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Modified Chebyshev-Picard 
Iteration Methods for 

Orbit Propagation 

Xiaoli Bail and John L. Junkins2 

Abstract 

Modified Chebyshev-Picard Iteration methods are presented for solving high precision, 
long-term orbit propagation problems. Fusing Chebyshev polynomials with the classical 
Picard iteration method, the proposed methods iteratively refine an orthogonal function 
approximation of the entire state trajectory, in contrast to traditional, step-wise, forward 
integration methods. Numerical results demonstrate that for orbit propagation problems, the 
presented methods are comparable to or superior to a state-of-the-art 12th order Runge
Kutta-Nystrom method in a serial processor as measured by both precision and efficiency. 
We have found revolutionary long solution arcs with more than eleven digit path approx
imations over one to three lower-case Earth orbit periods, multiple solution arcs can be 
patched continuously together to achieve very long-term propagation, leading to more than 
ten digit accuracy with built-in precise interpolation. Of revolutionary practical promise 
to much more efficiently solving high precision, long-term orbital trajectory propaga
tion problems is the observation that the presented methods are well suited to massive 
parallelization because computation of force functions along each path iteration can be 
rigorously distributed over many parallel cores with negligible cross communication 
needed. 

Introduction 

The solution of initial value problems (IVPs) provides the state history of a 
given dynamic system, for prescribed initial conditions. Beginning with the 
pioneering work of Euler in the 1700s, numerical methods for solving IVPs have 
challenged applied mathematicians, engineers, and scientists for about three cen
turies. Although a substantial amount of literature exists with many well-proven 
methods for solution of IVPs associated with systems described by nonlinear 
ordinary differential equations (ODEs), how to optimize the methods to utilize 
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emerging parallel computing architectures provides a driver for pursuit of enhance
ments of existing methodology. 

Compared with the significant achievement of using parallel computation 
techniques in other scientific computation fields, research on developing parallel 
algorithms for solving the IVPs of celestial mechanics is advancing at a slower 
pace, mainly because most of the current integration methods implemented on 
parallel machines are only modified versions of traditional forward integration 
approaches, which are typically poorly suited for parallelization [1]. Recently, Bai 
and Junkins have proposed Modified Chebyshev Picard Iteration (MCPI) methods 
for solutions of IVPs and boundary value problems (BVPs) [2-4]. MCPI methods 
approximate both the state trajectory and the integrand along the trajectory by the 
same set of discrete Chebyshev polynomials. Through using the Picard iteration 
method [5], MCPI methods integrate the basis functions term-by-term to establish 
a recursive trajectory approximation technique that inherently contains the new 
basis function coefficients linearly on each iteration without linearization. Because 
it is straightforward to distribute the computation of the integrand at all the discrete 
nodes to different professors, MCPI methods are inherently parallelizable, thus 
advanced parallel techniques and computer architectures can be effectively used. 

The development of MCPI methods builds on some historical work fusing 
Picard iteration with approximation theory [6-11]. With the available advanced 
and inexpensive parallel computation architectures such as Graphics Card Units 
(GPUs), MCPI methods have made the following contributions . 

• A unified vector-matrix form of Chebyshev-Picard methods has been devel
oped and proven to be applicable to solving both IVPs and BVPs computa
tionally efficiently. 

• The convergence characteristic of Chebyshev-Picard methods has been stud
ied, new insights are reported that establish fundamental conditions that 
guarantee the implemented algorithm is a contraction mapping in the vicinity 
of the solution, over maximal time intervals. These results provide important 
insights about how to choose the solution segment step size, which is vital for 
efficiently and accurately solving IVPs on a large interval. The insights are 
conclusive for the case of linear systems and provide important insight for 
nonlinear systems. 

• We have found that MCPI methods are applicable to high precision satellite 
motion propagation problems, even prior to parallel implementation. 

• We have also implemented MCPI on a graphics card to obtain a parallel 
implementation and the speedup achieved is the largest that has ever been 
reported [2]. 

This article presents MCPI methods for solving IVPs, and is especially ad
dressed to orbit propagation problems. The related methods for solving BVPs have 
been addressed in a preliminary way in Bai' s dissertation [4] and are treated further 
in a companion to this article. We briefly review relevant background literature 
first. We then outline the MCPI methods for solving IVPs, followed by presenting 
recent significant progress from the results reported in references [2] and [3]. In the 
results prior to the present study, we used a Runge-Kutta (RK) 4-5 method to 
provide a convenient and familiar reference solution for a qualitative basis for 
assessment of MCPI methods. For a two-body propagation problem, which is 
similar to the one studied in the current article, we have achieved up to three orders 
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of magnitude better accuracy while also achieving over one magnitude of speedup 
over a RK45 method prior to parallel implementation. Bai's dissertation [4], with 
a less refined version of the MCPI method, compared many solutions to RK45 and 
showed one to two orders of magnitude speed up in a serial computational 
implementation, while maintaining comparable accuracy. In the present study, we 
compare the performance of MCPI methods with a state-of-the-art RKNI2(1O) 
method [12,13]. We also introduce a newly-developed second order MCPI method 
that is computationally much more efficient for systems whose equations of motion 
are a second order system of differential equations, rather than converting them to 
first order form to apply the original first order MCPI formulation. We also report 
here insights on how to choose optimal polynomial orders and segment length to 
guarantee both accuracy and efficiency. 

Background Literature Review 

Parallel Approaches for Solving IVPs 

The most common parallelization approach to solve IVPs of orbital mechanics 
is to cluster the integration of subsets of the N orbital differential equations on 
separate processors and compute each orbit using serial integration, but on dis
tributed parallel processors. A more fundamental speedup could be achieved if the 
computation of each precision orbit was itself highly parallelizable, but most of the 
currently popular numerical integration methods do not have properties that lend 
themselves efficiently to highly parallel computation [1]. Franklin compared three 
approaches to parallelize the existing forward integration methods [14]: a parallel 
block implicit method, segmenting the equations to separate parts which can be 
solved using multiple processes, and revising the forward integration methods to a 
predictor-corrector form which was designed by Miranker and Liniger [15]. Gear 
[1] proposed two types of parallelism: 1) parallel across the method, and 2) parallel 
across the problem. The way to use parallel techniques for both explicit RK 
methods and implicit RK methods [16] by concurrent function evaluation belongs 
to the first type, and the number of processors that can be utilized depends on the 
number of stages of the RK methods, which usually is less than twenty [17, 18]. 
Parallelism of a nonlinear vector differential equation obviously depends on the 
coupling implicit in the problem itself and one simple example is to distribute 
the computation of the time derivative of each state to different processors -
however, the degree of coupling frequently makes rigorous parallelism difficult. 
Bellen and Zennaro used an iteration method to solve initial value problem from 
a guessed starting solution and named their approach as the third type: parallel 
across the time [19]. A variant of this third type of parallelism is being relied upon 
in the present article. This third type has also been studied by Gear and Xu [20] and 
the way they used the Picard Iteration approach belongs to the more general 
waveform relaxation methods. However, Gear and Xu's approach was found 
promising for a limited family of problems. For the dynamic systems that are 
described by second order equations and where the force functions are not 
dependent on the velocity, the corresponding specialized Runge-Kutta-Nystrom 
(RKN) methods are usually more efficient than the general purpose RK methods. 
Houwen et al. studied the stability of implicit RKN methods for solving second 
order equations based on collocation methods [21]. However, the authors found 
that there are a number of instability regions when the collocation points are Gauss 
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nodes, Radau nodes, or Lobatto nodes, which indicate that careful stability studies 
must accompany the node selection in this method. Sommeijer presented a parallel, 
explicit RKN method, which computes the s stages of function evaluations in 
parallel and uses m iterations in the RKN method [22]. He studied using both 
Gauss-Legendre and Radau type RK methods as the correctors. In the develop
ments below, we considered the same benchmark problem and report over a two 
order of magnitude increase in the interval over which a converged solution can be 
obtained by our MCPI algorithm. 

Picard Iterations, Chebyshev Polynomials, and Chebyshev-Picard methods 

Picard iteration is a successive solution approximation technique that is often 
used to prove the existence and uniqueness of the solutions to IVPs. However, 
except for some special cases, it is usually difficult to use the classical Picard 
iteration method for solving IVPs, mainly because the integrals are not analytically 
tractable. Several researchers over the past half century have pursued the goal of 
rendering Picard Iteration a more practical approach for solving IVPs and some 
moderate degree of success has been achieved. For example, Parker and Sochacki 
have studied the use of Picard Iteration to generate solutions of IVPs in the form 
of a family of local Taylor series [23], however, convergence of these series is not 
generally attractive compared with the methods we present below. In Gear and 
Xu's study [20], a paradox was reported: using their implementation of the Picard 
method, their approach converged poorly but was found to be highly parallelizable; 
however using their generalized Picard method, or waveform formulation, their 
modified method converged faster but with less parallelism. 

Chebyshev polynomials are a complete set of orthogonal polynomials that are 
very important for function approximation. We remark, for the case of discrete 
Chebyshev polynomials, these orthogonal functions become complete only as the 
number of nodes and the degree of the polynomials approach infinity. Practical 
convergence to small tolerances approaching machine precision is easily demon
strated for most smooth functions, and we have found these polynomials readily 
approximate multi-revolution gravity and drag perturbed orbits with sub-millimeter 
precision, so long as propulsive forces are not present. Not surprisingly, when 
impulsive or highly irregular local disturbances are encountered, then the interval 
of approximation must be shortened adaptively over the duration of such distur
bances. It has been proved that if the zeros of Chebyshev polynomials are used as 
the nodes for polynomial interpolations, the resulting approximating polynomial 
minimizes the Runge's phenomenon and provides the best approximation under the 
minimax norm [24]. Many researchers have contributed to the research on using 
Chebyshev polynomials to solve IVPs [25-30], but typically not adopting Picard 
iteration as the basis for the solution process. Note that the most straightforward 
approach of parameterizing the trajectory in terms of basis functions leads to a 
nonlinear programming problem, if the trajectory is expanded in a linear combi
nation of basis functions and substituted into the integrand. Urabe demonstrated the 
existence of an isolated periodic solution always implies the existence of conver
gent Galerkin approximations and that if there exists a Galerkin approximation of 
sufficiently high order, under some smoothness conditions, an exact solution exists 
and the approximation error can be estimated [29]. Urabe also developed a 
numerical computation approach for periodic nonlinear systems using the Galerkin 
approximations [30]. However, using nonlinear programming to find the required 
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large number of basis function coefficients with his approach is computationally 
inefficient for high dimensional state spaces and frequently the curse of dimen
sionality also limits practical convergence (this assessment agrees with the discus
sion by Vlassenbroeck and Dooren [31]). 

This proposed MCPI approach builds on the historical formulations by a small 
group of researchers. Clenshaw and Norton first proposed to solve IVPs using both 
Picard iteration and Chebyshev polynomials (Chebyshev-Picard methods) [6]. 
Shave studied using Chebyshev-Picard methods for orbit propagation and estima
tion problems based on the assumption of a single instruction, multiple data 
(SIMD) parallel architecture [7]. Sinha and Butcher developed a method that uses 
Picard iteration and shifted Chebyshev polynomials to symbolically solve for the 
approximate solutions of the state transition matrix for linear time-periodic dy
namic systems [8]. In addition to the work by Shave, the parallel nature of the 
Chebyshev-Picard methods has also been partially addressed by Feagin [9, 11] and 
Fukushima [10]. Feagin presented a vector-matrix form of the Chebyshev-Picard 
method that is closely related to MCPI methods we propose here [9]. Fukushima 
implemented a Chebyshev-Picard algorithm on a vector computer [10]. However, 
for one example problem, the vector code was shown to be slower than the scalar 
code and the author suggested that this was because his approach could not be 
vectorized efficiently and the compilation put more additional overhead. Before 
our introduction of MCPI methods, Chebyshev-Picard methods have not been 
considered a viable competitor to traditional existing methods such as high order 
RK or multi-step methods to solve the problems of celestial mechanics. 

State of the Art Methods for Numerical Solution of Second Order Equation: 
RKN12(JO) 

Most of the numerical methods presently in routine use for orbit propagation can 
be categorized as either Runge-Kutta type methods, multi-step extrapolation 
methods, or Taylor series (analytical continuation) methods. All of these methods 
owe their heritage to Euler's original (late 1700s) first order analytical continuation 
method and/or Gauss' (mid 1800s) predictor-corrector method. The MCPI method 
proposed here departs from these traditional methods in a way that allows us to 
approximate a large finite path segment as opposed to extrapolating a small step 
along the path using either the single or multi-step methods. To illustrate and 
evaluate the potential for the proposed MCPI methods for solving IVPs, we choose 
to compare the performance of MCPI with a 12th order Runge-Kutta-Nystrom 
(RKN) method (RKN12(10», which utilizes also a 10th order RK approximation 
to facilitate automatic step size modification for error control [12, 13]. Several 
recent studies indicate RKN12(10) is representative of the state of the art, because 
its efficiency and accuracy relative to many of the competing methods have been 
well-documented [32-36]. Through solving an orbit problem Fox compared the 
performance of the Gauss-Jackson method (for low eccentricity orbits), Gauss
Jackson-Merson method (for high eccentricity orbits), fourth order Runge-Kutta 
method, sixth order Runge-Kutta method, embedded seventh order Runge-Kutta
Nystrom (RKN) method, Adams methods, Taylor series methods, and the extra
polation methods by Bulirsch [32]. Fox concluded that the Gauss-Jackson method 
is the best method for near circular orbits and he found that the seventh order RKN 
method is the most efficient for high eccentricity. Filippi and Grf [33] and 
Dormand et al. [13] developed high order RKN methods and showed the relative 
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efficiency of their higher order RKN methods over the lower order methods. In an 
important sequence of studies, Montenbruck compared several RK methods, recent 
higher order RKN methods, multi-step methods, and extrapolation methods for a 
planar two-body problem, to decide which was "best" based on solution of 
benchmark problems [34]. The results showed the RKN methods are superior to 
the pre-existing similar order RK methods and furthermore, if the differential 
equations do not contain a velocity dependent term, the high-order RKN methods, 
especially RKNI2(10), are as fast or faster than multi-step methods while main
taining high precision. A problem with RKNI2(1O) reported by Montenbruck is 
that its efficiency drops significantly if the output points are required at times other 
than those resulting from the natural optimum step size using the built-in step size 
control algorithm. More recently, Sharp compared nine non-symplectic and two 
symplectic integrators through solving four different N-body problems [36]. For 
the two problems where the force functions are not dependent on the velocity, the 
RKNI2(10) method was found to require the least CPU time with high precision 
maintained over long solution intervals. Hadjifotinou and Gousidou-Koutita com
pared a 10th-order Gauss-Jackson method, RKNI2(10), and a recurrent power 
series (RPS) method by using seven test problems where the considered dynamical 
system involves one to four large moons orbiting a point-mass planet [35]. The 
integration time was 12,000 days (about 30 years). The RPS method introduces a 
set of new auxiliary variables to solve the problem by the Taylor series approach. 
Although the RPS method is shown to have about one order of magnitude better 
accuracy than the other two methods for the particular problem solved, the 
algorithm needs to be redesigned whenever the system equations change. Hadji
fotinou and Gousidou-Koutita showed that the optimal step sizes for the RPS 
method are much larger than the other two methods: ranging from Vl3 of an orbit 
to as large as V6 of an orbit (in contrast, the optimal time interval for MCPI solution 
intervals usually varies from one orbit period to over three orbit periods for 
near-circular problems, so an order of magnitude longer solution arc is feasible). 

Fundamentals of the MCPI Approach 

Consider a dynamic system described by a first order differential equation 

dx 
dt = f(t, x) (1) 

with the initial condition x(to) = Xo. The first step of MCPI methods is to transform 
the generic independent variable t to a new variable T, which is defined on the valid 
range, the closed interval [-I, I], of Chebyshev polynomials 

t = WI + W2T 
tf - to 

w2=-2- (2) 

Introducing this time transformation of equation (2), equation (1) is re-written as 

dx 
dT = geT, x) == w2f(WI + W2T, x) (3) 

and Picard iteration provides the solution of equation (3) as 
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(4) 

Now, we introduce Chebyshev polynomial approximations of both the unknown 
trajectory Xi and the integrand of equation (4) along the trajectory Xi. The Cheby
shev polynomial of degree k is denoted by Tk• The (N + 1) discrete nodes that are 
used to represent the state trajectory are the Chebyshev-Gauss-Lobatto (CGL) 
nodes, which are computed through 

Tj = cos(j7TIN) j = 0, 1,2, ... , N (5) 

Assume the force function vector is approximated by an N h order Chebyshev 
polynomial 

k=N 
g(T,Xi-I(T))= 2:'F~-ITk(T) 

k=O 

== 1/2F~-ITo(T) + F;-IT1(T) + F~-IT2(T) + ... + F~-IT~T) (6) 

Using the discrete orthogonality property of Chebyshev polynomials, the coeffi
cient vectors Fk can be calculated immediately through [24] 

F~-I =N~ 2:N "g(7j,.t-\T))Tk(T) 
j=O 

_1_1 2 '-I 1 '-I - N g( To, X (To))Tk( To) + N g( TJ, X (TI))Tk( 1'1) . .. + N g( To, X (To))Tk( To) (7) 

In equations (6) and (7), I' denotes that the first term is halved and I" represents 
that both the first and last terms are halved. Notice each coefficient of F~ - 1 is 
obtained through the summation of (N + 1) independent terms, each of which is an 
inner product of the force function g( 1', x( 1')) and the Chebyshev polynomials Tk( 1') 
evaluated at the CGL points of equation (5). Furthermore, all the coefficient 
vectors are independent of each other, and can therefore be computed in parallel 
processors. Also, and most importantly, for problems where calculating the force 
vector function g( 1', x( 1')) is time consuming, significant time performance im
provement can be achieved by simultaneously computing g( Tj, x( Tj)) at each 7j on 
(N + 1) parallel processors. 

Assuming the solution at the ith step is denoted Xi( T), Picard iteration provides 
the recursion to calculate Xi( 1') as a Chebyshev polynomial approximation over the 
entire time interval as 

x'(T) ~ "" + ,~; F,~' t T,(,) ds ~ ,~; P~T,(T) (8) 

The coefficient vectors for the updated trajectory expressed below in equations 
(9-11), are obtained directly from recollecting the term-by-term analytical inte-
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gration of equation (8), and imposing the initial boundary conditions. The deriva
tion of these formulations can be found in Bai's dissertation [4]. 

(9) 

(10) 

k=N 

f3~ = 2xo + 2 2: (-l)k+lf3~ (11) 
k = I 

The updated coefficient vectors define the new trajectory approximation for use in 
integrand (equation (6» for the next iteration (i + 1) (see Fig. 1 for the algorithm 
overview). Thus the solutions are iteratively improved until some accuracy re
quirements are satisfied. To account for the nonlinearity issues, the stopping 
criterion we choose is to require both the maximum difference (among all the N + 
1 CGL nodes) between solutions Xi( T) and Xi - I( T) and the maximum difference 
between solutions Xi( T) and Xi + I( T) are less than some tolerance. 

Instead of adopting a term by term scalar process to solve for the state at the 
(N + 1) CGL nodes, the (N + 1) Chebyshev coefficients, and the updated (N + 1) 
Chebyshev coefficients, we have developed a compact vector-matrix approach to 
implement MCPI methods, which is shown in Fig. 2 and the derivation of the 
matrices can be found in Bai's dissertation [4]. The basis functions arising from the 
process are collected in the matrices 

[ T.(T.) TI( To) ... TN(T·)W 0 

r] To(TI) TI(TI) ... TNCTI) 0 1 . .. 
Cx=TW = : · . · . · . 

To(TN) TI(TN) ... TNCTN) 0 0 . .. 

(12) 

C,,=RSTV (13) 

1 2 1 2 1 
1 -- -- - (-It+I--

2 3 4 15 N-l 
1 0 - 1 0 0 0 

s= 0 1 0 - 1 0 0 (14) 

0 0 0 1 0 - 1 
0 0 0 0 1 0 

where the rth (r = 2, 3, ... , N - 1) column of the first row has a form as 

S[ 1, r] = (_1)r+ I (_1 ___ 1_) 
r-l r+l 

(15) 

And the diagonal matrices R and V are defined as 

R = diag([ 1,~,~, ... , 2(N
1
_ 1)' 2~]) (16) 



Modified Chebyshev-Picard Iteration Methods 

dx di= f(I,X(I», 10 s;, 1 s;, II ' {x(to) = Xo,lo, l/} specified 

U 
Variable Change 

1 =1'iJ1+l'iJlr, 1'iJ1=(7} I'iJl =(¥} -ISrSI 

u 

u 
Starting Trajectory Estimate 

i = I, xO(r) specified 

u 
Picard Iteration: 

x ' (r)=xo+ Ig(s,x'-I (s»ds, i=I,2, ... 

U 
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Discrete Orthogonal Integrand Approximation along the (i -I)'" Trajectory: 

2 N 
F;-I = N l:"g(rj ,xi-l(rj»Tk(r), r j =cos(jnl N) 

j=fl 

N 

g(r,xi-l (r» 2: l:'F:-1T. (r), with 
100 

N I 
l: '(0) J '" -(0)0 + (-)1 + ... + (o)N_1 + (o) N 
j - O 2 
N Il 

l:"(o)J ="2(0)0+(0)1 + . .. +(o)N_1 +"2(o)N 
,00 

Enables the (i -1)"Picard Path Integrals to be Analytically Approximated: 
N .v 

x i(r) = Xo + [I g(s,xH (s»ds 2: Xo + l: '£:-1 I T,.(s)ds '" l: 'p :r. (r) 

\ 

Trajectory APproximati~n Update: 

i = i + 1 ¢::: xi(r) = l: · p~r.(r), 
'=0 

r; O .:0 

u 

Pi 1 (Fi - I F '-I) I 2 N I '= -2 * - 1- hi ,r=, ) ... , -
r 

N 

where p~ = 2xo + l:(-l)k+lp; 
':0 

FIG. 1. MePI Iteration for Solution of Initial Value Problems. 

V= diag([~~ ~ ... ,~~]) (17) 

Notice that the Cx and Ca matrices and the product CxCa are constant (once N is 
selected), so all computations of inner product can be efficiently precomputed. 
Furthermore, the eigenstructure of the matrix product CxCa is of crucial important 
in analyzing convergence of MePI methods. 
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Constant Matrix Initialization Ca Cx 

DStarting Guess xi(r) 

X old = [Xi (To),Xi (T1),X i (T2),·· ·,xi (TN) T 
D Force Evaluation 

Bai and Junkins 

; = [g(To' Xi ('o)} g(,l' Xi ('I)} g('2' Xi ('2)}···' g(, N' Xi (, N))Y 
D Coefficient Update 

~ ~~ --> -> 

~ ~ P = Ca g+ %0 P = [;Jo,/Jp···,pNf,xo = [2xo,O, ... ,of 
Xold = Xnew n State Update 

~ ~ -> r X C R X [ i+l ( ) i+l ( ) ;+1 () i+l ( ) new = xp new = X To'X T1 ,X T2 ,···,X TN n Correction Calculation 

enew = IIXnew- XOldLax D Stopping Criterion Check 

NO e <o? YES 
<~_-ll new and :> EXIT 

eo1d < o? 
FIG. 2. Vector-Matrix Form of MCPI for Solution of Initial Value Problems. 

Second Order MCPI Approach 

Consider a second order ODE described by 

d2x dr = fit, x, x) (18) 

The MCPI formulation presented in the last section can solve this problem after we 
introduce a new state variable to transform equation (18) to a system of 2n first 
order equations. Recently, we have developed a cascaded MCPI formulation, i.e., 
a second order MCPI approach, which solves second order ODEs directly and also 
can be generalized to systems described by higher order differential equations. We 
emphasize this approach can solve problems with differential equations dependent 
on the velocity, whereas many of the most efficient RKN methods such as 
RKN12(1O) cannot. In lieu of equations (3) and (4), we have the transformed 
version of equation (18) 

dv dx 
dT = g(T, X, v) -=v 

dT 
(19) 

Similar to equation (4), the acceleration along the (i - 1)th trajectory approxima
tion is integrated to velocity from equation (20) 
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tI( T) = Vo + f g(S, Xi - I(S), tI-I(S» ds 
-I 

i = 1,2, ... 
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(20) 

Importantly, the position vector is obtained, not from Picard iteration, but by direct 
integration of J( T) to position through using the exact kinematic equation (the 
second of equation (19)) 

(21) 

Notice the approximation errors incur at the velocity level in equation (20) when 
we expand the velocity trajectory and the integrand of equation (20) in Chebyshev 
basis functions and carry out the integrals of equation (20) term by term-then no 
further approximation is required. An exactly consistent position approximation is 
derivable from term by term integration of the linearly contained velocity in the 
integrand of equation (21). In the equivalent first order Picard iteration, the position 
is obtained by modeling the position and velocity independently, resulting in 2n 
approximations in the integrand of equation (4) with {x E Rn ~ z E R2n }, con
strained through the state variable definitions (so that velocity approximations 
implicitly know that they are the derivative of position). However, in the above 
cascaded formulation the velocity vector approximation directly dictates the cor
responding coefficients for the position vector through the kinematic constraint 
implicitly in taking the integral of equation (21). Using the matrix-vector form of 
the MCPI approach, computation of position approximation from velocity simply 
amounts to a matrix multiplication with and addition of invariant (computed once) 
coefficient matrices Cx, CO! as 

Vi = C C g(Vi - I) + C E> x a x to (22) 

(23) 

where the ith step state trajectory evaluated at the (N + 1) CGL nodes has been 
represented by vectors Xi = [X(TO), X(TI), X(T2), ... , X(TN)Y, and Vi = [veTo), v(T1), 
v( T2 ), ••• , v( TN)Y. The initial condition vectors are contained in the vectors 
E>xO = [2xo, 0, 0, ... , 0]T E RN + 1 and E>vO = [2Vo, 0, 0, ... , 0]T E RN + I. The dif
ference between using (i) an Picard iteration simultaneously for both position 
and velocity and (ii) a cascaded Picard iteration for velocity (equations (20) and 
(22» and subsequent integration to get position (equations (21) and (23» may 
at first look minor, however this approach is computationally much more 
attractive and is also more accurate. Note that this efficiency and accuracy 
advantage is enjoyed on each step, and therefore the entire Picard iteration is 
accelerated accordingly. 

Convergence Analysis 

Because of the accumulation of round off and approximation errors during the 
iterations (when a finite order of Chebyshev polynomial is used to approximate 
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solutions), the convergence domain of MCPI methods is different from the ideal 
conditions under which Picard iteration theoretically converges (Lipschitz conti
nuity). Establishing a rigorous convergence domain of MCPI methods applicable 
for general nonlinear systems is not possible by any known approach. To obtain 
some essential insight we first use a linear scalar problem as an example to show 
that the global convergence of MCPI methods is not generally guaranteed, and we 
then address the practical approaches to enlarge the convergence domain. Consider 
a scalar linear dynamic system 

dx(t) 
Cit = cx(t) (24) 

The ith step position history evaluated at the (N + 1) CGL nodes is represented by 
a vector Xi = [x( To), x( TI), x( T2), ... , X( TN)Y and an initial condition vector is 
defined as exO = [2xo, 0, 0, ... , OY E R"+ I. The matrix-vector form of MCPI 
(Fig. 2) leads to the recursive solution 

Xi = ~cCC Xi-I + C@ [
t - t ] 

2 X" x xO (25) 

It is known from linear system theory that this sequence is convergent to a fixed 

. l·f 11 h· 1 f . [(tf - to)] C C . h· .. 1 pomt on y I ate elgenva ues 0 matnx 2 ex", are Wit m a umt CIrC e 

(i.e., equation (25) must be a contraction mapping, to converge to a fixed point). 
Notice that the scalars appear multiplicatively and therefore simply scale the 
maximum eigenvalues of CxC"" leading to an attractive analysis for this simplest 
case of a linear problem. Thus the convergence of the MCPI method is dependent 
on the dynamical system characteristics c, the length of the time interval (tf - to), 
and the matrix multiplication CxC"" which only depends on the order of the 
Chebyshev polynomial used. For convergence, we require 

2 
or Itf - tol < IcllAmax (CxC,,)I (26) 

Remarkably, we can see that this identical invariant (given N) matrix CxC", appears 
multiplicatively in the nonlinear generalization in vector-matrix notation (see Fig. 
2), therefore, during the terminal iterations of a convergent solution process, we 
can expect this type of eigenanalysis to give approximate behavior useful in a 
more general setting. In fact, for a vector time varying nonlinear system, the above 
bound changes only with the scalar c being replaced by the infinity norm of the 
Jacobian. Notice that CxC", depends solely on the choice of Chebyshev basis 
functions, the nodal pattern selected, and the degree of the approximation. There
fore CxC", is invariant, can be computed once, and the eigenanalysis can be studied 
once for all N and applies in all subsequent MCPI solutions. 

The maximum eigenvalues of CxC", are shown in Fig. 3. We found for small N 
(N < 40), this value decays approximately from 0.7 to 0.054, almost linearly on a 
log-log scale. Thereafter, for N > 40, this value remains approximately constant at 
0.054. This gives rise to the maximum interval length as Itf - tolmax = 1(2/c)(l/Amax 
(CxC",) = 37/cl. Although this condition guarantees convergence of the MCPI 
method, for a fixed N, it does not guarantee that N is sufficiently high to give an 
accurate approximation of the solution. It is fortunate, as is evident in Fig. 3, that 
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FIG. 3. Maximum Eigenvalue of ceo. 

convergence does not degrade for large N, or put another way, N> 40 can be 
adjusted to achieve high solution precision, without affecting the convergence of 
MCPI method. 

For convergence insight into the case of second order differential equations, we 
consider d2x(t)/dt2 = cx(t). The updated velocity equation is 

(27) 

We found that the maximum eigenvalues of CxCaCxC" decreases from 0.038 to 
0.003 as N increases from 10 to 40, analogous to the case for the first order system. 
For all the N > 40, the maximum eigenvalues are asymptotically approach about 
0.003. Thus the convergence condition for the second order MCPI method is 
approximately c{tt - to? < 4/0.003 = 1333. We mention the significant truth that 
this represents a two order of magnitude increase over the size of region 
c{tt - to? < 12 in Sommeijer's study [22]. 

Although these linear analyses tell us that MCPI methods only converge on a 
finite interval, we can anticipate using a piecewise approach to solve a significant 
family of IVPs over an arbitrarily large time domain. The initial conditions on the 
subsequent segments should be the final state values from the previous segment. 
This may sound similar to the concept of the step size control used in forward 
integration methods such as Runge-Kutta or analytical continuation methods. 
However, the step size used by MCPI methods is typically a much larger finite 
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interval than the steps used by typical numerical methods, as will be shown in the 
following examples. Furthermore, compared with the forward integration methods 
in which the integration errors are typically increasing with time in a secular 
unstable fashion, we anticipate that better stability/accuracy can be achieved from 
using MCPI methods because, qualitatively, the largest errors from MCPI methods 
usually appear in the middle of the interval and the smallest errors are at the ends 
where adjacent (successive) segments are joined. The fundamental reason for this 
special characteristic of MCPI methods is because of the chosen Chebyshev 
basis functions and CGL nodes which are denser at the boundaries and sparser 
in the middle. 

Numerical Examples 

All computations underlying this article were done in a conventional PC. The 
settings of the computer and the development environment used are: Intel(R) 
Pentium(R) D CPU 3.4GHz, 3.4GHz, 2.0GB of RAM; Windows XP Operating 
System; MATLAB R2009b. The computation time shown below is the average 
CPU time of ten running cases. Also, except for the first example where we use the 
first order MCPI method to solve a first order ODE, second order MCPI methods 
are used for all the other examples. 

Example 1: A First Order Nonlinear System 

Consider a dynamic equation 

dy 
dt = fly, t) = cos (t + ey) to = 0 tf = 2561T y(to) = I e = 0.001 

(28) 

Fukushima suggested this problem, which has a closed-form solution, as a bench
mark with a known truth for conducting accuracy studies [37]. We first compare 
the results by using MCPI methods implemented in MATLAB and by using 
ODE45, which is a Runge-Kutta 4-5 method implemented in MATLAB. For more 
significant nonlinear problems below, we use more sophisticated (and efficient) 
integrators as the basis for comparison. The results are shown for this first example 
in Fig. 4. 

The MCPI method uses a Chebyshev polynomial of order N = 1500 to 
approximate the solutions along the entire interval. For this tuning, the MCPI 
solutions have more than one order of magnitude better accuracy than the ODE45 
solutions and the CPU time using ODE45 is about 80 times slower than the CPU 
time using the MCPI method. We emphasize that other integrators solving first 
order ODEs may yield better performance than ODE45 in solving this problem, but 
it is promising to see that the MCPI method achieved sufficient accuracy and 
significant speedup in the same time. We further note that orders (N) up to of 
several thousand are feasible with MCPI, without numerical difficulty, owing to 
the orthogonality properties (no matrix inverses or other linear algebra ill
conditioning opportunities to lose significant digits) and, especially, highly effi
cient recursions based on simple inner products. The optimal order is typically 
much less, but obviously high order approximation in numerical integration now 
takes on a new meaning. As we will show later, these solutions have not taken 
advantage of the fact that the long intervals can be subdivided, which will reduce 
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a MCPI errors: CPU=O.03401sec 

Time (sec) 

b ODE45 errors: CPU=2.8351 sec 

Time (sec) 

FIG. 4. Integration Errors and CPU Time for Example I. 
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the order of the required polynomial approximations thus more speedup can be 
achieved by the MCPI methods when implemented on a serial machine. Further
more, if parallel computation environment is available, more speedup will also be 
obtained because the un-coupled function evaluations matrix operations can be 
distributed to different processors. We also notice that although the errors from the 
reference ODE45 solution have a typical secular increase, which is a pattern 
common to all forward integration methods, the errors using the MCPI method 
have the maximum values near the middle of the interval and the smallest errors 
at the boundaries. The fundamental reason is because of the CGL nodes, which are 
dense at the boundaries and sparse in the middle. This special feature makes MCPI 
methods more attractive than the forward integration methods in reducing the 
global errors for long time integrations, for which the solutions in different 
segments are patched together at the terminal points of each solution interval where 
the errors are typically smallest. Additionally, we note convergence can be 
obtained up to some problem dependent maximum final time. For a linear problem, 
this maximum can be determined. For nonlinear problems, such as this one, 
approximation or adaptive tuning is required. The interval for a practical conver
gence is found to be significantly greater than 2567T (about 128 oscillation periods). 
For qualitative purpose, we note that expanding equation (28) in B leads to dy/dt = 

cos(t) - B sin(t)y + ... , so the linear (in y) coefficient is bounded by ± B. Even 
though it is not rigorous, we can estimate from the above analysis of the constant 
coefficient linear system that convergence might be expected if H < (2/B)(1/ 
max(A(CxC",». Thus for the chosen polynomial N > 100, the convergence con
dition is approximately that H should be less than 2/(0.05 X 0.001) = 40,000. 
Although these estimations may be too optimistic, we verified excellent conver
gence was actually achieved if H::; 80007T = 5026.5. Perhaps the most striking 
feature of this example is that very high precision can be achieved via MCPI over 
long time periods including many main period oscillations of a nonlinear system, 
whereas many time steps per period are required by all step-by-step integrators 
known to achieve comparable precision. 

Example 2: A Second Order Nonlinear System 

The following second order differential equation has the same analytical solu
tion as the above first order example, and allows us to conduct accuracy studies for 
those integrators designed for second order systems 

d2y 
dr = !(y, t) = -sin (t + BY) - V2B cos(2t + 2BY) 

to = 0 tf = 2567T y(to) = 1 j(to) = 1 B = 0.001 (29) 

Among the many convergent possibilities, we have tuned the second order MCPI 
method to use a Chebyshev polynomial of order 130 to approximate the solution 
over an interval length of 167T (eight periods of unperturbed oscillations), and 
found convergent solutions on the 16 segments of 167T duration that are patched 
together to generate the final solution. At the starting iteration, all the positions and 
velocities at the N + 1 CGL nodes are simply chosen from straight line solutions 
ensuing from the initial position and the initial velocity, thus a very poor starting 
guess is provided for the MCPI method so that the timing results are very 
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conservative. To provide a more meaningful comparison vis a vis relative effi
ciency, we adopt the 12th order Runge-Kutta-Nystrom algorithm RKNI2(10) with 
adaptive step size control, which is widely regarded as one of the more powerful 
nonlinear differential equation solvers available. The errors and CPU times in 
seconds of MCPI and RKNI2(10) are shown in Fig. 4. We can see with slightly 
better accuracy achieved by the MCPI solution, MCPI also obtained a speedup of 
about 30 over RKNI2(10). This speedup is (in spite of the fact that the number of 
function evaluations was not substantially reduced) a consequence of the compu
tational efficient recursive vector-matrix nature of the MCPI algorithm and large 
step size MCPI used. The RKNI2(10) algorithm calls the function evaluation 
routine 14,974 times, whereas totally MCPI takes 113 iterations, which leads to 
113 x (130 + 1) = 14, 803 function evaluations (remarkably, almost the same 
number in this case). Thus on a serial machine, even with a very poor starting 
solution estimate, MCPI requires essentially the same number of function evalu
ations as does RKNI2(10). However, it is vitally important to recognize that the 
MCPI acceleration evaluations on all the CGL nodes are independent, because the 
entire path approximation is available at once on each iteration. In an ideal parallel 
environment where we can distribute the function evaluations on the (N + 1) CGL 
nodes onto (N + 1) processors, the theoretical speedup factor is 131, and can be 
expected to approach that theoretical limit if 131 or more cores are available, 
because little shared memory is involved. Figure 5 shows the errors are in the 11 th 
significant figure for both solutions, although the MCPI solution has about V4 the 
error norm of the RKNI2(10) solution. To recap, the speedup achieved on a serial 
processor was 30, the theoretical speedup on a parallel processor with over 130 
cores is two additional orders of magnitude for this problem. Impressive potential 
exists, if these results for "toy" idealized problems extend to the problems of orbit 
mechanics. In the results presented below, the test cases to date indicate that these 
speedups are typical for the more nonlinear problems of central practical interest. 
Additionally, comparing the computational time and accuracy of this tuned second 
order MCPI with the previous first order MCPI using one segment, we see the 
benefit to use the second order formulation and also the potential for better 
accuracy and more speedup when careful tuning is applied to the MCPI methods, 
see Figs. 4(a) and 5(a) for this comparison. 

Example 3: Integration of Unperturbed Keplerian Motion (Natural Second 
Order System) 

Although a classical problem that has been used very often for performance 
comparison of ODE solvers is a planar two-body problem [12, 13, 32-34], we 
choose to use an example that integrates a three dimensional near circular orbit for 
one week to help us draw more practical insight. The dynamic equations are 

(30) 

The six classical orbital elements are: a = 6644.75 km, e = 0.01, i = 68°, n = 
92°, w = -160°, Tp = 5.3905 X 103 sec. Both the MCPI methods and RKNI2(10) 
are tuned such that sub-millimeter position accuracy, relative to the exact analytical 
solution, is achieved for the whole week. A Chebyshev polynomial of order 40 is 
chosen for the MCPI method and the segment length is selected to be 5,400 sec. 
The classical F&G method [38] provides an analytical truth that is used to calculate 
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the solution errors, of which for the MCPI method and the RKN method are shown 
in Figs. 6 and 7. Several observations are summarized here. First, the computa
tional time is 0.2639 sec for MCPI and 1.8882 sec for RKNI2(lO). Thus with 
slightly better accuracy in both position and velocity, MCPI achieved a speedup 
factor of seven. Second, RKNI2(lO) calls the differential equations 29,662 times. 
Using an initial starting solution that the position and velocity at all the CGL nodes 
are the same as the prescribed initial position and velocity, MCPI took 2465 
iterations in total. Thus on a serial machine, the ratio of function evaluation of 
RKN over MCPI is 29662/(2465 X 41) = 0.3. However, in an ideal parallel 
environment where we can distribute the function evaluation on the (N + 1) CGL 
nodes to (N + 1) processors, the ratio is 2966212465 = 12. Third, the reason for the 
speedup of MCPI over RKN in a serial implementation lies in two aspects. The 
first reason is that the vector-matrix form of the MCPI approach is computationally 
very efficient. The second reason attributes to the large step size that MCPI can 
use. For RKNI2(lO), the minimum step size is 0.0465 sec, the maximum is 
629.4089 sec, and the mean is 363.4615 sec that is about 7% of the one full orbit 
which is the step size that the MCPI method used. Notice there is a significant 
qualitative difference in approximating a path versus taking small steps along it! 
Last, we have gained some preliminary insight about how to tune the polynomial 
order and the segment length. 

Figures 8 and 9 show the computational time and accuracy for the MCPI method 
when the orders are chosen from 40 to 300, and the segment lengths are chosen 
from about 0.1 of the orbit period up to 2.2 of the orbit period. We found the 
minimum computation time is 0.1847 sec, which is obtained when we choose 
N = 50 and segment length as 10,260 sec (about 1.9 orbit). The most time 
consuming settings are the cases where a low order Chebyshev polynomial is used 
to integrate a rather large segment. We also characterize the solution errors as the 
maximum global relative error 

_ (Ir(MCPI, t) - r(FG, t)l) (IV(MCPI, t) - v(FG, t)l) 
e - max r(FG, t) + max v(FG, t) (31) 

where the first argument indicates the method to compute the solution and FG 
denotes the classical analytical solution. The significant figures shown in Fig. 9 are 
defined as B = - log 1O(e). Figures 8 and 9 show that although we currently do 
not have a rigorous way to find the optimal settings for the minimum computa
tional time, we have a large region where we could obtain more than eleven 
significant digits in less than one second of computational time, which is still 
significantly faster than RKNI2(lO)). The irregularity of the 11 to 12 significant 
digit contours is a consequence of the solution accuracy approaching the noisy 
precision limit associated with finite precision arithmetic. The RKNI2(lO) algo
rithm also experiences similar bumpy convergence when it approaches twelve digit 
accuracy. In this case, we have the choice over a large space of interval lengths and 
orders to achieve twelve digit accuracy, but of course, nine digit accuracy for orbit 
problems is typically considered sufficient for "engineering accuracy," because 
this already corresponds to centimeter precision. For runtime efficiency, the 
optimal region in this tuning space for serial machines is as near the top left 
boundary of Figs. 8 as accuracy allows, whereas, for parallel machines, it is near 
the top boundary but further to the right (we accept the longest practical conver-
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gence interval, because the order can be adjusted, by moving right for larger N 
equal to the number of cores available (so the number (N + 1) of function 
evaluations along each iterative trajectory can be carried out simultaneously to 
achieve a theoretical speedup of (N + 1). The flatness of the accuracy surface 
permits a large space for adjustment to take full advantages of various parallel 
architectures. Additionally, we emphasize although we are targeting for high 
accuracy solutions in this article, there is a tradeoff between the computation time 
and solution accuracy, both of which are dependent on the chosen polynomial 
order, segment step size, and stopping criterion. The general rule is that higher 
order polynomials and stricter stopping criteria will lead to more accurate solutions 
but require longer computation time. Some experimental studies can be found in 
Bai's dissertation [4]. 

Propagating a Family of Perturbed Orbits 

The ability to propagate satellite motion quickly and accurately is one of the 
major factors that affects the performance of tasks such as collision avoidance for 
space objects. For these tasks, numerical integration of the satellite motion with 
even more accurate and complicated perturbation force models has become nec
essary [39, 40]. Possibly a degree and order 36 X 36 or higher gravity model and 
a realistic atmospheric density model will be required to model perturbation 
accelerations in addition to the dominant force. In the following studies, we include 
the zonal harmonic perturbation forces up to the fifth order [38] in the dynamic 
models and investigate how the performance of the algorithms changes as the force 
model becomes more complicated. Including zonal harmonic perturbations up to 
the order of k leads to the dynamic equation as 

(32) 

where a~ is the {h order zonal perturbation terms. We compare the computational 
time and the number of function evaluations when using MCPI and RKNI2(10). 
We look at a low eccentricity problem as well as a high eccentricity problem. The 
purpose of considering the perturbations in this way is to assess the role that model 
complexity plays on the relative efficiency and accuracy of MCPI in comparison 
to existing methods. We also vary the eccentricity of the orbits from near circular 
to very eccentric, to assess the degree to which rapidly varying nonlinearity 
impacts the relative merits of the algorithms. 

Example 4: Integration of Perturbed Orbits with Low Eccentricity (e = 0.01) 

The initial conditions for this example are the same as those used in Example 3. 
For the MCPI method, the Chebyshev polynomial order is 40 and the segment 
length is 5,400 s, which have been tested in the unperturbed case to provide 
submillimeter position accuracy. For the four perturbed cases, although no analyt
ical solutions are available, we have verified the relative energy changes for both 
methods are in the range of 10 - 13. The computational times for the two methods 
are shown in Fig. lO(a) and the speedup results are shown in Fig. lO(b). The order 
"I" case is the unperturbed Example 3 we studied before and we include it here to 
illustrate the performance trend with respect to the complication level of the 
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perturbation models. Figure lO(b) shows that the MCPI method achieved six to 
eleven speedup over RKNI2(10). Figure II(a) shows that RKNI2(10) calls about 
30% of the number of function evaluations required by the MCPI method. Figure 
II (b) shows that in an ideal parallel computation environment where we can 
distribute the force evaluation on the (N + I) CGL nodes onto (N + 1) processors, 
RKNI2(10) calls about twelve times of the number of function evaluations 
required by the MCPI method. Although the speedup achieved by the MCPI is 
shown to be decreasing on Fig. I O(b) in a serial implementation, we predict that the 
trend will change to be beneficial to the MCPI method on an advanced parallel 
machine because of the following two reasons. First, Fig. II shows that as more 
perturbation terms are included, the function call ratio of RKNI2(10) over MCPI 
is increasing. Second, as we discussed earlier, the parameters for the MCPI method 
we used here are not the optimal settings. We anticipate more speedup can be 
achieved after we establish an adaptively tuning algorithm 

Example 5: Integration of Perturbed Orbits with High Eccentricity (e = 0.9) 

For this highly eccentric orbit, the six classical orbital elements are a = 65,000 
km, e = 0.9, i = 68°, n = 92°, W = -160°, Tp = 1.6492 X 105 sec. For the MCPI 
method, the Chebyshev polynomial order is 45 except the segment passing the 
perigee, during which we use a polynomial of order 110. We have kept the segment 
length as V20 of the orbit. These settings have been tested in the unperturbed case 
to provide sub-millimeter position accuracy. For the perturbed cases, we have 
verified the relative energy changes for both methods are in the range of 10 - 13. 

The computational time for the two methods are shown in Fig. 12(a) and the 
speedup results are shown in Fig. 12(b). Figure 12(b) shows that the MCPI method 
achieved more than one order magnitude of speedup over RKNI2(10) and this 
speedup is higher than the one achieved for the low eccentric case. Figure 13(a) 
shows that RKNI2(10) calls about 40% of the number of function evaluations 
required by the MCPI method whereas Fig. 13(b) shows that in an ideal parallel 
computation environment where we can distribute the force evaluation on the (N + 
1) CGL nodes onto (N + 1) processors, RKNI2(10) calls about twenty times of the 
number of function evaluations required by the MCPI method. 

Conclusion 

Through solving four exemplar problems, the presented MCPI methods have 
demonstrated orders of magnitude speedup and high precision relative to the 
state-of-the-art RKNI2(10) algorithm. At a high level, we believe this is the first 
time that high precision orbits have been represented (with up to about twelve digit 
precision) with a single functional approximation. That such multi-orbit solution 
arcs can be obtained with computational efficiency comparable or superior (in a 
serial algorithm) to well-established high order numerical differential equation 
solvers is remarkable in and of itself. However, the most significant truth is that the 
MCPI algorithm is ideally suited for parallel computation, and this feature offers 
the near term prospect of better than two orders of magnitude speedup for high 
precision orbit integration. 

We remark currently the tuning of the MCPI algorithm is a trial and error 
process. We are developing an adaptive tuning mechanism which will bring more 
speedups and accuracy advantages to MCPI methods. Weare also programming 
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MCPI methods using the newly released NVIDIA Tesla, which has peak: perfor
mance of 515 GFLOPS for double precision floating point computation, and the 
results will be published in a future study. 
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