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Modified Chebyshev-Picard
Iteration Methods for
Orbit Propagation

Xiaoli Bai! and John L. Junkins?

Abstract

Modified Chebyshev-Picard Iteration methods are presented for solving high precision,
long-term orbit propagation problems. Fusing Chebyshev polynomials with the classical
Picard iteration method, the proposed methods iteratively refine an orthogonal function
approximation of the entire state trajectory, in contrast to traditional, step-wise, forward
integration methods. Numerical results demonstrate that for orbit propagation problems, the
presented methods are comparable to or superior to a state-of-the-art 12" order Runge-
Kutta-Nystrom method in a serial processor as measured by both precision and efficiency.
We have found revolutionary long solution arcs with more than eleven digit path approx-
imations over one to three lower-case Earth orbit periods, multiple solution arcs can be
patched continuously together to achieve very long-term propagation, leading to more than
ten digit accuracy with built-in precise interpolation. Of revolutionary practical promise
to much more efficiently solving high precision, long-term orbital trajectory propaga-
tion problems is the observation that the presented methods are well suited to massive
parallelization because computation of force functions along each path iteration can be
rigorously distributed over many parallel cores with negligible cross communication
needed.

Introduction

The solution of initial value problems (IVPs) provides the state history of a
given dynamic system, for prescribed initial conditions. Beginning with the
pioneering work of Euler in the 1700s, numerical methods for solving IVPs have
challenged applied mathematicians, engineers, and scientists for about three cen-
turies. Although a substantial amount of literature exists with many well-proven
methods for solution of IVPs associated with systems described by nonlinear
ordinary differential equations (ODEs), how to optimize the methods to utilize
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emerging parallel computing architectures provides a driver for pursuit of enhance-
ments of existing methodology.

Compared with the significant achievement of using parallel computation
techniques in other scientific computation fields, research on developing parallel
algorithms for solving the IVPs of celestial mechanics is advancing at a slower
pace, mainly because most of the current integration methods implemented on
parallel machines are only modified versions of traditional forward integration
approaches, which are typically poorly suited for parallelization [1]. Recently, Bai
and Junkins have proposed Modified Chebyshev Picard Iteration (MCPI) methods
for solutions of IVPs and boundary value problems (BVPs) [2-4]. MCPI methods
approximate both the state trajectory and the integrand along the trajectory by the
same set of discrete Chebyshev polynomials. Through using the Picard iteration
method [5], MCPI methods integrate the basis functions term-by-term to establish
a recursive trajectory approximation technique that inherently contains the new
basis function coefficients linearly on each iteration without linearization. Because
it is straightforward to distribute the computation of the integrand at all the discrete
nodes to different professors, MCPI methods are inherently parallelizable, thus
advanced parallel techniques and computer architectures can be effectively used.

The development of MCPI methods builds on some historical work fusing
Picard iteration with approximation theory [6-11]. With the available advanced
and inexpensive parallel computation architectures such as Graphics Card Units
(GPUs), MCPI methods have made the following contributions.

® A unified vector-matrix form of Chebyshev-Picard methods has been devel-
oped and proven to be applicable to solving both IVPs and BVPs computa-
tionally efficiently.

® The convergence characteristic of Chebyshev-Picard methods has been stud-
ied, new insights are reported that establish fundamental conditions that
guarantee the implemented algorithm is a contraction mapping in the vicinity
of the solution, over maximal time intervals. These results provide important
insights about how to choose the solution segment step size, which is vital for
efficiently and accurately solving IVPs on a large interval. The insights are
conclusive for the case of linear systems and provide important insight for
nonlinear systems.

® We have found that MCPI methods are applicable to high precision satellite
motion propagation problems, even prior to parallel implementation.

® We have also implemented MCPI on a graphics card to obtain a parallel
implementation and the speedup achieved is the largest that has ever been
reported [2].

This article presents MCPI methods for solving IVPs, and is especially ad-
dressed to orbit propagation problems. The related methods for solving BVPs have
been addressed in a preliminary way in Bai’s dissertation [4] and are treated further
in a companion to this article. We briefly review relevant background literature
first. We then outline the MCPI methods for solving IVPs, followed by presenting
recent significant progress from the results reported in references [2] and [3]. In the
results prior to the present study, we used a Runge-Kutta (RK) 4-5 method to
provide a convenient and familiar reference solution for a qualitative basis for
assessment of MCPI methods. For a two-body propagation problem, which is
similar to the one studied in the current article, we have achieved up to three orders
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of magnitude better accuracy while also achieving over one magnitude of speedup
over a RK45 method prior to parallel implementation. Bai’s dissertation [4], with
a less refined version of the MCPI method, compared many solutions to RK45 and
showed one to two orders of magnitude speed up in a serial computational
implementation, while maintaining comparable accuracy. In the present study, we
compare the performance of MCPI methods with a state-of-the-art RKN12(10)
method [12, 13]. We also introduce a newly-developed second order MCPI method
that is computationally much more efficient for systems whose equations of motion
are a second order system of differential equations, rather than converting them to
first order form to apply the original first order MCPI formulation. We also report
here insights on how to choose optimal polynomial orders and segment length to
guarantee both accuracy and efficiency.

Background Literature Review

Parallel Approaches for Solving IVPs

The most common parallelization approach to solve IVPs of orbital mechanics
is to cluster the integration of subsets of the N orbital differential equations on
separate processors and compute each orbit using serial integration, but on dis-
tributed parallel processors. A more fundamental speedup could be achieved if the
computation of each precision orbit was itself highly parallelizable, but most of the
currently popular numerical integration methods do not have properties that lend
themselves efficiently to highly parallel computation [1]. Franklin compared three
approaches to parallelize the existing forward integration methods [14]: a parallel
block implicit method, segmenting the equations to separate parts which can be
solved using multiple processes, and revising the forward integration methods to a
predictor-corrector form which was designed by Miranker and Liniger [15]. Gear
[1] proposed two types of parallelism: 1) parallel across the method, and 2) parallel
across the problem. The way to use parallel techniques for both explicit RK
methods and implicit RK methods [16] by concurrent function evaluation belongs
to the first type, and the number of processors that can be utilized depends on the
number of stages of the RK methods, which usually is less than twenty [17, 18].
Parallelism of a nonlinear vector differential equation obviously depends on the
coupling implicit in the problem itself and one simple example is to distribute
the computation of the time derivative of each state to different processors -
however, the degree of coupling frequently makes rigorous parallelism difficult.
Bellen and Zennaro used an iteration method to solve initial value problem from
a guessed starting solution and named their approach as the third type: parallel
across the time [19]. A variant of this third type of parallelism is being relied upon
in the present article. This third type has also been studied by Gear and Xu [20] and
the way they used the Picard Iteration approach belongs to the more general
waveform relaxation methods. However, Gear and Xu’s approach was found
promising for a limited family of problems. For the dynamic systems that are
described by second order equations and where the force functions are not
dependent on the velocity, the corresponding specialized Runge-Kutta-Nystrom
(RKN) methods are usually more efficient than the general purpose RK methods.
Houwen et al. studied the stability of implicit RKN methods for solving second
order equations based on collocation methods [21]. However, the authors found
that there are a number of instability regions when the collocation points are Gauss
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nodes, Radau nodes, or Lobatto nodes, which indicate that careful stability studies
must accompany the node selection in this method. Sommeijer presented a parallel,
explicit RKN method, which computes the s stages of function evaluations in
parallel and uses m iterations in the RKN method [22]. He studied using both
Gauss-Legendre and Radau type RK methods as the correctors. In the develop-
ments below, we considered the same benchmark problem and report over a two
order of magnitude increase in the interval over which a converged solution can be
obtained by our MCPI algorithm.

Picard Iterations, Chebyshev Polynomials, and Chebyshev-Picard methods

Picard iteration is a successive solution approximation technique that is often
used to prove the existence and uniqueness of the solutions to IVPs. However,
except for some special cases, it is usually difficult to use the classical Picard
iteration method for solving IVPs, mainly because the integrals are not analytically
tractable. Several researchers over the past half century have pursued the goal of
rendering Picard Iteration a more practical approach for solving IVPs and some
moderate degree of success has been achieved. For example, Parker and Sochacki
have studied the use of Picard Iteration to generate solutions of TVPs in the form
of a family of local Taylor series [23], however, convergence of these series is not
generally attractive compared with the methods we present below. In Gear and
Xu’s study [20], a paradox was reported: using their implementation of the Picard
method, their approach converged poorly but was found to be highly parallelizable;
however using their generalized Picard method, or waveform formulation, their
modified method converged faster but with less parallelism.

Chebyshev polynomials are a complete set of orthogonal polynomials that are
very important for function approximation. We remark, for the case of discrete
Chebyshev polynomials, these orthogonal functions become complete only as the
number of nodes and the degree of the polynomials approach infinity. Practical
convergence to small tolerances approaching machine precision is easily demon-
strated for most smooth functions, and we have found these polynomials readily
approximate multi-revolution gravity and drag perturbed orbits with sub-millimeter
precision, so long as propulsive forces are not present. Not surprisingly, when
impulsive or highly irregular local disturbances are encountered, then the interval
of approximation must be shortened adaptively over the duration of such distur-
bances. It has been proved that if the zeros of Chebyshev polynomials are used as
the nodes for polynomial interpolations, the resulting approximating polynomial
minimizes the Runge’s phenomenon and provides the best approximation under the
minimax norm [24]. Many researchers have contributed to the research on using
Chebyshev polynomials to solve IVPs [25-30], but typically not adopting Picard
iteration as the basis for the solution process. Note that the most straightforward
approach of parameterizing the trajectory in terms of basis functions leads to a
nonlinear programming problem, if the trajectory is expanded in a linear combi-
nation of basis functions and substituted into the integrand. Urabe demonstrated the
existence of an isolated periodic solution always implies the existence of conver-
gent Galerkin approximations and that if there exists a Galerkin approximation of
sufficiently high order, under some smoothness conditions, an exact solution exists
and the approximation error can be estimated [29]. Urabe also developed a
numerical computation approach for periodic nonlinear systems using the Galerkin
approximations [30]. However, using nonlinear programming to find the required
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large number of basis function coefficients with his approach is computationally
inefficient for high dimensional state spaces and frequently the curse of dimen-
sionality also limits practical convergence (this assessment agrees with the discus-
sion by Vlassenbroeck and Dooren [31}).

This proposed MCPI approach builds on the historical formulations by a small
group of researchers. Clenshaw and Norton first proposed to solve IVPs using both
Picard iteration and Chebyshev polynomials (Chebyshev-Picard methods) [6].
Shave studied using Chebyshev-Picard methods for orbit propagation and estima-
tion problems based on the assumption of a single instruction, multiple data
(SIMD) parallel architecture [7]. Sinha and Butcher developed a method that uses
Picard iteration and shifted Chebyshev polynomials to symbolically solve for the
approximate solutions of the state transition matrix for linear time-periodic dy-
namic systems [8]. In addition to the work by Shave, the parallel nature of the
Chebyshev-Picard methods has also been partially addressed by Feagin [9, 11] and
Fukushima [10]. Feagin presented a vector-matrix form of the Chebyshev-Picard
method that is closely related to MCPI methods we propose here [9]. Fukushima
implemented a Chebyshev-Picard algorithm on a vector computer [10]. However,
for one example problem, the vector code was shown to be slower than the scalar
code and the author suggested that this was because his approach could not be
vectorized efficiently and the compilation put more additional overhead. Before
our introduction of MCPI methods, Chebyshev-Picard methods have not been
considered a viable competitor to traditional existing methods such as high order
RK or multi-step methods to solve the problems of celestial mechanics.

State of the Art Methods for Numerical Solution of Second Order Equation:
RKNI2(10)

Most of the numerical methods presently in routine use for orbit propagation can
be categorized as either Runge-Kutta type methods, multi-step extrapolation
methods, or Taylor series (analytical continuation) methods. All of these methods
owe their heritage to Euler’s original (late 1700s) first order analytical continuation
method and/or Gauss’ (mid 1800s) predictor-corrector method. The MCPI method
proposed here departs from these traditional methods in a way that allows us to
approximate a large finite path segment as opposed to extrapolating a small step
along the path using either the single or multi-step methods. To illustrate and
evaluate the potential for the proposed MCPI methods for solving IVPs, we choose
to compare the performance of MCPI with a 12" order Runge-Kutta-Nystrom
(RKN) method (RKN12(10)), which utilizes also a 10th order RK approximation
to facilitate automatic step size modification for error control [12, 13]. Several
recent studies indicate RKN12(10) is representative of the state of the art, because
its efficiency and accuracy relative to many of the competing methods have been
well-documented [32-36]. Through solving an orbit problem Fox compared the
performance of the Gauss-Jackson method (for low eccentricity orbits), Gauss-
Jackson-Merson method (for high eccentricity orbits), fourth order Runge-Kutta
method, sixth order Runge-Kutta method, embedded seventh order Runge-Kutta-
Nystrom (RKN) method, Adams methods, Taylor series methods, and the extra-
polation methods by Bulirsch {32]. Fox concluded that the Gauss-Jackson method
is the best method for near circular orbits and he found that the seventh order RKN
method is the most efficient for high eccentricity. Filippi and Grf [33] and
Dormand et al. [13] developed high order RKN methods and showed the relative



588 Bai and Junkins

efficiency of their higher order RKN methods over the lower order methods. In an
important sequence of studies, Montenbruck compared several RK methods, recent
higher order RKN methods, multi-step methods, and extrapolation methods for a
planar two-body problem, to decide which was “best” based on solution of
benchmark problems [34]. The results showed the RKN methods are superior to
the pre-existing similar order RK methods and furthermore, if the differential
equations do not contain a velocity dependent term, the high-order RKN methods,
especially RKN12(10), are as fast or faster than multi-step methods while main-
taining high precision. A problem with RKN12(10) reported by Montenbruck is
that its efficiency drops significantly if the output points are required at times other
than those resulting from the natural optimum step size using the built-in step size
control algorithm. More recently, Sharp compared nine non-symplectic and two
symplectic integrators through solving four different N-body problems [36]. For
the two problems where the force functions are not dependent on the velocity, the
RKN12(10) method was found to require the least CPU time with high precision
maintained over long solution intervals. Hadjifotinou and Gousidou-Koutita com-
pared a 10th-order Gauss-Jackson method, RKN12(10), and a recurrent power
series (RPS) method by using seven test problems where the considered dynamical
system involves one to four large moons orbiting a point-mass planet [35]. The
integration time was 12,000 days (about 30 years). The RPS method introduces a
set of new auxiliary variables to solve the problem by the Taylor series approach.
Although the RPS method is shown to have about one order of magnitude better
accuracy than the other two methods for the particular problem solved, the
algorithm needs to be redesigned whenever the system equations change. Hadji-
fotinou and Gousidou-Koutita showed that the optimal step sizes for the RPS
method are much larger than the other two methods: ranging from Y13 of an orbit
to as large as "6 of an orbit (in contrast, the optimal time interval for MCPI solution
intervals usually varies from one orbit period to over three orbit periods for
near-circular problems, so an order of magnitude longer solution arc is feasible).

Fundamentals of the MCPI Approach
Consider a dynamic system described by a first order differential equation

dx

5 =% M

with the initial condition x(#y) = x,. The first step of MCPI methods is to transform
the generic independent variable 7 to a new variable 7, which is defined on the valid
range, the closed interval [—1, 1], of Chebyshev polynomials

tf+t0 tf—t()

t=w t+ T W, 3 W =5 )

Introducing this time transformation of equation (2), equation (1) is re-written as

dx
i g(7, x) = wf(w, + ,7,Xx) 3)

and Picard iteration provides the solution of equation (3) as
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X(7) = %, + f g, x"(Nds i=12,... @)
-1

Now, we introduce Chebyshev polynomial approximations of both the unknown
trajectory X' and the integrand of equation (4) along the trajectory x’. The Cheby-
shev polynomial of degree k is denoted by T,. The (V + 1) discrete nodes that are
used to represent the state trajectory are the Chebyshev-Gauss-Lobatto (CGL)
nodes, which are computed through

7, =cos(Gm/N) j=0,1,2,...,N &)

Assume the force function vector is approximated by an N™ order Chebyshev
polynomial

k=N
gn,x () = X' F T
k=0
=R IT(n + F7'T(D + By 'Ty(1) + - -+ + Fy 'Ty(7) 6)

Using the discrete orthogonality property of Chebyshev polynomials, the coeffi-
cient vectors F, can be calculated immediately through [24]

A 2 4
Fol=y 2 ) em ) T )T

1 A 2 , 1 .
= 5800, X T E)T7) + 5 80, ¥ T ENTUAT) - + 38T ¥ T ()T (D)

In equations (6) and (7), >’ denotes that the first term is halved and " represents
that both the first and last terms are halved. Notice each coefficient of F, ™' is
obtained through the summation of (N + 1) independent terms, each of which is an
inner product of the force function g(r, x(7)) and the Chebyshev polynomials T;(7)
evaluated at the CGL points of equation (5). Furthermore, all the coefficient
vectors are independent of each other, and can therefore be computed in parallel
processors. Also, and most importantly, for problems where calculating the force
vector function g(, x(7)) is time consuming, significant time performance im-
provement can be achieved by simultaneously computing g(7;, x(7;)) at each 7; on
(N + 1) parallel processors.

Assuming the solution at the i™ step is denoted x'(7), Picard iteration provides
the recursion to calculate x'(7) as a Chebyshev polynomial approximation over the
entire time interval as

N r N
X(=x,+ ' F! j T{s)ds= X' BiT" )

r=0 - k=0

The coefficient vectors for the updated trajectory expressed below in equations
(9-11), are obtained directly from recollecting the term-by-term analytical inte-
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gration of equation (8), and imposing the initial boundary conditions. The deriva-
tion of these formulations can be found in Bai’s dissertation [4].

A )
Bi=5pFZi—Fa) k=12....N-1 ©)
v
B, = N (10)
k=N
By = 2% +2 X (= D*'B; an

k=1

The updated coefficient vectors define the new trajectory approximation for use in
integrand (equation (6)) for the next iteration (i + 1) (see Fig. 1 for the algorithm
overview). Thus the solutions are iteratively improved until some accuracy re-
quirements are satisfied. To account for the nonlinearity issues, the stopping
criterion we choose is to require both the maximum difference (among all the N +
1 CGL nodes) between solutions x'(t) and x'~ !(7) and the maximum difference
between solutions x'(7) and x'* 1(7) are less than some tolerance.

Instead of adopting a term by term scalar process to solve for the state at the
(N + 1) CGL nodes, the (N + 1) Chebyshev coefficients, and the updated (N + 1)
Chebyshev coefficients, we have developed a compact vector-matrix approach to
implement MCPI methods, which is shown in Fig. 2 and the derivation of the
matrices can be found in Bai’s dissertation [4]. The basis functions arising from the
process are collected in the matrices

To(me) Ti(my) ... Tim)||2 O ... O
C.=TW = To(le) Tl(:Tl) . . TN(:TI) 0 1 . . O (12)
TO(TN) T, (TN) . . TN<TN) 0 0 . . 1
C,=RSTV (13)
] 1 2 1 2 T
1] —— == _ N _ 1 \N+1
3 T3 1 15 Sy v
1 0 -1 0 0 0
S=|0 1 0 -1 0 0 (14)
0 0 0 ... 1 0 -1
10 0 0 0 - 1 0 ]
where the r'® (r = 2,3, ..., N — 1) column of the first row has a form as
A= -t (- 15
ri=0ED r—1 r+1 15)

And the diagonal matrices R and V are defined as

. 11 11
R—dlag([l,i, 7 aN=1) ﬁD (16)
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FIG. 1. MCPI Iteration for Solution of Initial Value Problems.

_ i 122 21 :
V= 1ag ﬁﬁﬁ’ﬁﬁ (7)
Notice that the C, and C, matrices and the product C,C,, are constant (once N is
selected), so all computations of inner product can be efficiently precomputed.

Furthermore, the eigenstructure of the matrix product C,C, is of crucial important
in analyzing convergence of MCPI methods.
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FIG. 2. Vector-Matrix Form of MCPI for Solution of Initial Value Problems.

Second Order MCPI Approach
Consider a second order ODE described by

d2
oM X0 ER X =% kW) =% 1)

The MCPI formulation presented in the last section can solve this problem after we
introduce a new state variable to transform equation (18) to a system of 2n first
order equations. Recently, we have developed a cascaded MCPI formulation, i.e.,
a second order MCPI approach, which solves second order ODEs directly and also
can be generalized to systems described by higher order differential equations. We
emphasize this approach can solve problems with differential equations dependent
on the velocity, whereas many of the most efficient RKN methods such as
RKN12(10) cannot. In lieu of equations (3) and (4), we have the transformed
version of equation (18)

dx
g(7, x,v) — =y (19)

v_
dr dr

Similar to equation (4), the acceleration along the (i — 1)™ trajectory approxima-
tion is integrated to velocity from equation (20)
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(N =y, + f gs, X' " 1(s), v I(5)) ds i=12,... 0
-1

Importantly, the position vector is obtained, not from Picard iteration, but by direct
integration of v¥/(7) to position through using the exact kinematic equation (the
second of equation (19))

X(1) =x5+ f v(s) ds (1)
-1

Notice the approximation errors incur at the velocity level in equation (20) when
we expand the velocity trajectory and the integrand of equation (20) in Chebyshev
basis functions and carry out the integrals of equation (20) term by term—then no
further approximation is required. An exactly consistent position approximation is
derivable from term by term integration of the linearly contained velocity in the
integrand of equation (21). In the equivalent first order Picard iteration, the position
is obtained by modeling the position and velocity independently, resulting in 2n
approximations in the integrand of equation (4) with {x € R" =z € R*"}, con-
strained through the state variable definitions (so that velocity approximations
implicitly know that they are the derivative of position). However, in the above
cascaded formulation the velocity vector approximation directly dictates the cor-
responding coefficients for the position vector through the kinematic constraint
implicitly in taking the integral of equation (21). Using the matrix-vector form of
the MCPI approach, computation of position approximation from velocity simply
amounts to a matrix multiplication with and addition of invariant (computed once)
coefficient matrices C,, C,, as

Vi=CCg(Vi™Y) + C.0O, (22)

tf_ t(]

5~ GCa(V) + GO (23)

Xi
where the i™ step state trajectory evaluated at the (V¥ + 1) CGL nodes has been
represented by vectors X' = [x(1,), x(1;), x(T2), . . ., x(Ty)]", and V' = [«(7,), u(7)),
UT,), ..., UTy)]". The initial condition vectors are contained in the vectors
0,0 =1[2x,0,0,...,0]" €R""!and 0,4 =[2w,0,0,...,0]" €RY"' The dif-
ference between using (i) an Picard iteration simultaneously for both position
and velocity and (ii) a cascaded Picard iteration for velocity (equations (20) and
(22)) and subsequent integration to get position (equations (21) and (23)) may
at first look minor, however this approach is computationally much more
attractive and is also more accurate. Note that this efficiency and accuracy
advantage is enjoyed on each step, and therefore the entire Picard iteration is
accelerated accordingly.

Convergence Analysis

Because of the accumulation of round off and approximation errors during the
iterations (when a finite order of Chebyshev polynomial is used to approximate
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solutions), the convergence domain of MCPI methods is different from the ideal
conditions under which Picard iteration theoretically converges (Lipschitz conti-
nuity). Establishing a rigorous convergence domain of MCPI methods applicable
for general nonlinear systems is not possible by any known approach. To obtain
some essential insight we first use a linear scalar problem as an example to show
that the global convergence of MCPI methods is not generally guaranteed, and we
then address the practical approaches to enlarge the convergence domain. Consider
a scalar linear dynamic system

dx(r)

T = cx(1) 24)
The i step position history evaluated at the (N + 1) CGL nodes is represented by
a vector X' = [x(), (1), x(72), . . ., x(my)]" and an initial condition vector is
defined as O, =[2x,,0,0,...,0]" €R"*! The matrix-vector form of MCPI
(Fig. 2) leads to the recursive solution

i_|¥"h i1
X' = 2 cCC, X1+ CO, (25)

It is known from linear system theory that this sequence is convergent to a fixed
(¢ — 1)
2
(i.e., equation (25) must be a contraction mapping, to converge to a fixed point).
Notice that the scalars appear multiplicatively and therefore simply scale the
maximum eigenvalues of C,C,, leading to an attractive analysis for this simplest
case of a linear problem. Thus the convergence of the MCPI method is dependent
on the dynamical system characteristics c, the length of the time interval (¢ — 1),
and the matrix multiplication C,C,, which only depends on the order of the

Chebyshev polynomial used. For convergence, we require

point only if all the eigenvalues of matrix [ ] ¢C,C,, are within a unit circle

tf - to 2

2 C)\max (Cxca) <1 or ltf_ t0| < |C”/\max (Cxca)l (26)
Remarkably, we can see that this identical invariant (given N) matrix C,C,, appears
multiplicatively in the nonlinear generalization in vector-matrix notation (see Fig.
2), therefore, during the terminal iterations of a convergent solution process, we
can expect this type of eigenanalysis to give approximate behavior useful in a
more general setting. In fact, for a vector time varying nonlinear system, the above
bound changes only with the scalar ¢ being replaced by the infinity norm of the
Jacobian. Notice that C.C, depends solely on the choice of Chebyshev basis
functions, the nodal pattern selected, and the degree of the approximation. There-
fore C,C,, is invariant, can be computed once, and the eigenanalysis can be studied
once for all N and applies in all subsequent MCPI solutions.

The maximum eigenvalues of C,C, are shown in Fig. 3. We found for small N
(N < 40), this value decays approximately from 0.7 to 0.054, almost linearly on a
log-log scale. Thereafter, for N > 40, this value remains approximately constant at
0.054. This gives rise to the maximum interval length as |t; — fo|may = [(2/€)(1/A 0y
(C.C,) =~ 37/c|. Although this condition guarantees convergence of the MCPI
method, for a fixed N, it does not guarantee that N is sufficiently high to give an
accurate approximation of the solution. It is fortunate, as is evident in Fig. 3, that
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convergence does not degrade for large N, or put another way, N > 40 can be
adjusted to achieve high solution precision, without affecting the convergence of
MCPI method.

For convergence insight into the case of second order differential equations, we
consider d*x(¢)/dt> = cx(t). The updated velocity equation is

tf_ to
2

2

Vi= c(tf > t°) CC.CCV ™' +c
We found that the maximum eigenvalues of C.C,C,C, decreases from 0.038 to
0.003 as N increases from 10 to 40, analogous to the case for the first order system.
For all the N > 40, the maximum eigenvalues are asymptotically approach about
0.003. Thus the convergence condition for the second order MCPI method is
approximately c(f; — 15)* < 4/0.003 =~ 1333. We mention the significant truth that
this represents a two order of magnitude increase over the size of region
c(t; — 1)* < 12 in Sommeijer’s study [22].

Although these linear analyses tell us that MCPI methods only converge on a
finite interval, we can anticipate using a piecewise approach to solve a significant
family of IVPs over an arbitrarily large time domain. The initial conditions on the
subsequent segments should be the final state values from the previous segment.
This may sound similar to the concept of the step size control used in forward
integration methods such as Runge-Kutta or analytical continuation methods.
However, the step size used by MCPI methods is typically a much larger finite

C.C.CO,+ CO, @27
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interval than the steps used by typical numerical methods, as will be shown in the
following examples. Furthermore, compared with the forward integration methods
in which the integration errors are typically increasing with time in a secular
unstable fashion, we anticipate that better stability/accuracy can be achieved from
using MCPI methods because, qualitatively, the largest errors from MCPI methods
usually appear in the middle of the interval and the smallest errors are at the ends
where adjacent (successive) segments are joined. The fundamental reason for this
special characteristic of MCPI methods is because of the chosen Chebyshev
basis functions and CGL nodes which are denser at the boundaries and sparser
in the middle.

Numerical Examples

All computations underlying this article were done in a conventional PC. The
settings of the computer and the development environment used are: Intel(R)
Pentium(R) D CPU 3.4GHz, 3.4GHz, 2.0GB of RAM; Windows XP Operating
System; MATLAB R2009b. The computation time shown below is the average
CPU time of ten running cases. Also, except for the first example where we use the
first order MCPI method to solve a first order ODE, second order MCPI methods
are used for all the other examples.

Example 1: A First Order Nonlinear System

Consider a dynamic equation

d
d—};zf(y,t)zcos(t+sy) =0 1,=256m y(t)=1 &=0001

(28)

Fukushima suggested this problem, which has a closed-form solution, as a bench-
mark with a known truth for conducting accuracy studies [37]. We first compare
the results by using MCPI methods implemented in MATLAB and by using
ODE4S5, which is a Runge-Kutta 4 -5 method implemented in MATLAB. For more
significant nonlinear problems below, we use more sophisticated (and efficient)
integrators as the basis for comparison. The results are shown for this first example
in Fig. 4.

The MCPI method uses a Chebyshev polynomial of order N = 1500 to
approximate the solutions along the entire interval. For this tuning, the MCPI
solutions have more than one order of magnitude better accuracy than the ODE45
solutions and the CPU time using ODE45 is about 80 times slower than the CPU
time using the MCPI method. We emphasize that other integrators solving first
order ODEs may yield better performance than ODE45 in solving this problem, but
it is promising to see that the MCPI method achieved sufficient accuracy and
significant speedup in the same time. We further note that orders (N) up to of
several thousand are feasible with MCPI, without numerical difficulty, owing to
the orthogonality properties (no matrix inverses or other linear algebra ill-
conditioning opportunities to lose significant digits) and, especially, highly effi-
cient recursions based on simple inner products. The optimal order is typically
much less, but obviously high order approximation in numerical integration now
takes on a new meaning. As we will show later, these solutions have not taken
advantage of the fact that the long intervals can be subdivided, which will reduce
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the order of the required polynomial approximations thus more speedup can be
achieved by the MCPI methods when implemented on a serial machine. Further-
more, if parallel computation environment is available, more speedup will also be
obtained because the un-coupled function evaluations matrix operations can be
distributed to different processors. We also notice that although the errors from the
reference ODE45 solution have a typical secular increase, which is a pattern
common to all forward integration methods, the errors using the MCPI method
have the maximum values near the middle of the interval and the smallest errors
at the boundaries. The fundamental reason is because of the CGL nodes, which are
dense at the boundaries and sparse in the middle. This special feature makes MCPI
methods more attractive than the forward integration methods in reducing the
global errors for long time integrations, for which the solutions in different
segments are patched together at the terminal points of each solution interval where
the errors are typically smallest. Additionally, we note convergence can be
obtained up to some problem dependent maximum final time. For a linear problem,
this maximum can be determined. For nonlinear problems, such as this one,
approximation or adaptive tuning is required. The interval for a practical conver-
gence is found to be significantly greater than 2567 (about 128 oscillation periods).
For qualitative purpose, we note that expanding equation (28) in ¢ leads to dy/dr =
cos(t) — esin(®)y + .. ., so the linear (in y) coefficient is bounded by =* &. Even
though it is not rigorous, we can estimate from the above analysis of the constant
coefficient linear system that convergence might be expected if H < (2/e)(1/
max(A(C.C,)). Thus for the chosen polynomial N > 100, the convergence con-
dition is approximately that H should be less than 2/(0.05 X 0.001) ~ 40,000.
Although these estimations may be too optimistic, we verified excellent conver-
gence was actually achieved if H = 80007 = 5026.5. Perhaps the most striking
feature of this example is that very high precision can be achieved via MCPI over
long time periods including many main period oscillations of a nonlinear system,
whereas many time steps per period are required by all step-by-step integrators
known to achieve comparable precision.

Example 2: A Second Order Nonlinear System

The following second order differential equation has the same analytical solu-
tion as the above first order example, and allows us to conduct accuracy studies for
those integrators designed for second order systems

&y .
pr- Sy, 1) = —sin (t + gy) — Yae cos(2t + 2gy)

Among the many convergent possibilities, we have tuned the second order MCPI
method to use a Chebyshev polynomial of order 130 to approximate the solution
over an interval length of 167 (eight periods of unperturbed oscillations), and
found convergent solutions on the 16 segments of 167 duration that are patched
together to generate the final solution. At the starting iteration, all the positions and
velocities at the N + 1 CGL nodes are simply chosen from straight line solutions
ensuing from the initial position and the initial velocity, thus a very poor starting
guess is provided for the MCPI method so that the timing results are very
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conservative. To provide a more meaningful comparison vis a vis relative effi-
ciency, we adopt the 12™ order Runge-Kutta-Nystrom algorithm RKN12(10) with
adaptive step size control, which is widely regarded as one of the more powerful
nonlinear differential equation solvers available. The errors and CPU times in
seconds of MCPI and RKN12(10) are shown in Fig. 4. We can see with slightly
better accuracy achieved by the MCPI solution, MCPI also obtained a speedup of
about 30 over RKN12(10). This speedup is (in spite of the fact that the number of
function evaluations was not substantially reduced) a consequence of the compu-
tational efficient recursive vector-matrix nature of the MCPI algorithm and large
step size MCPI used. The RKN12(10) algorithm calls the function evaluation
routine 14, 974 times, whereas totally MCPI takes 113 iterations, which leads to
113 X (130 + 1) = 14, 803 function evaluations (remarkably, almost the same
number in this case). Thus on a serial machine, even with a very poor starting
solution estimate, MCPI requires essentially the same number of function evalu-
ations as does RKN12(10). However, it is vitally important to recognize that the
MCPI acceleration evaluations on all the CGL nodes are independent, because the
entire path approximation is available at once on each iteration. In an ideal parallel
environment where we can distribute the function evaluations on the (N + 1) CGL
nodes onto (N + 1) processors, the theoretical speedup factor is 131, and can be
expected to approach that theoretical limit if 131 or more cores are available,
because little shared memory is involved. Figure 5 shows the errors are in the 11th
significant figure for both solutions, although the MCPI solution has about Y4 the
error norm of the RKN12(10) solution. To recap, the speedup achieved on a serial
processor was 30, the theoretical speedup on a parallel processor with over 130
cores is two additional orders of magnitude for this problem. Impressive potential
exists, if these results for “toy” idealized problems extend to the problems of orbit
mechanics. In the results presented below, the test cases to date indicate that these
speedups are typical for the more nonlinear problems of central practical interest.
Additionally, comparing the computational time and accuracy of this tuned second
order MCPI with the previous first order MCPI using one segment, we see the
benefit to use the second order formulation and also the potential for better
accuracy and more speedup when careful tuning is applied to the MCPI methods,
see Figs. 4(a) and 5(a) for this comparison.

Example 3: Integration of Unperturbed Keplerian Motion (Natural Second
Order System)

Although a classical problem that has been used very often for performance
comparison of ODE solvers is a planar two-body problem [12, 13, 32-34], we
choose to use an example that integrates a three dimensional near circular orbit for
one week to help us draw more practical insight. The dynamic equations are

. . H -

The six classical orbital elements are: a = 6644.75 km, e = 0.01, i = 68°, ) =
92°, @ = —160°, T, = 5.3905 X 10? sec. Both the MCPI methods and RKN12(10)
are tuned such that sub-millimeter position accuracy, relative to the exact analytical
solution, is achieved for the whole week. A Chebyshev polynomial of order 40 is
chosen for the MCPI method and the segment length is selected to be 5,400 sec.
The classical F&G method [38] provides an analytical truth that is used to calculate



600 Bai and Junkins

a x 10" Second order MCPI errors: CPU=0.029882

25 L L] L L] ] e L L]

0 100 200 800 400 500 600 700 800 900
Time (sec)
b xu™ RKN12(10) errors: CPU=0.87998

0 100 200 300 400 500 600 700 800
Time (sec)

FIG. 5. Integration Errors and CPU Time for Example 2.
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the solution errors, of which for the MCPI method and the RKN method are shown
in Figs. 6 and 7. Several observations are summarized here. First, the computa-
tional time is 0.2639 sec for MCPI and 1.8882 sec for RKN12(10). Thus with
slightly better accuracy in both position and velocity, MCPI achieved a speedup
factor of seven. Second, RKN12(10) calls the differential equations 29,662 times.
Using an initial starting solution that the position and velocity at all the CGL nodes
are the same as the prescribed initial position and velocity, MCPI took 2465
iterations in total. Thus on a serial machine, the ratio of function evaluation of
RKN over MCPI is 29662/(2465 X 41) = 0.3. However, in an ideal parallel
environment where we can distribute the function evaluation on the (¥ + 1) CGL
nodes to (N + 1) processors, the ratio is 29662/2465 = 12. Third, the reason for the
speedup of MCPI over RKN in a serial implementation lies in two aspects. The
first reason is that the vector-matrix form of the MCPI approach is computationally
very efficient. The second reason attributes to the large step size that MCPI can
use. For RKN12(10), the minimum step size is 0.0465 sec, the maximum is
629.4089 sec, and the mean is 363.4615 sec that is about 7% of the one full orbit
which is the step size that the MCPI method used. Notice there is a significant
qualitative difference in approximating a path versus taking small steps along it!
Last, we have gained some preliminary insight about how to tune the polynomial
order and the segment length.

Figures 8 and 9 show the computational time and accuracy for the MCPI method
when the orders are chosen from 40 to 300, and the segment lengths are chosen
from about 0.1 of the orbit period up to 2.2 of the orbit period. We found the
minimum computation time is 0.1847 sec, which is obtained when we choose
N =50 and segment length as 10,260  sec (about 1.9 orbit). The most time
consuming settings are the cases where a low order Chebyshev polynomial is used
to integrate a rather large segment. We also characterize the solution errors as the
maximum global relative error

__{IfMCPL ) - r(FG, 1) [V(MCPL, 1) — v(FG, 9)|
¢e=m ( (FG, 1) max WEG, 1) ) 3D

where the first argument indicates the method to compute the solution and FG
denotes the classical analytical solution. The significant figures shown in Fig. 9 are
defined as ¢ = — log 10(e). Figures 8 and 9 show that although we currently do
not have a rigorous way to find the optimal settings for the minimum computa-
tional time, we have a large region where we could obtain more than eleven
significant digits in less than one second of computational time, which is still
significantly faster than RKN12(10)). The irregularity of the 11 to 12 significant
digit contours is a consequence of the solution accuracy approaching the noisy
precision limit associated with finite precision arithmetic. The RKN12(10) algo-
rithm also experiences similar bumpy convergence when it approaches twelve digit
accuracy. In this case, we have the choice over a large space of interval lengths and
orders to achieve twelve digit accuracy, but of course, nine digit accuracy for orbit
problems is typically considered sufficient for “engineering accuracy,” because
this already corresponds to centimeter precision. For runtime efficiency, the
optimal region in this tuning space for serial machines is as near the top left
boundary of Figs. 8 as accuracy allows, whereas, for parallel machines, it is near
the top boundary but further to the right (we accept the longest practical conver-
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gence interval, because the order can be adjusted, by moving right for larger N
equal to the number of cores available (so the number (N + 1) of function
evaluations along each iterative trajectory can be carried out simultaneously to
achieve a theoretical speedup of (N + 1)). The flatness of the accuracy surface
permits a large space for adjustment to take full advantages of various parallel
architectures. Additionally, we emphasize although we are targeting for high
accuracy solutions in this article, there is a tradeoff between the computation time
and solution accuracy, both of which are dependent on the chosen polynomial
order, segment step size, and stopping criterion. The general rule is that higher
order polynomials and stricter stopping criteria will lead to more accurate solutions
but require longer computation time. Some experimental studies can be found in
Bai’s dissertation [4].

Propagating a Family of Perturbed Orbits

The ability to propagate satellite motion quickly and accurately is one of the
major factors that affects the performance of tasks such as collision avoidance for
space objects. For these tasks, numerical integration of the satellite motion with
even more accurate and complicated perturbation force models has become nec-
essary [39, 40]. Possibly a degree and order 36 X 36 or higher gravity model and
a realistic atmospheric density model will be required to model perturbation
accelerations in addition to the dominant force. In the following studies, we include
the zonal harmonic perturbation forces up to the fifth order [38] in the dynamic
models and investigate how the performance of the algorithms changes as the force
model becomes more complicated. Including zonal harmonic perturbations up to
the order of & leads to the dynamic equation as

i=k

;=—gr+2a; (32)

i=2

where da; is the /™ order zonal perturbation terms. We compare the computational
time and the number of function evaluations when using MCPI and RKN12(10).
We look at a low eccentricity problem as well as a high eccentricity problem. The
purpose of considering the perturbations in this way is to assess the role that model
complexity plays on the relative efficiency and accuracy of MCPI in comparison
to existing methods. We also vary the eccentricity of the orbits from near circular
to very eccentric, to assess the degree to which rapidly varying nonlinearity
impacts the relative merits of the algorithms.

Example 4: Integration of Perturbed Orbits with Low Eccentricity (e = 0.01)

The initial conditions for this example are the same as those used in Example 3.
For the MCPI method, the Chebyshev polynomial order is 40 and the segment
length is 5,400 s, which have been tested in the unperturbed case to provide
submillimeter position accuracy. For the four perturbed cases, although no analyt-
ical solutions are available, we have verified the relative energy changes for both
methods are in the range of 10~ . The computational times for the two methods
are shown in Fig. 10(a) and the speedup results are shown in Fig. 10(b). The order
“1” case is the unperturbed Example 3 we studied before and we include it here to
illustrate the performance trend with respect to the complication level of the
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perturbation models. Figure 10(b) shows that the MCPI method achieved six to
eleven speedup over RKN12(10). Figure 11(a) shows that RKN12(10) calls about
30% of the number of function evaluations required by the MCPI method. Figure
11(b) shows that in an ideal parallel computation environment where we can
distribute the force evaluation on the (N + 1) CGL nodes onto (N + 1) processors,
RKN12(10) calls about twelve times of the number of function evaluations
required by the MCPI method. Although the speedup achieved by the MCPI is
shown to be decreasing on Fig. 10(b) in a serial implementation, we predict that the
trend will change to be beneficial to the MCPI method on an advanced parallel
machine because of the following two reasons. First, Fig. 11 shows that as more
perturbation terms are included, the function call ratio of RKN12(10) over MCPI
is increasing. Second, as we discussed earlier, the parameters for the MCPI method
we used here are not the optimal settings. We anticipate more speedup can be
achieved after we establish an adaptively tuning algorithm

Example 5: Integration of Perturbed Orbits with High Eccentricity (e = 0.9)

For this highly eccentric orbit, the six classical orbital elements are a = 65,000
km,e =0.9,i = 68° ) = 92°, w = —160°, T, = 1.6492 X 10° sec. For the MCPI
method, the Chebyshev polynomial order is 45 except the segment passing the
perigee, during which we use a polynomial of order 110. We have kept the segment
length as Y20 of the orbit. These settings have been tested in the unperturbed case
to provide sub-millimeter position accuracy. For the perturbed cases, we have
verified the relative energy changes for both methods are in the range of 10~ ',
The computational time for the two methods are shown in Fig. 12(a) and the
speedup results are shown in Fig. 12(b). Figure 12(b) shows that the MCPI method
achieved more than one order magnitude of speedup over RKN12(10) and this
speedup is higher than the one achieved for the low eccentric case. Figure 13(a)
shows that RKN12(10) calls about 40% of the number of function evaluations
required by the MCPI method whereas Fig. 13(b) shows that in an ideal parallel
computation environment where we can distribute the force evaluation on the (N +
1) CGL nodes onto (N + 1) processors, RKN12(10) calls about twenty times of the
number of function evaluations required by the MCPI method.

Conclusion

Through solving four exemplar problems, the presented MCPI methods have
demonstrated orders of magnitude speedup and high precision relative to the
state-of-the-art RKIN12(10) algorithm. At a high level, we believe this is the first
time that high precision orbits have been represented (with up to about twelve digit
precision) with a single functional approximation. That such multi-orbit solution
arcs can be obtained with computational efficiency comparable or superior (in a
serial algorithm) to well-established high order numerical differential equation
solvers is remarkable in and of itself. However, the most significant truth is that the
MCPI algorithm is ideally suited for parallel computation, and this feature offers
the near term prospect of better than two orders of magnitude speedup for high
precision orbit integration.

We remark currently the tuning of the MCPI algorithm is a trial and error
process. We are developing an adaptive tuning mechanism which will bring more
speedups and accuracy advantages to MCPI methods. We are also programming
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FIG. 12. Time Performance for Example 5.
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MCPI methods using the newly released NVIDIA Tesla, which has peak perfor-
mance of 515 GFLOPS for double precision floating point computation, and the
results will be published in a future study.
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