t), Δpφ3(p, t)).
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Then we project the Laplacian to the tangent spaces of φ(p). The normal com-
ponent of the Laplacian is given by

Δ⊥
p φ(p, t) = 〈Δpφ(p, t), φ(p, t)〉φ(p, t),

where 〈·, ·〉 is the inner product in R
3. The tangential component of the Laplacian

is given by
Δ‖

pφ(p, t) = Δpφ(p, t) − Δ⊥
p φ(p, t).

Definition 3.7 (Non-linear heat flow). Non-linear heat flow is defined as

∂φ(p, t)

∂t
= −Δ‖

pφ(p, t).

The stereographic projection maps the unit sphere to the whole complex plane,
τ : S

2 → C,

τ(x, y, z) =

(
x

1 − z
,

y

1 − z

)
.

Let ρ be a Möbius transformation,

(12) ρ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad − bc = 1.

τ−1◦ρ◦τ : S
2 → S

2 is a conformal mapping of the unit sphere. All such mappings
form a 6 dimensional group, the so-called spherical Möbius transformation group.

Because the conformal maps are not unique, differing by a Möbius transformation
on the sphere, a special normalization condition needs to be added during the
flow. The following is a common condition,

(13)

∫
S

φ(p) ds = 0.

For genus zero closed surfaces, harmonic maps are conformal.

3.3.2. Discrete surface harmonic maps. On a discrete surface Σ, the func-
tions are approximated by piecewise linear functions. Suppose [vi, vj, vk] is a
face, for any point p ∈ [vi, vj, vk], the barycentric coordinates of p are

p = αvi + βvj + γvk, 0 ≤ α, β, γ ≤ 1, α + β + γ = 1,

then f(p) = αf(vi) + βf(vj) + γf(vk). By the Finite Element Method [53], the
discrete harmonic energy of f has the representation

E(f) =
1

2

∑
[vi,vj ]∈Σ

wij(f(vi) − f(vj))
2,

where wij is the edge weight

(14) wij = cot θk
ij + cot θl

ij,

θk
ij is the corner angle on face [vi, vj, vk] at the vertex vk, and θl

ij is the corner angle
on face [vi, vj, vl] at the vertex vl. If [vi, vj] is only adjacent to one face [vi, vj, vk],
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then the term cot θl
ij should be omitted. Similarly, the discrete Laplace-Beltrami

operator is given by

Δf(vi) =
∑

[vi,vj ]∈Σ

wij(f(vi) − f(vj)).

We can compute the Gauss map first, then diffuse the Gauss map to a har-
monic map with the normalization condition (13). Algorithmic details for dis-
crete spherical harmonic maps can be found in [31].

4. Conformal modulus and conformal mapping

In this section, we apply the discrete surface Ricci flow and holomorphic differen-
tial methods to compute conformal mappings of surfaces with various topologies.

4.1. Topological quadrilateral. Suppose S is a surface of genus zero with a
single boundary, and four marked boundary points {p1, p2, p3, p4} sorted counter-
clockwise. Then S is called a topological quadrilateral, and denoted as Q(p1, p2, p3, p4).
There exists a unique conformal map φ : S → C, such that φ maps Q to a rec-
tangle, φ(p1) = 0, φ(p2) = 1.

Holomorphic differential method. Assume the boundary of Q consists of
four segments ∂Q = γ1 + γ2 + γ3 + γ4, such that

∂γ1 = p2 − p1, ∂γ2 = p3 − p2, ∂γ3 = p4 − p3, γ4 = p1 − p4.

We compute two harmonic functions f1, f2 → R, such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δf1 = 0

f1|γ1 = 0

f1|γ3 = 1

∂f1

∂n
|γ2∪γ4 = 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δf2 = 0

f2|γ2 = 0

f2|γ4 = 1

∂f2

∂n
|γ1∪γ3 = 0

with the Laplace-Beltrami operator Δ = dδ + δd. On a surface, Δf = 0 is
equivalent to δdf = 0. The df1 and df2 are two exact harmonic 1-forms. We need
to find a scalar λ, such that �df1 = λdf2, this can be achieved by solving the
following equation, ∫

S

df1 ∧ �df1 = λ

∫
S

df1 ∧ df2.

The geometric interpretation of λ is the conformal modulus of the quadrilateral.
Then the desired holomorphic 1-form ω = df1 + iλdf2. The conformal mapping
is given by

φ(p) =

∫ p

q

ω,
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where q is the base point and the path from q to p is arbitrarily chosen. Fig-
ure 9 shows the conformal mapping of a topological quadrilateral to the planar
rectangle.

p1 p2

p3p4

(a) Input surface (b) Conformally mapped (c) Checkerboard
to a rectangle texture mapping

Figure 9. Conformal module for a topological quadrilateral. The
face surface with four boundary corners (a) is conformally mapped
to a planar rectangle (b). A checkerboard texture is placed on
the rectangle and pulled back to the face surface (c), all the right
angles of checkers are well preserved.

Ricci flow method. We can set the target Gaussian curvature to be zero ev-
erywhere, except at the four corners {p1, p2, p3, p4}, where the target curvatures
are set to be π/2. Then we run Euclidean Ricci flow, which gives us a flat metric
on the surface. By isometrically embedding the surface onto the plane, we map
the surface onto a planar rectangle.

4.2. Topological annulus. Suppose S is a topological annulus with a Rie-
mannian metric g and the boundary of S are two loops ∂S = γ1 − γ2, then there
exists a conformal mapping φ : S → C, which maps S to the canonical annulus,
φ(γ1) is the unit circle and φ(γ2) is another concentric circle with radius γ. The
mapping φ is unique up to a planar rotation.

Holomorphic 1-form method. The holomorphic 1-form group is one dimen-
sional. We compute the generator ω, such that Img ω(dr) = 0, where dr is any
tangent vector along the boundary, and

∫
γ1

ω = 1. Let p be a base point on the

surface, for any other point q, define

φ(q) = exp

(
2πi

∫ q

p

ω

)
.

φ is the desired conformal mapping, as shown in Figure 10.
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(a) Input surface (b) Conformally mapped (c) Checkerboard
to an annulus texture mapping

Figure 10. Conformal module for a topological annulus. The
face surface (a) is conformally mapped to a planar annulus (b). A
checkerboard texture is placed on the annulus and pulled back to
the face surface (c), all the right angles of checkers are well pre-
served.

Ricci flow method. We can set the target Gaussian curvature to be zero every-
where, including the boundary vertices, and run Euclidean discrete surface Ricci
flow, then we obtain a flat metric. We find a curve γ connecting γ1 and γ2, such
that γ is a straight line segment under the flat metric and orthogonal to the two
boundaries. We slice the surface along γ to get S̃, and γ becomes two boundary
segments γ+ and γ−. We then isometrically embed S̃ onto the plane. After a
planar rigid motion, and a normalization, S̃ is a rectangle with unit height, and
γ− is on the real axis, γ1 is on the imaginary axis. Then we use the exponential
map z �→ exp(2πiz) to map S̃ to the canonical planar annulus.

4.3. Topological disk. Suppose S is a topological disk with a Riemannian
metric, then it can be conformally mapped to the unit planar disk. Two such
mappings differ by a Möbius transformation

(15) z �→ eiθ z − z0

1 − z̄0z
,

as shown in Figure 11.

Figure 11. Riemann mapping for a topological disk. Two such
mappings differ by a Möbius transformation.
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The computation is straight forward. We punch a small hole at the point z0 to
make the surface a topological annulus and map the annulus onto the canonical
planar annulus using the method in the last subsection. When the size of the
punched holes shrink to a point, the mappings obtained converge to the real
Riemann mapping.

4.4. Multiply connected domain. Suppose S is a surface of genus zero with
multiple boundaries, then S is called a multiply connected domain. Suppose S
is a multiply connected domain with a Riemannian metric g, then there exists
a conformal mapping φ : S → C, which maps S to the unit disk with circular
holes. Such conformal mappings are unique up to Möbius transformations.

Let S be the multiply connected domain, then its boundary consists of n con-
nected components,

∂S = γ0 − γ1 − γ2 . . . − γn,

where γ0 is the exterior boundary and {γk, k > 0} are sorted by their total
lengths. There are two methods to compute the conformal modulus and the
conformal mapping.

Ricci flow method. We set the target curvature in the following way:

(i) For all interior vertices vi �∈ ∂S, K̄(vi) is zero.
(ii) For all vertices on γ0 or γ1, K̄(vi) is zero.
(iii) Let vi ∈ γk, k �= 0, 1, suppose the total length under the current metric is

|γk|, the two boundary edges attaching to vi are ei and ei+1, then set

K̄(vi) = −π
|ei| + |ei+1|

|γk| .

Note that in the curvature flow, the edge lengths |ei|, |ei+1|, |γk| are chang-
ing. Therefore, the K̄(vi) need to be updated accordingly.

By running discrete curvature flow with time variant target curvature, the pro-
cedure will converge, and a unique flat metric will be obtained. Then we find a
shortest path τ connecting γ0 and γ1, and slice S along τ to get a surface S̃. The
flat metric will flatten S̃ onto a planar parallelogram with circular holes. Then
we use an exponential map to map the parallelogram to a disk with circular
holes.

Generalized Koebe’s method. The algorithm is based on using the holomor-
phic 1-form to compute the conformal mapping of a topological annulus.

(i) Fill all boundary γk’s with topological disks Dk’s such that ∂Dk = γk,
k = 0, 1, 2, . . . , n. The resulting surface is a topological sphere S̃ with
S̃ = S ∪ D0 ∪ D1 ∪ · · · ∪ Dn.

(ii) Remove two disks Di and Dj from S̃, denote the topological annulus as

S̃ij = S̃/{Di ∪ Dj}.
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(iii) Map the annulus S̃ij to a canonical planar annulus, denote the image of φ

as S̃ij.

(iv) Choose another two disks Dk and Dl, further remove them from S̃ij, denoted

the three holed annulus as S̃ijkl = S̃ij/{Dk ∪ Dl}.
(v) Compute a small circle (ck, rk) completely contained in γk, reflect S̃ijkl with

respect to the small circle

z �→ rk
2

|z − ck|2 (z − ck) + ck,

this maps γi, γj to be interior circles, and γk to be the exterior boundary.

(vi) Fill circular holes bounded by γi and γj by circular disks D̃i and D̃j such

that ∂D̃i = γi, ∂D̃j = γj, S̃kl = S̃ijkl ∪ D̃i ∪ D̃j.
(vii) Repeat step 3 through 6, until all the holes are circular enough.

The convergence rate is governed by the following theorem. Suppose the surface
has n boundary components. At each step, we fill n−2 holes and map the surface
to an annulus, the remaining 2 boundary components are mapped to the inner
and outer circles of the annulus.

Theorem 4.1 (Generalized Koebe [77, Thm. 1.2]). Given a genus zero surface
with n boundaries, there exist constants C1 > 0, 0 < C2 < 1, for step k, such
that fk(∞) = ∞ and fk(z) = z + O(z−1) near the ∞ point, for all z ∈ C,

|fk ◦ f−1(z) − z| < C1C
2[k/n]
2 ,

where f is the limit conformal mapping and [k/n] denotes the greatest integer
not exceeding k/n.

Figure 12 shows the canonical conformal mapping of a multiply connected do-
main, which is a region of a 3D human face surface, obtained by structured light
scanning [32].

(a) Input surface (b) Conformally mapped (c) Checkerboard
to a circle domain texture mapping

Figure 12. Conformal module for a topological multiply con-
nected domain. The face surface (a) is conformally mapped to a
planar circle domain (b). A checkerboard texture is placed on the
circle domain and pulled back to the face surface (c), all the right
angles of checkers are well preserved.
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Slit map. All multiply connected domains can be conformally mapped to canon-
ical planar domains, which are annuli with concentric circular slits or rectangles
with horizontal slits [71].

Suppose the boundary of S is a set of loops ∂S = {γ0, γ1, . . . , γn}, where γ0 is
the exterior boundary. Then a set of basis of holomorphic 1-forms can be found,
ω1, ω2, . . . , ωn, such that the integration of ωi along γj equals to δij, where δij is
the Kronecker symbol. Special holomorphic 1-forms can be found, such that

(16) Im

(∫
γi

ω

)
=

⎧⎪⎪⎨
⎪⎪⎩

2π, i = 0,

−2π, i = 1,

0, otherwise.

Then if we choose a base point p0 on the surface, for any point p, we choose an
arbitrary path γ on the surface and define a complex function

φ(p) = exp

(∫
γ

ω

)
,

which maps the surface to an annulus. γ0 is mapped to the outer boundary, γ1

to the inner boundary, and all other boundaries are mapped to the concentric
circular slits. Then the (complex) logarithm of φ maps the surface periodically
to a rectangle, with all the circular slits mapped to horizontal slits. We call φ a
circular slit map and log φ a horizontal slit map.

The algorithm for computing a slit map is straightforward.

(i) Compute a set of holomorphic 1-form bases of the surface, {ωi}.
(ii) Compute a holomorphic 1-form represented as the linear combination of

the basis ω =
∑

λiωi, such that (16) holds.

Figure 13 shows the circular and horizontal slit maps for a multiply connected
annulus with 3 holes.

Figure 13. Slit map for a multiply connected domain.

Crowdy and Marshall [16] introduced a constructive method to compute con-
formal mappings between canonical multiply connected domains, which is based
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on Green’s functions and harmonic measures in potential theory. Our holomor-
phic differential method is similar to their construction, because the holomorphic
1-form satisfying (16) is closely related to harmonic measure.

4.5. Genus zero closed surface. The genus zero closed surface can be confor-
mally mapped to a unit sphere. The mapping is not unique, two such conformal
mappings differ by a spherical Möbius transformation, as shown in Figure 14.

Figure 14. Genus zero closed surface.

Harmonic map method. Given a genus zero closed surface S, first we compute
the Gauss map φ : S → S

2, then use the non-linear heat diffusion method to
optimize the harmonic energy with a normalization condition, such that the
mass center of the image surface is at the origin. Figure 14 shows a conformal
mapping from a brain cortical surface to the unit sphere.

Holomorphic 1-form method. We first remove one triangle and make the
genus zero surface become a topological disk. Then we conformally map it to
a planar triangle by the holomorphic 1-form method and then obtain the unit
sphere by the inverse stereographic projection,

(x, y, z) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
, (u, v) ∈ C.

Then we move the mass center of the image to the origin with a spherical Möbius
transformation. We can also use a curvature flow map to map the topological
disk to the plane.

Inversely, for a topological disk, we can convert it to a genus zero closed sym-
metric surface by doubling, and then map the doubled surface to the unit sphere.
The hemispherical conformal mapping of the original surface is obtained. As
shown in Figure 15, the conformal mapping preserves the intrinsic symmetry of
the doubled surface. The image of the mapping and the area distortion factor
on the image are both symmetric.
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Figure 15. Spherical map for a topological disk by doubling.

4.6. Genus one closed surface.

Holomorphic 1-form method. First we compute a basis for the fundamental
group π1(S), {γ1, γ2}. Then we compute the holomorophic 1-form basis ω1, ω2,
such that ∫

γi

ωj = δij.

Then we slice the surface along γ1, γ2 to get a fundamental domain S̃. The
conformal mapping φ : S̃ → C is given by

φ(p) =

∫ p

q

ω1,

where q is the base point; the path from q to p in S̃ can be arbitrarily chosen.
Suppose a + ib =

∫
γ2

ω1, then a + ib is the conformal modulus of the torus. The

deck transformation group generators are

T1(z) = z + 1, T2(z) = z + a + ib.

By using all deck transformations to translate φ(S̃), we can conformally map the
universal covering space of S onto the whole complex plane C; the fundamental
domain of the lattice generated by {T1, T2} is a parallelogram.

Curvature flow method. We can set the target curvature to be zero every-
where, and run Ricci flow to compute a flat metric conformal to the original
metric. Then we can isometrically flatten the fundamental domain S̃ onto the
complex plane, denoting the mapping as φ. The deck transformation generators
are given by the translations {T1, T2}. T1 maps φ(γ+

1 ) to φ(γ−
1 ) and T2 maps

φ(γ+
2 ) to φ(γ−

2 ).

Figure 16 shows the computational result for a genus one closed surface.
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Figure 16. Genus one closed surface.

4.7. Genus one surface with boundaries. We use the Ricci flow method to
compute the canonical conformal mapping and the conformal modulus. Suppose
the boundary of the surface has n loops, ∂S = γ1 + γ2 + · · · + γn. We set the
target curvature in the following way:

(i) For all interior vertices vi �∈ ∂S, K̄(vi) is zero.
(ii) Let vi ∈ γk, suppose the total length under the current metric is |γk|, the

two boundary edges attaching to vi are ei and ei+1, then set

K̄(vi) = −π
|ei| + |ei+1|

|γk| .

Note that during the curvature flow, the edge lengths |ei|, |ei+1|, |γk| are
changing. Therefore, the K̄(vi) are updated accordingly.

By running discrete curvature flow with time variant target curvature, the proce-
dure will converge, and a unique flat metric will be obtained. Then we compute
the homology group basis {γ1, γ2} and slice the surface along the base loops to
get a fundamental domain. By isometric embedding S̃ with the new metric, we
get the conformal mapping φ : S̃ → C. Similarly, we compute the generators of
the deck transformation group {T1, T2}, T1 maps φ(γ+

1 ) to φ(γ−
1 ), T2 maps φ(γ+

2 )
to φ(γ−

2 ). Then we can use the deck transformation to map the whole universal
covering space of S onto the complex plane with circular holes.

Figure 17 shows the computational result for a genus one surface with three
boundaries, the famous Costa’s minimal surface [12].

4.8. High genus surface. For a high genus closed surface, we use hyperbolic
Ricci flow to compute the hyperbolic metric by setting the target curvature
to be zero everywhere. Then we compute a canonical homology group basis
{a1, b1, a2, b2, . . . , ag, bg}. Then we slice the surface along the base loops to get

a fundamental domain S̃, the boundary of S̃ is a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g , then

isometrically flatten S̃ to the Poincaré disk using the hyperbolic metric.
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Figure 17. Genus one surface with boundaries, Costa’s minimal
surface [12]

.

The Poincaré disk is the interior of the unit disk D = {z ∈ C : |z| < 1} on the
complex plane, with hyperbolic metric

ds2 =
dzdz̄

(1 − zz̄)2
,

therefore, the Poincaré disk is a conformal model for the hyperbolic space H
2.

The hyperbolic lines through p and q are circular arcs passing through p and q,
which are orthogonal to the unit circle. The hyperbolic circle (c, r) on the
Poincaré disk is identical to the Euclidean circle (C, R),

C =
1 − t2

1 − t2cc̄
c, R =

√
CC̄ − cc̄ − t2

1 − t2cc̄
, t = tanh

r

2
.

The angles in a hyperbolic triangle can be computed from the edge lengths
using the hyperbolic cosine law. Therefore, by using Euclidean geometry we
can accomplish all hyperbolic compass and straightedge constructions in the
Poincaré disk. We can flatten triangle by triangle and isometrically embed the
whole fundamental domain S̃ onto the Poincaré disk. We denote the conformal
mapping as φ : S̃ → D.

We can then compute the deck transformation group generators. In this case, the
deck transformation group is called the Fuchsian group. All the Fuchsian trans-
formations are hyperbolic rigid motions, which are Möbius transformations with
the form of (15). The Möbius transformation αk maps the boundary segment
φ(b−1

k ) to φ(bk), the βk maps φ(ak) to φ(a−1
k ). Then

{α1, β1, α2, β2, . . . , αg, βg}
forms a basis set of the Fuchsian group generators.

For high genus surfaces with boundaries, the conformal mapping which maps
them to hyperbolic circular domains can be computed in a similar way. According
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to Theorem 1.3, the surface can be conformally mapped to the Poincaré disk, such
that the boundaries are mapped to hyperbolic circles. By applying hyperbolic
Ricci flow with the constraint that the holonomy along each boundary loop is
trivial, the hyperbolic metric can be obtained directly.

Figure 18 shows the isometric embedding of finite portions of the universal cover-
ing spaces of two high genus surfaces on the Poincaré disk with their uniformiza-
tion hyperbolic metrics. The algorithmic details can be found in [41].

Figure 18. Uniformization for high genus surfaces.

5. Applications

Computational conformal geometry has been broadly applied in many engineer-
ing fields. In the following, we briefly introduce some of our recent projects,
which are the most direct applications of computational conformal geometry in
the computer science field.

5.1. Graphics. Conformal geometric methods have broad applications in com-
puter graphics. Isothermal coordinates are natural for global surface parameter-
ization purposes [29]. Because conformal mappings don’t distort local shapes, it
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is desirable for texture mapping. Figure 19 shows one example of using holomor-
phic 1-forms for texture mapping.

Special flat metrics are valuable for designing vector fields on surfaces, which
plays an important role for non-photorealistic rendering and special art form
design. Figure 20 shows the examples for vector fields design on surfaces using
the curvature flow method [46].

Figure 19. Global conformal surface parameterization using
holomorphic 1-forms.

Figure 20. Vector field design using special flat metrics.

5.2. Geometric modeling. One of the most fundamental problems in geo-
metric modeling is to systematically generalize conventional spline schemes from
Euclidean domains to manifold domains. This relates to the general geometric
structures on the surface.

Definition 5.1 ((G, X) structure). Suppose X is a topological space, G is a
transformation group of X. Let M be a manifold with an atlas A, if all the
coordinate charts (Uα, φα) are defined on the space X, φα : Uα → X; and all
chart transition functions φαβ are in group G, then the atlas is a (G, X) atlas.
The maximal (G, X) atlas is a (G, X) structure.
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For example, suppose the manifold is a surface. If X is the affine plane A, G is
the affine transformation group Aff(A), then the (G, X) structure is the affine
structure. Similarly, if X is the hyperbolic plane H

2, and G is the hyperbolic
isometric transformation (Möbius transformation), then (G, X) is a hyperbolic
structure; if X is the real projective plane RP

2, G is the real projective transfor-
mation group PGL(2, R), then the (G, X) structure is a real projective structure
of the surface. Real projective structure can be constructed from the hyperbolic
structure.

Conventional spline schemes are constructed based on affine invariance. If the
manifold has an affine structure, then affine geometry can be defined on the
manifold and conventional splines can be directly defined on the manifold. Due
to the topological obstruction, general manifolds don’t have affine structures, but
by removing several singularities, general surfaces can admit affine structures.
Details can be found in [28].

Affine structures can be explicitly constructed using conformal geometric meth-
ods. For example, we can concentrate all the curvatures at the prescribed singu-
larity positions, and set the target curvatures to be zeros everywhere else. Then
we use curvature flow to compute a flat metric with cone singularities from the
prescribed curvature. The flat metric induces an atlas on the punctured sur-
face (with singularities removed), such that all the transition functions are rigid
motions on the plane. Another approach is to use holomorphic 1-forms; a holo-
morphic 1-form induces a flat metric with cone singularities at the zeros, where
the curvatures are −2kπ. Figure 21 shows the manifold splines constructed using
the curvature flow method.

Spline surface Knot structure Control net

Figure 21. Manifold splines with extraordinary points (the cen-
ters of the yellow regions).
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Compared to other methods for constructing domains with prescribed singularity
positions, such as the one based on trivial connection [14], the major advantage
of this one is that it gives global conformal parameterizations of the spline sur-
face, namely, the isothermal coordinates. Differential operators, such as gradient
and Laplace-Beltrami operators, have the simplest form under isothermal coor-
dinates, which greatly simplifies the downstream physical simulation tasks based
on the splines.

5.3. Medical imaging. Conformal geometry has been applied for many fields
in medical imaging. For example, in the field of brain imaging, it is crucial
to register different brain cortex surfaces. Because brain surfaces are highly
convoluted, and different people have different anatomic structures, it is quite
challenging to find a good matching between cortex surfaces. Figure 14 illustrates
one solution [31] by mapping brains to the unit sphere in a canonical way. Then
by finding an automorphism of the sphere, the registration between surfaces can
be easily established.

In virtual colonoscopy [39], the colon surface is reconstructed from CT images.
By using conformal geometric methods, one can flatten the whole colon surface
onto a planar rectangle. Then polyps and other abnormalities can be found
efficiently on the planar image. Figure 22 shows an example for virtual colon
flattening based on conformal mapping.

Figure 22. Colon conformal flattening.

5.4. Vision. Surface matching is a fundamental problem in computer vision.
We focuses on multiply connected surfaces, such as a human face surface, where
there are holes for the eyes and mouth. If the surfaces are isometric, then their
conformal moduli should match and they can be conformally flattened to the
same canonical circle domain. This is the basis for a recognition algorithm. The
main framework of surface matching can be formulated as follows:

Suppose S1, S2 are two given surfaces, f : S1 → S2 is the desired matching. We
compute φi : Si → Di which maps Si conformally onto the canonical domain Di.
We construct a diffeomorphism map f̄ : D1 → D2, which incorporates the feature
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constraints. The final map φ is induced by f = φ2 ◦ f̄ ◦φ−1
1 . Figure 23 shows one

example of surface matching among a human face with different expressions. The
human face surfaces are shown on the left,the matching results using consistent
texture mapping are shown on the right. For details, we refer readers to [67,
78]. Conformal geometric invariants can also be applied for shape analysis and
recognition. Details can be found in [75].

Figure 23. Matching among faces with different expressions.

Teichmüller theory can be applied for surface classification in [73, 42]. By us-
ing Ricci curvature flow, we can compute the hyperbolic uniformization metric.
Then we compute the pants decomposition using geodesics and compute the
Fenchel-Nielsen coordinates. In Figure 24, a canonical fundamental group basis

Figure 24. Computing finite portion of the universal covering
space on the hyperbolic space.

is computed (a). Then a fundamental domain is isometrically mapped to the
Poincaré disk with the uniformization metric (b). By using Fuchsian transfor-
mation, the fundamental domain is transferred (c) and a finite portion of the
universal covering space is constructed in (d). Figure 25 shows the pipeline for
computing the Teichmüller coordinates. The geodesics on the hyperbolic disk
are found in (a), and the surface is decomposed by these geodesics (b). The
shortest geodesics between two boundaries of each pair of hyperbolic pants are
computed in (c), (d) and (e). The twisting angle is computed in (f). Details can
be found in [42].
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Figure 25. Computing the Fenchel-Nielsen coordinates in the
Teichmüller space for a genus two surface.

5.5. Wireless sensor network. In the wireless sensor network field, it is im-
portant to design a Riemannian metric to ensure the delivery of packets and
balance the computational load among all the sensors. Because each sensor can
only collect the information in its local neighbors, it is desirable to use greedy
routing. Basically, each node has virtual coordinates. The sensor sends the
packet to its direct neighbor, which is the closest one to the destination. If the
network has concave holes, as shown in Figure 26, the routing may get stuck at

(a) Hyperbolic universal covering space

(b) Euclidean covering space

Figure 26. Ricci flow for greedy routing and load balancing in
wireless sensor network.
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the nodes along the inner boundaries. We use Ricci flow to compute the virtual
coordinates, such that all inner holes become circles or hyperbolic geodesics, then
greedy routing delivery is guaranteed. The delivery path is guided by geodesics
under the special Riemannian metric. The covering spaces with Euclidean and
hyperbolic geometry pave a new way to handle load balancing and data storage
problems. Using the virtual coordinates, many shortest paths will pass through
the nodes on the inner boundaries. Therefore, the nodes on the inner boundaries
will be overloaded. Then, we can reflect the network about the inner circu-
lar boundaries or hyperbolic geodesics. All such reflections form the so-called
Schottky group in the Euclidean case (b), or the so-called Fuchsian group in
the hyperbolic case (a). We then perform the routing on the covering space.
This method ensures delivery and improves load balancing using greedy routing.
Implementation details can be found in [55, 76, 56].
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