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Abstract. A heuristic principle attributed to André Bloch says that a family
of holomorphic functions is likely to be normal if there are no non-constant
entire functions with this property. We discuss this principle and survey recent
results that have been obtained in connection with it. We pay special attention
to properties related to exceptional values of derivatives and existence of fixed
points and periodic points, but we also discuss some other instances of the
principle.
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1. Bloch’s heuristic principle

1.1. Introduction. A family of meromorphic functions is called normal if every
sequence in the family has a subsequence which converges (locally uniformly with
respect to the spherical metric). The concept of a normal family was introduced
already in 1907 by P. Montel [72], but there has been a lot of interest in normal
families again in recent years, an important factor being their central role in
complex dynamics.

One guiding principle in their study has been the heuristic principle which says
that a family of functions meromorphic (or holomorphic) in a domain and pos-
sessing a certain property is likely to be normal if there is no non-constant func-
tion meromorphic (holomorphic) in the plane which has this property. This
heuristic principle is usually attributed to A. Bloch, but it does not seem to have
been stated explicitly by him — although his statement “Nihil est in infinito quod
non prius fuerit in finito” made in his 1926 papers [16, p. 84] and [18, p. 311]
may be interpreted this way. The first explicit formulation of the heuristic prin-
ciple seems to be due to G. Valiron [112, p. 2] in 1929. However, in [113, p. 4]
Valiron mentions Bloch in this context.

Here we survey some of the results that have been obtained in connection with
Bloch’s Principle. We concentrate on properties related to exceptional values of
derivatives in Section 2 and on properties related to fixed points of iterates in
Section 3. Excellent references for Bloch’s Principle are [102, Ch. 4] and [123].

We mention that André Bloch’s life was tragic. He murdered his brother, uncle
and aunt in 1917. Judged not responsible for his actions, he was confined to
a psychiatric hospital where he remained until his death in 1948. It was there
that he did all his mathematical work, including the papers cited above. For a
detailed account of Bloch’s life and work we refer to [28, 114].
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1.2. The basic examples. A simple example for Bloch’s Principle is given by
the property of being bounded. Liouville’s Theorem says that a bounded entire
function is constant; that is, if f : C → C is holomorphic and if there exists a
constant K such that |f(z)| ≤ K for all z ∈ C, then f is constant. And in fact
a family F of functions holomorphic in a domain D is normal if there exists a
constant K such that |f(z)| ≤ K for all z ∈ D and all f ∈ F . Note, however,
that the family F of all functions f holomorphic in a domain D for which there
exists a constant K = K(f) such that |f(z)| ≤ K(f) for all z ∈ D need not be
normal. In fact, let D be the unit disk D, that is, D = D := {z ∈ C : |z| < 1},
and let F := {fn : n ∈ N}, where fn(z) := nz. Each fn is bounded in D (by
the constant n), but it is easily seen that F is not normal. So in order that the
property “f is bounded” leads to a normal family it is essential that the bound
does not depend on the function f . This example already shows that some care
has to be taken when formulating Bloch’s Principle.

A key example deals with the property of omitting three points in the Riemann

sphere Ĉ := C∪{∞}. Perhaps the most important theorem in the whole subject
of normal families is Montel’s result that this condition implies normality.

1.2.1. Montel’s Theorem. Let a1, a2, a3 ∈ Ĉ be distinct, let D ⊂ C be a
domain and let F be a family of functions meromorphic in D such that f(z) �= aj

for all j ∈ {1, 2, 3}, all f ∈ F , and all z ∈ D. Then F is normal.

The analogous statement about functions in the plane is Picard’s Theorem.

1.2.2. Picard’s Theorem. Let a1, a2, a3 ∈ Ĉ be distinct and let f : C → Ĉ be
meromorphic. If f(z) �= aj for all j ∈ {1, 2, 3} and all z ∈ C, then f is constant.

In Montel’s Theorem it is again essential that the points a1, a2, a3 do not depend
on f . We mention, however, that the condition f(z) �= a1(f), a2(f), a3(f) still
implies normality if there exists ε > 0 such that χ(aj(f), ak(f)) ≥ ε for j �= k
and all f , where χ(·, ·) denotes the spherical distance; see, e.g. [102, p. 104]
or [123, p. 224].

1.3. The Theorems of Arzelà-Ascoli and Marty. One basic result in the
theory of normal families is a classical theorem due to Arzelà and Ascoli [102,
p. 35], which we record in the following form.

1.3.1. Arzelà-Ascoli Theorem. A family of meromorphic functions is normal
if and only if it is locally equicontinuous (with respect to the spherical metric).

A consequence of this is the following theorem due to Marty [102, p. 75]. Denote
by

f#(z) :=
|f ′(z)|

1 + |f(z)|2 =
1

2
lim
ζ→z

χ(f(ζ), f(z))

|ζ − z|
the spherical derivative of a meromorphic function f .
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1.3.2. Marty’s Criterion. A family F of functions meromorphic in a do-
main D is normal if and only if the family {f# : f ∈ F} is locally bounded; that
is, if for every z ∈ D there exists a neighborhood U of z and a constant M such
that f#(z) ≤ M for all z ∈ U and for all f ∈ F .

1.4. Zalcman’s Lemma. In order to turn the heuristic principle for certain
properties into a rigorous theorem, L. Zalcman [121] proved the following result.

1.4.1. Zalcman’s Lemma. Let D ⊂ C be a domain and let F be a family of
functions meromorphic in D. If F is not normal, then there exist a sequence
(zk) in D, a sequence (ρk) of positive real numbers, a sequence (fk) in F , a

point z0 ∈ D and a non-constant meromorphic function f : C → Ĉ such that
zk → z0, ρk → 0 and fk(zk + ρkz) → f(z) locally uniformly in C. Moreover,
f#(z) ≤ f#(0) = 1 for all z ∈ C.

The corresponding result for normal functions rather than normal families had
been proved earlier by A. J. Lohwater and Ch. Pommerenke [67]. We remark
that the statement about the spherical derivative does not appear in [121], but it
follows immediately from the proof; see also [123, p. 216f]. This observation plays
an important role in some of the more recent applications; see Section 1.5 below.

Proof of Zalcman’s Lemma. Suppose that F is not normal. By Marty’s Cri-
terion, there exists a sequence (ζk) in D tending to a point ζ0 ∈ D and a sequence

(fk) in F such that f#
k (ζk) → ∞. Without loss of generality, we may assume

that ζ0 = 0 and that {z : |z| ≤ 1} ⊂ D. Choose zk satisfying |zk| ≤ 1 such that

Mk := f#
k (zk)(1 − |zk|) = max|z|≤1 f#

k (z)(1 − |z|). Then Mk ≥ f#
k (ζk)(1 − |ζk|)

and hence Mk → ∞. Define ρk := 1/f#
k (zk). Then ρk ≤ 1/Mk so that ρk → 0.

Since |zk+ρkz| < 1 for |z| < (1−|zk|)/ρk = Mk the function gk(z) := fk(zk+ρkz)
is defined for |z| < Mk and satisfies

g#
k (z) = ρkf

#
k (zk + ρkz) ≤ 1 − |zk|

1 − |zk + ρkz| ≤
1 − |zk|

1 − |zk| − ρk|z| =
1

1 − |z|
Mk

there. By Marty’s Criterion, the sequence (gk) is normal in C and thus has a
subsequence which converges locally uniformly in C. Without loss of generality,

we may assume that gk → f for some f : C → Ĉ and zk → z0 for some z0 ∈ D.
Since g#

k (0) = 1 for all k, we have f#(0) = 1, so that f is non-constant. Clearly,
we also have f#(z) ≤ 1 for all z ∈ C.

Remark. It is not difficult to see that if zk, ρk, fk and f are as in Zalcman’s
Lemma, then F is not normal at z0 = limk→∞ zk. In turn, we may achieve
zk → z0 for any point z0 ∈ D at which F is not normal.

The important point in Zalcman’s Lemma is that the limit function f is non-
constant. Regardless of whether F is normal or not it is always possible to choose
zk, ρk and fk such that fk(zk + ρkz) tends to a constant.
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1.5. Zalcman’s formalization of the heuristic principle. We first note
how Zalcman’s Lemma can be used to deduce Montel’s Theorem from Picard’s
Theorem. Suppose that F is a non-normal family of meromorphic functions
which omit three values a1, a2, a3. Let fk, zk, ρk and f be as in Zalcman’s Lemma.
Then obviously fk(zk + ρkz) �= aj for all z, k and j. Thus f(z) �= aj for all z ∈ C

by Hurwitz’s Theorem, contradicting Picard’s Theorem.

To see what kind of properties this kind of argument may be used for we first
need to specify what we mean by a property. To this end we simply collect
all functions enjoying a certain property in a set. It turns out to be useful to

display a function f : D → Ĉ together with its domain D of definition. Following
A. Robinson [94, §8] and L. Zalcman [121] we thus write 〈f, D〉 ∈ P if f has the
property P on a domain D. Bloch’s Principle then asserts that the following two
statements should be equivalent:

(a) if 〈f, C〉 ∈ P , then f is constant;
(b) the family {f : 〈f, D〉 ∈ P} is normal on D for each domain D ⊂ C.

We say that P is a Bloch property if (a) and (b) are equivalent. Of course, that
two statements are equivalent simply means that either both are true or both are
false. But we will later meet properties P where we can prove that (a) and (b)
are equivalent, but where we do not know whether either is true or false! If
statements (a) and (b) are actually true, then we say that P is a Picard-Montel
property. Zalcman’s Lemma now leads to the following result.

1.5.1. Zalcman’s Principle. Suppose that a property P of meromorphic func-
tions satisfies the following three conditions:

(i) if 〈f, D〉 ∈ P , then 〈f |D′ , D′〉 ∈ P for every domain D′ ⊂ D;
(ii) if 〈f, D〉 ∈ P and ϕ(z) = ρz + c, where ρ, c ∈ C and ρ �= 0, then

〈f ◦ ϕ, ϕ−1(D)〉 ∈ P ;
(iii) suppose that 〈fn, Dn〉 ∈ P for n ∈ N, where D1 ⊂ D2 ⊂ D3 ⊂ . . . and⋃∞

n=1 Dn = C; if fn → f : C → Ĉ locally uniformly in C, then 〈f, C〉 ∈ P .

Then P is a Bloch property.

The proof that (a) implies (b) is a straightforward application of the Zalcman
Lemma. In order to see that (b) implies (a) it suffices to consider the family
{f(nz) : n ∈ N} and note that this family is not normal if f is meromorphic in
the plane and not constant. In fact we see that conditions (i) and (ii) suffice in
order to deduce (a) from (b).

The argument shows that (b) follows not only from condition (a), but in fact
from the following weaker condition

(c) if 〈f, C〉 ∈ P and if f has bounded spherical derivative, then f is constant.

In particular, for properties P satisfying the hypothesis of Zalcman’s Principle
we see that (a) and (c) are equivalent. So in order to prove a result for functions
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meromorphic in the plane, it sometimes suffices to prove it for functions with
bounded spherical derivative. This kind of argument is due to X. Pang, and
appears in writing first in [13, 30, 122], see Theorem 2.4.1 below. This argument
will also appear in Sections 1.7, 2.2 and 2.3 below.

Already here we note that the Ahlfors-Shimizu form of the Nevanlinna charac-
teristic T (r, f) shows that if f is meromorphic in the plane and has bounded
spherical derivative, then T (r, f) = O(r2) as r → ∞. In particular, f has finite
order of growth. We refer to [56, 59, 79, 80] for the terminology of Nevanlinna
theory, and in particular for the definitions of characteristic and order.

For entire functions we have stronger results. Recall that an entire function f
is said to be of exponential type if the maximum modulus M(r, f) satisfies
log M(r, f) = O(r) as r → ∞. The following result is a special case of a re-
sult of J. Clunie and W. K. Hayman [38, Thm. 3]; see also [91, Thm. 4].

1.5.2. Clunie-Hayman Theorem. An entire function with bounded spherical
derivative is of exponential type.

1.6. Further examples. We have seen already some examples of properties
for which Bloch’s Principle holds, and we will see many more examples of such
properties in the following sections. But of course it is also very enlightening
to consider counterexamples to the heuristic Bloch Principle. The following
examples are due to L. A. Rubel [97].

1.6.1. Example. Define 〈f, D〉 ∈ P if f = g′′ for some function g which is
holomorphic and univalent in D. Since the only univalent entire functions g are
those of the form g(z) = αz + β where α, β ∈ C, α �= 0, we see that 〈f, C〉 ∈ P
implies that f(z) ≡ 0. Thus (a) holds.

On the other hand, define

gn(z) := n

(
z +

1

10
z2 +

1

10
z3

)
and fn := g′′

n for n ∈ N. Then

Re g′
n(z) = n

(
1 +

1

5
Re z +

3

10
Re z2

)
>

1

2
> 0

for z ∈ D, which implies that gn is univalent in D. So 〈fn, D〉 ∈ P . Now
fn(z) = n(1/5 + 3z/5) so that fn(−1/3) = 0 while fn(0) → ∞ as n → ∞. Thus
the functions fn do not form a normal family on D. Hence (b) fails.

It is easily seen that P satisfies conditions (i) and (ii) of Zalcman’s Principle,
but condition (iii) is not satisfied.

1.6.2. Example. Define 〈f, D〉 ∈ P if f is holomorphic in D and f ′(z) �= −1,
f ′(z) �= −2 and f ′(z) �= f(z) for all z ∈ D. If 〈f, C〉 ∈ P , then f ′ is constant
by Picard’s Theorem so that f is of the form f(z) = αz + β where α, β ∈ C.
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Since f ′(z) �= f(z) we have αz + β − α �= 0. This implies that α = 0 so that f is
constant. Thus (a) holds.

On the other hand, with fn(z) := nz we find that 〈fn, D〉 ∈ P for all n ∈ N, but
the functions fn do not form a normal family on D and thus (b) fails.

Again it is clear that (i) holds, and one can verify that (iii) is also satisfied. So
in this case it is property (ii) that fails to hold in Zalcman’s Principle.

1.7. Other applications of Zalcman’s Lemma. Not only can Zalcman’s
Lemma be used to prove that statements (a) and (b) as above are equivalent for
many properties P , but it also often yields easy proofs that these statements are
true.

.Sketch of a simple proof of the Theorems of Montel and Picard (due
to A. Ros [123, p. 218]). Let F be as in the statement of Montel’s Theorem and
suppose that F is not normal. Without loss of generality we may assume that
{a1, a2, a3} = {0, 1,∞} and that D is a disk. If f ∈ F and n ∈ N there exists a
function g holomorphic in D such that g2n

= f . Let Fn be the family of all such
functions g. Note that

g# =
1

2n

|f |1/2n−1|f ′|
1 + |f |2/2n =

1

2n

|f |−1 + |f |
|f |−1/2n + |f |1/2n f# ≥ 1

2n
f#,

where we have used the inequality a−1 + a ≥ a−t + at valid for a > 0 and
0 < t < 1. By Marty’s Criterion, the family {f# : f ∈ F} is not locally
bounded. We deduce that, for fixed n ∈ N, the family {g# : g ∈ Fn} is not
locally bounded. Using Marty’s Criterion again we find that Fn is not normal,
for all n ∈ N.

Note that if g ∈ Fn, then g omits the values e2πik/2n
for k ∈ Z. From the Zalcman

Principle (and the remarks following it) we thus deduce that there exists an entire
function gn omitting the values e2πik/2n

and satisfying g#
n (z) ≤ g#

n (0) = 1. The
gn thus form a normal family and we have gnj

→ G for some subsequence (gnj
)

of (gn) and some non-constant entire function G. By Hurwitz’s Theorem, G
omits the values e2πik/2n

for all k, n ∈ N. Since G(C) is open this implies that
|G(z)| �= 1 for all z ∈ C. Thus either |G(z)| < 1 for all z ∈ C or |G(z)| > 1 for all
z ∈ C. In the first case G is bounded and thus constant by Liouville’s Theorem.
In the second case 1/G is bounded. Again 1/G and thus G is constant. Thus we
get a contradiction in both cases.

The following result generalizes the Theorems of Picard and Montel. We have
named it after R. Nevanlinna (see [79, p. 102] or [80, §X.3]) although only the
part concerning functions in the plane is due to him. The part concerning normal
families is due to A. Bloch [17, Thm. XLIV] and G. Valiron [112, Thm. XXVI],
with proofs being based, however, on Nevanlinna’s theory. A proof using different
ideas was given by R. M. Robinson [95]. For a proof using Zalcman’s Lemma we
refer to [9, §5.1].
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1.7.1. Nevanlinna’s Theorem. Let q ∈ N, let a1, . . . , aq ∈ Ĉ be distinct and
let m1, . . . , mq ∈ N. Suppose that

(1.7.2)

q∑
j=1

(
1 − 1

mj

)
> 2.

Then the property that all aj-points of f have multiplicity at least mj is a Picard-
Montel property.

We may also allow mj = ∞ here, meaning that f has no aj-points at all.

It is easy to see that the property P in this result satisfies conditions (i), (ii)
and (iii) of the Zalcman Principle 1.5.1 so that the statement about functions in
the plane is equivalent to that about normal families. But the proof that both
statements are true is more awkward.

Sketch of proof of a special case of Nevanlinna’s Theorem. We assume
in addition that the multiplicity m(z) of each aj-point z of f satisfies not only
m(z) ≥ mj, but that in fact m(z) is a multiple of mj; that is, m(z) = n(z)mj

where n(z) ∈ N. Let P ′ be this property. Again (i), (ii) and (iii) are satisfied so
that P ′ is also a Bloch property. Moreover, properties (a) and (b) occurring in
the definition of Bloch property are equivalent to property (c) mentioned at the
end of Section 1.5. Thus it suffices to prove (c).

So let 〈f, C〉 ∈ P ′ where f has bounded spherical derivative, but suppose that f
is not constant. We may assume that aj �= ∞ for all j and define

(1.7.3) g(z) =
f ′(z)M∏q

j=1(f(z) − aj)(mj−1)M/mj
,

where M is the least common multiple of the mj. The assumption on the mul-
tiplicities of the aj-points implies that g does not have poles; that is, g is entire.
Since f is not constant there exists a sequence (un) tending to ∞ such that
f(un) → ∞. The denominator of g is a polynomial in f of degree

	 :=

q∑
j=1

(mj − 1)M

mj

= M

q∑
j=1

(
1 − 1

mj

)
> 2M.

Thus
q∏

j=1

(f(un) − aj)
(mj−1)M/mj ≥ (1 − O(1))|f(un)|� ≥ (1 − O(1))|f(un)|2M+1.

On the other hand, |f ′(un)| ≤ O(|f(un)|2) as n → ∞ since f has bounded
spherical derivative. Thus |f ′(un)|M ≤ O(|f(un)|2M+1) as n → ∞. Overall we
see that g(un) → 0. On the other hand, g(z) �≡ 0 since f is not constant.
Thus g is not constant, which implies that there exists a sequence (vn) such that
g(vn) → ∞. It follows that f(vn) �→ ∞.
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We consider hn(z) := f(z+vn). Since f has bounded spherical derivative, the hn

form a normal family. Passing to a subsequence if necessary, we may thus assume

that hn converges locally uniformly to some meromorphic function h : C → Ĉ.
It follows that h(z) ≡ ak for some k ∈ {1, . . . , 5}, because otherwise

g(z + vn) → h′(z)M∏q
j=1(h(z) − aj)(mj−1)M/mj

�= ∞,

which contradicts g(vn) → ∞.

Thus hn → ak as n → ∞. For sufficiently large n the function

ψn(z) := hn(z) − ak = f(z + vn) − ak

is holomorphic in D, and we have ψn → 0 as n → ∞. Since the multiplicity of
all ak-points of f is a multiple of mk we may define a holomorphic branch φn

of the mk-th root of ψn; that is, φn : D → C and φn(z)mk = ψn(z). We also
have φn → 0. Thus φ′

n(z) → 0. Now (mk|φ′
n(z)|)mk = |ψn(z)|1−mk |ψ′

n(z)|mk .
Hence |f ′(vn)|mk/|f(vn) − ak|mk−1 = |ψ′

n(0)|mk/|ψn(0)|mk−1 → 0. This implies
that g(vn) → 0, a contradiction.

We mention that for q = 3 the special case of Nevanlinna’s Theorem above
goes back to C. Carathéodory [26]. Note that this special case still gives a
generalization of the Theorems of Picard and Montel.

The general version of Nevanlinna’s Theorem may be proved along the same lines.
In this case the functions φn occurring in the above proof may be multi-valued.
A similar argument as above may still me made, however, by using a version
of Schwarz’s Lemma for multivalued functions due to Z. Nehari [77]; see [9] for
more details.

We note that the hypothesis (1.7.2) is best possible. In fact, if we have equality
in (1.7.2), then there exists an elliptic function f which satisfies the differential
equation f ′(z)M =

∏q
j=1(f(z) − aj)

(mj−1)M/mj . It follows that 〈f, C〉 ∈ P for a
non-constant function f . Note that the function g defined in the above proof
by (1.7.3) now satisfies g(z) ≡ 1.

The possible choices for the mj are q = 4 and mj = 2 for all j or q = 3 and
(m1, m2, m3) = (3, 3, 3), (m1, m2, m3) = (2, 3, 6) or (m1, m2, m3) = (2, 4, 4), up to
permutations of the mj. One can modify the construction to allow the case that
aj = ∞ for some j. Moreover, one can also modify the above considerations to
include the case mj = ∞. In this case the resulting functions f are trigonometric
functions or the exponential function, or obtained from these functions by linear
transformations.

Closely related to Nevanlinna’s Theorem is one of the main results from the
Ahlfors theory of covering surfaces; see [2], [56, Ch. 5] or [80, Ch. XIII]. Let

D ⊂ Ĉ be a domain and let f : D → Ĉ be a meromorphic function. Let V ⊂ Ĉ

be a Jordan domain. A simply-connected component U of f−1(V ) with U ⊂ D is
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called an island of f over V . Note that then f |U : U → V is a proper map. The
degree of this proper map is called the multiplicity of the island U . An island of
multiplicity one is called a simple island.

1.7.4. Ahlfors’s Theorem. Let q ∈ N, D1, . . . , Dq ⊂ Ĉ Jordan domains with
pairwise disjoint closures and m1, . . . , mq ∈ N satisfying (1.7.2). Then the prop-
erty that all islands of f over Dj have multiplicity at least mj is a Picard-Montel
property.

We indicate how Zalcman’s Lemma can be used to deduce Ahlfors’s Theorem
from Nevanlinna’s Theorem; see [9] for a more detailed discussion.

Sketch of proof of Ahlfors’s Theorem. Fix a1, . . . , aq ∈ C. First we show
that there exists ε > 0 such that the conclusion of Ahlfors’s Theorem is true if
Dj = D(aj, ε). Here and in what follows D(a, ε) := {z ∈ C : |z − a| < ε} denotes
the disk of radius ε around a point a ∈ C. If such an ε does not exist, then we
can choose a sequence (εn) tending to 0 and find a sequence (fn) of non-constant
meromorphic functions on C which have no island of multiplicity less than mj

over D(aj, εn). By the arguments of Section 1.5 we may assume that the fn have
bounded spherical derivative and in fact that f#

n (z) ≤ f#
n (0) = 1 for all z ∈ C. It

follows that the fn form a normal family, and thus we may assume without loss
of generality that fn → f for some meromorphic function f . Since f#(0) = 1 we
see that f is not constant. We also find that f has no island of multiplicity less
than mj over D(aj, ε), for any ε > 0. But this implies that all aj-points of f have
multiplicity at least mj, contradicting Nevanlinna’s Theorem. Thus there exists
ε > 0 such that the conclusion of Ahlfors’s Theorem holds if Dj = D(aj, ε).

In the second step we reduce the general case to this special case. To do this
we use quasiconformal mappings; see [66] for an introduction to this subject. So
suppose that f is non-constant and meromorphic in the plane such that every
island over Dj has multiplicity at least mj, for j ∈ {1, . . . , q}. We note that there
exists a quasiconformal map φ : C → C with φ(Dj) ⊂ D(aj, ε) for j ∈ {1, . . . , q},
and the quasiregular map φ ◦ f can be factored as φ ◦ f = g ◦ ψ with a non-

constant meromorphic function g : C → Ĉ and a quasiconformal map ψ : C → C.
It then follows that every island of g over D(aj, ε) has multiplicity at least mj,
contradicting the first step above.

As mentioned, the Theorems of Picard and Montel are a special case of Nevan-
linna’s Theorem, namely the case q = 3 and m1 = m2 = m3 = ∞. Applying the
arguments used in the proof above to the Theorems of Picard and Montel instead
of Nevanlinna’s Theorem, we obtain a direct proof of the following special case
of Ahlfors’s Theorem.

1.7.5. Special case of Ahlfors’s Theorem. Let D1, . . . , D3 ⊂ Ĉ be Jordan
domains with pairwise disjoint closures. Then the property that f has no islands
over any of the domains Dj is a Picard-Montel property.
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Another important special case of Ahlfors’s Theorem 1.7.4 is the case q = 5 and
mj = 2 for all j. This case is known as the Ahlfors Five Islands Theorem.

1.8. A modified Bloch principle. Closely related to Montel’s Theorem 1.2.1
and Picard’s Theorem 1.2.2 is the following result.

1.8.1. Great Picard Theorem. Let a1, a2, a3 ∈ Ĉ be distinct, D ⊂ C a do-

main, ζ ∈ D and f : D \{ζ} → Ĉ meromorphic. If f(z) �= aj for all j ∈ {1, 2, 3}
and all z ∈ D \ {ζ}, then ζ is not an essential singularity of f .

This results suggests a modification of the Bloch Principle which says that for a
Picard-Montel property P there should not exist a meromorphic function having
the property P in the neighborhood of an essential singularity. In other words, for
a property P of meromorphic functions the conditions (a), (b) and (c) discussed
in Section 1.5 should imply the following condition:

(d) if 〈f, D \ {ζ}〉 ∈ P for some domain D and some ζ ∈ D, then ζ is not
essential singularity of f .

D. Minda [69] gives a discussion of this modification of the heuristic principle,
and he shows that for holomorphic families this modified heuristic principle holds
under the hypotheses of Zalcman’s Principle 1.5.1.

1.8.2. Minda’s Principle. Suppose that a property P of holomorphic functions
satisfies the conditions (i), (ii) and (iii) of Zalcman’s Principle 1.5.1. Then each
of the conditions (a), (b) and (c) introduced in Section 1.5 implies that (d) holds.

Minda also points out that there are meromorphic families where Zalcman’s Prin-
ciple applies, but where the modified heuristic principle does not hold. However,
if one adds a further condition to the ones given by Zalcman, then the modified
heuristic principle holds; see Minda [69, §5] and [10, §3] for the following result.

1.8.3. Theorem. Suppose that a property P of meromorphic functions satisfies
the conditions (i), (ii) and (iii) of Zalcman’s Principle 1.5.1. Suppose that P
satisfies in addition the condition

(iv) if 〈f, C \ {0}〉 ∈ P , then 〈f ◦ exp, C〉 ∈ P .

Then each of the conditions (a), (b) and (c) implies that (d) holds.

The additional condition (iv) can be compared with (ii). Both conditions are
obviously satisfied for properties P which concern only the range of f . It is
easily seen that the properties occurring in Nevanlinna’s and Ahlfors’s Theorem
in Section 1.7 satisfy (iv).

The proof of these theorems uses the following results due to O. Lehto and L. V.
Virtanen [63, 64, 65].
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1.8.4. Lehto-Virtanen Theorem. Suppose that a meromorphic function f
has an essential singularity at ζ. Then

lim sup
z→ζ

|z − ζ|f#(z) ≥ 1

2
.

If f is holomorphic, then

lim sup
z→ζ

|z − ζ|f#(z) = ∞.

Lehto and Virtanen [65] had shown that lim supz→ζ |z − ζ|f#(z) ≥ k for some
absolute constant k > 0. This weaker result would suffice for our purposes.
Lehto [63] later showed that one can take k1/2.

Proof of Minda’s Principle 1.8.2. Since we assume that the hypotheses of
Zalcman’s Principle 1.5.1 are satisfied, the conclusion of 1.5.1 also holds. Thus
conditions (a) and (b) are equivalent, and the discussion after 1.5.1 shows that
these conditions are also equivalent to (c). Suppose now that one and hence all
of these conditions are satisfied. We want to prove (d).

So let 〈f, D \ {ζ}〉 ∈ P , where D is a domain, f is holomorphic and ζ ∈ D.
Suppose that ζ is an essential singularity of f . We may assume that ζ = 0. By
the Lehto-Virtanen Theorem there exists a sequence (cn) in D such that cn → 0
and |cn|f#(cn) → ∞. For sufficiently large n the function fn(z) := f(cn + cnz)
is then holomorphic in the unit disk D, and f#

n (0) = cnf
#(cn) → ∞. Thus

the fn cannot form a normal family by Marty’s Criterion. On the other hand,
we deduce from (i) and (ii) that the fn also satisfy P . This is a contradiction
to (b).

Proof of Theorem 1.8.3. We note again that (a), (b) and (c) are equivalent.
We suppose that these conditions are satisfied and want to prove (d).

So let 〈f, D \ {ζ}〉 ∈ P for a domain D and some ζ ∈ D. We may assume that
ζ = 0. Suppose that ζ is an essential singularity. By the Lehto-Virtanen Theorem
there exists sequence (cn) in D such that cn → 0 and |cn|f#(cn) ≥ 1/4. Choose

r > 0 such that D(0, r) ⊂ D. We define rn := r/|cn| and gn : D(0, rn) \ {0} → Ĉ

by gn(z) := f(cnz). Since P satisfies condition (b), as well as (i) and (ii),
and since rn → ∞, we see that the gn form a normal family. Without loss

of generality we may assume that gn → g for some g : C\{0} → Ĉ. Since
g#

n (1) = cnf
#(cn) ≥ 1/4 we have g#(1) ≥ 1/4 so that g is non-constant. It

follows from (iii) that 〈g, C \ {0}〉 ∈ P . By condition (iv) thus 〈g ◦ exp, C〉 ∈ P .
From (a) we may deduce that g ◦ exp is constant, and so is g, a contradiction.

1.9. Quasinormality. We cannot expect that condition (d) of Section 1.8 im-
plies the conditions (a), (b), and (c) introduced in Section 1.5. For example, the
condition that f take three values a1, a2, a3 only N times, for some fixed number
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N ∈ N, satisfies condition (d), but none of the conditions (a), (b), and (c). This
condition does, however, imply quasinormality.

We say that a family F of functions meromorphic in a domain D is quasinormal
(cf. [73, 102]) if for each sequence (fk) in F there exists a subsequence (fkj

)

and a finite set E ⊂ D such that
(
fkj

)
converges locally uniformly in D\E. If

the cardinality of the exceptional set E can be bounded independently of the
sequence (fk), and if q is the smallest such bound, then we say that F is quasi-
normal of order q. We mention that Chuang’s [34] definition of quasinormality
is slightly different: he only requires the exceptional set E to be discrete, but
not necessarily finite.

Many of the results about normal families have extensions involving the concept
of quasinormality. Here we only mention the corresponding generalization of
Montel’s Theorem, also proved by Montel [73, p. 149].

1.9.1. Montel’s Theorem. Let 0 ≤ m1 ≤ m2 ≤ m3, let a1, a2, a3 ∈ Ĉ be
distinct, let D ⊂ C be a domain and let F be a family of functions meromorphic
in D. Suppose that f takes the value aj at most mj times in D, for all j ∈ {1, 2, 3}
and all f ∈ F . Then F is quasinormal of order at most m2.

Quasinormality will also be discussed in Section 3.2 below. A detailed study of
quasinormality, and in fact of a more general concept called Qm-normality, has
been given by C. T. Chuang [34].

2. Exceptional values of derivatives

2.1. Introduction. We discuss some variants of the Theorems of Picard and
Montel where exceptional values of f are replaced by those of a derivative. Our
starting point is the following result proved by G. Pólya’s student W. Saxer
in 1923; see [100, Hilfssatz, p. 210] and [101].

2.1.1. Saxer’s Theorem. Let f be a transcendental entire function and let
a, b ∈ C. Suppose that the equations f(z) = a and f ′(z) = b have only finitely
many solutions. Then b = 0.

Combining this with the Great Picard Theorem, applied to f ′, we see that if a
transcendental entire function f takes a value a only finitely many times, then f ′

takes every non-zero value infinitely often. In 1929, E. Ullrich [109, p. 599]
showed that under this hypothesis all derivatives f (k), k ≥ 1, take every non-
zero value infinitely often. Ullrich writes that this result has been known for
several years, and he attributes it to Pólya and Saxer [100], although it can be
found there only for the first derivative.

A simple discussion of the case where f is a polynomial now leads to the following
result.
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2.1.2. Pólya-Saxer-Ullrich Theorem. Let f be an entire function and let
k ≥ 1. Suppose that f(z) �= 0 and f (k)(z) �= 1 for all z ∈ C. Then f is constant.

Here and in the following theorems the conditions f(z) �= 0 and f (k)(z) �= 1 can
be replaced by f(z) �= a and f (k)(z) �= b as long as b �= 0.

Ullrich’s result was obtained independently a few years later by F. Bureau [23,
24, 25]. Actually Bureau considered functions with an essential singularity, as
in Section 1.8. Bureau also gave a normality result, but he required additional
conditions besides f(z) �= 0 and f (k)(z) �= 1. The complete normal family
analogue was obtained by C. Miranda [71] in 1935.

2.1.3. Miranda’s Theorem. Let F be a family of functions holomorphic in a
domain D and k ≥ 1. Suppose that f(z) �= 0 and f (k)(z) �= 1 for all f ∈ F and
z ∈ D. Then F is normal.

In 1959, W. K. Hayman [55, Thm. 1] extended the Pólya-Saxer-Ullrich Theorem
to meromorphic functions. We mention that the case that f is meromorphic
had also been considered by Ullrich, but in this case he required additional
hypotheses, e. g. that ∞ is a Borel exceptional value [109, p. 599].

2.1.4. Hayman’s Theorem. Let f be meromorphic in the plane and k ≥ 1.
Suppose that f(z) �= 0 and f (k)(z) �= 1 for all z ∈ C. Then f is constant.

Remark. More generally, Hayman proved that if f and f (k)−1 have only finitely
many zeros, then f is rational.

It took 20 years until Y. Gu [54] proved the normal family analogue of Hayman’s
Theorem.

2.1.5. Gu’s Theorem. Let F be a family of functions meromorphic in a do-
main D and k ≥ 1. Suppose that f(z) �= 0 and f (k)(z) �= 1 for all f ∈ F and
z ∈ D. Then F is normal.

2.2. A generalization of Zalcman’s Lemma. Zalcman’s Principle as stated
in Section 1.5 does not apply to conditions such as “f(z) �= 0 and f (k)(z) �= 1.”
However, it was shown by X. Pang [83, 84] that there is an extension of Zalcman’s
Lemma which allows us to deal with such conditions. We state this extension in
its most general form, and not only in the form needed to prove that “f(z) �= 0
and f (k)(z) �= 1” is a Bloch property.

2.2.1. Zalcman-Pang Lemma. Let F be a family of functions meromorphic
in a domain D ⊂ C and let m ∈ N, K ≥ 0 and α ∈ R with −m ≤ α < 1.
Suppose that the zeros of the functions in F have multiplicity at least m; that
is, if f ∈ F and ξ ∈ D with f(ξ) = 0, then f (k)(ξ) = 0 for 1 ≤ k ≤ m − 1.
If α = −m, then suppose in addition that |f (m)(ξ)| ≤ K if f ∈ F , ξ ∈ D and
f(ξ) = 0.
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Suppose that F is not normal at z0 ∈ D. Then there exist a sequence (fk) in F ,
a sequence (zk) in D, a sequence (ρk) of positive real numbers and a non-constant

meromorphic function f : C → Ĉ such that zk → z0, ρk → 0 and

ρα
kfk(zk + ρkz) → f(z)

locally uniformly in C. Moreover, f#(z) ≤ f#(0) = mK + 1 for all z ∈ C.

We omit the proof, but mention only that its spirit is similar to the proof of the
original Zalcman Lemma, but the technical details are more convoluted.

We note that {1/f : f ∈ F} is normal if and only if F is normal. Thus we
obtain an analogous result for −1 < α ≤ 	, if the poles of the functions in F
have multiplicity at least 	, with an additional hypotheses if α = 	. Note that
no hypothesis on the zeros or poles is required when −1 < α < 1.

The Zalcman Lemma 1.4.1 is of course the case α = 0. As mentioned, the idea to
introduce the exponent α seems to be due to X. Pang [83, 84], who proved that
one can always take −1 < α < 1. It was shown by X. Pang and G. Xue [117]
that α < 0 is admissible if the functions in F have no zeros. Then H. Chen and
X. Gu [31, Thm. 2] proved that one can take −m < α ≤ 0 if the zeros of the
functions in F have multiplicity at least m. Finally, the case α = −m is due to
X. Pang and L. Zalcman [88, Lem. 2]. The special case α = −m = −1 had been
treated before by X. Pang [85].

The Zalcman-Pang Lemma shows that the Zalcman Principle 1.5.1 may be mod-
ified by replacing the condition (ii) by

(ii′) there exists α ∈ (−1, 1) such that if 〈f, D〉 ∈ P and ϕ(z) = ρz + c where
ρ, c ∈ C, ρ �= 0, then 〈ρα(f ◦ ϕ), ϕ−1(D)〉 ∈ P ;

or

(ii′′) there exists m ∈ N and α ∈ (−m, 1) such that if 〈f, D〉 ∈ P , then all zeros
of f have multiplicity at least m, and if ϕ(z) = ρz + c where ρ, c ∈ C,
ρ �= 0, then 〈ρα(f ◦ ϕ), ϕ−1(D)〉 ∈ P .

We leave it to the reader to formulate a condition for the case that α = −m, or the
case that the functions with property P have only multiple poles of multiplicity
at least 	.

If 〈f, D〉 ∈ P implies that f has no zeros, then we can take any m and α in (ii′′).
The choice α = −k implies that the property occurring in the Theorems of
Pólya-Saxer-Ullrich, Miranda, Hayman and Gu is indeed a Bloch property. In
particular, Gu’s Theorem can then be deduced from Hayman’s, and Miranda’s
from that of Pólya-Saxer-Ullrich. However, as with the Theorems of Picard
and Montel, the Zalcman-Pang Lemma not only shows that the Theorems of
Miranda and Pólya-Saxer-Ullrich are equivalent, it can also be used to prove
them; see [53, 87].
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Proof of Miranda’s Theorem (following [87]). We write 〈f, D〉 ∈ P if f is
holomorphic in D and if f and f (k) − 1 have no zeros in D. As seen above,
it follows from the Zalcman Principle, with (ii) replaced by (ii′′), that P is a
Bloch property. The argument given at the end of Section 1.5 shows that the
Theorems of Pólya-Saxer-Ullrich and Miranda are equivalent to the condition (c)
given there.

Let thus 〈f, C〉 ∈ P where f has bounded spherical derivative. By the Clunie-
Hayman Theorem 1.5.2, f has exponential type. Since f has no zeros this implies
that f has the form f(z) = eaz+b with a, b ∈ C. Since f (k)(z) − 1 = akeaz+b − 1
has no zeros we deduce that a = 0 and thus f is constant.

We mention, however, that we have not been able to find a proof of Hayman’s
or Gu’s Theorem based on these ideas.

2.3. Multiple values of derivatives. Nevanlinna’s Theorem 1.7.1 can be seen
as a generalization of the Theorems of Picard and Montel, where the hypothesis
that f does not take a value aj is replaced by the hypothesis that the aj-points
of f have high multiplicity. One may ask whether the Theorems of Hayman and
Gu (or of Pólya-Saxer-Ullrich and Miranda) admit similar generalizations. This
question was considered in [15, 32, 39, 116, 119, 120]. The results below are
taken mostly from [15].

Let k be a positive integer and let 0 < M ≤ ∞, 0 < N ≤ ∞. For a function f
meromorphic in a domain D we say that f has the property P (k, M, N), written
again as 〈f, D〉 ∈ P (k,M,N), if all zeros of f in D have multiplicity at least M ,
while all zeros of f (k) − 1 in D have multiplicity at least N . Here M = ∞ or
N = ∞ should be interpreted as meaning that there are no corresponding zeros
in D.

2.3.1. Theorem. Let k,M, N ∈ N. Then P (k,M,N) is a Bloch property.

Proof. Suppose first that M ≤ k. Define fn(z) = 2n(z − a)k with n ∈ N and
a ∈ C. Then fn satisfies P (k,M,N) for any N . Moreover, fn is non-constant and
entire, and there is no neighbourhood of a on which the fn form a normal family.
So both statements (a) and (b) occurring in the definition of Bloch property in
Section 1.5 are false.

Suppose now that M > k. Then P (k,M,N) satisfies condition (ii′′) in Sec-
tion 2.2 with m := M and α := −k. It is obvious that P (k, M, N) also satisfies
condition (i) of Zalcman’s Principle 1.5.1. An application of Hurwitz’s Theorem
shows that condition (iii) of 1.5.1 is also satisfied. The conclusion thus follows
from the Zalcman Principle, as generalized in Section 2.2.

Theorem 2.3.1 says that whether a family {f : 〈f, D〉 ∈ P (k,M,N)} is nor-
mal is equivalent to whether 〈f, C〉 ∈ P (k,M,N) contains only constant func-
tions f . It does not say whether these statements are true or false. For example,
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for (k,M,N) = (1, 3, 3) both statements are false, as shown by the example
f := 1/℘′, where ℘ is the Weierstraß elliptic function satisfying the equation
(℘′)2 = 4℘3 − g2℘ − g3 = 4℘3 + 3℘ − 1. Then f has only triple zeros and so has
f ′−1 = −4(℘+1/2)3/(℘′)2. Thus 〈f, C〉 ∈ P (1, 3, 3), and f is non-constant. But
I do not know whether property P (k,M,N) forces a meromorphic function in
the plane to be constant — and a family of meromorphic functions to be normal
— if, for example, (k,M,N) = (1, 3, 4) or (k, M, N) = (1, 4, 3).

So while the precise conditions on M and N yielding this are not known, some
partial answers are available.

2.3.2. Theorem. Let k be a positive integer and let 0 < M ≤ ∞, 0 < N ≤ ∞
with

2k + 3 + 2
k

M
+

2k + 4 + 2
k

N
< 1.

Then P (k, M, N) is a Picard-Montel property.

We omit the proof, which — among other things — is based on Nevanlinna
theory. The interested reader is referred to [15].

The following result is due to Y. Wang and M. Fang [116, Thm. 7].

2.3.3. Wang-Fang Theorem. Let k be a positive integer. Then P (k, k +2,∞)
is a Picard-Montel property.

One ingredient in the proof of this theorem is the following result proved in
[13, Cor. 3]. Here a complex number w is called a critical value of f if there
exists ζ such that f ′(ζ) = 0 and f(ζ) = w.

2.3.4. Theorem. If a meromorphic function of finite order ρ has only finitely
many critical values, then it has at most 2ρ asymptotic values.

Sketch of proof of the Wang-Fang Theorem. First we note that — as re-
marked at the end of Section 1.5 — it suffices to prove condition (c) for the
property P = P (k, k + 2,∞). So suppose that f is a function meromorphic in
the plane which has bounded spherical derivative such that all zeros of f have
multiplicity k + 2 at least and such that f (k) − 1 has no zeros. As remarked in
Section 1.5, f has finite order.

We consider the auxiliary function g(z) = z − f (k−1)(z). Then g′ has no ze-
ros. Moreover, g has finite order. By Theorem 2.3.4, g has only finitely many
asymptotic values.

Suppose now that f has a zero ζ. Since this zero has multiplicity k + 2 at least,
we find that g(ζ) = ζ and g′(ζ) = 1. In the terminology of complex dynamics
(see, for example, [5, 8, 68, 108]) the point ζ is thus a parabolic fixed point of g.
By a classical result from complex dynamics, sometimes called the Leau-Fatou
Flower Theorem, there exists a domain U with ζ ∈ ∂U where the iterates gn

of g tend to ζ as n → ∞. Moreover, a maximal domain U with this property
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contains a critical or asymptotic value of g. Since g has no critical and only
finitely many asymptotic values, this implies that f has only finitely many zeros.
Hayman’s Theorem 2.1.4, or more precisely the remark made after it, implies
that f is rational. A discussion of this case then completes the proof.

The examples

(2.3.5) f(z) =
(z + a)k+1

k!(z + b)

with a, b ∈ C, a �= b show that P (k, k + 1,∞) is not a Picard-Montel property.
However, Wang and Fang [116, Lem. 8] have shown that every non-constant
rational function f satisfying 〈f, C〉 ∈ P (k, k + 1,∞) has this form. The ar-
gument used in the proof of the Wang-Fang Theorem shows that there is no
transcendental function f meromorphic in the plane and of finite order such that
〈f, C〉 ∈ P (k, k + 1,∞). However, this restriction on the order turns out not to
be necessary. In fact, Wang and Fang [116, Thm. 3] proved that there is no tran-
scendental function f meromorphic in the plane satisfying 〈f, C〉 ∈ P (k, 3,∞)
for some k ∈ N. And Nevo, Pang and Zalcman [82] have recently shown
that there is no transcendental function f meromorphic in the plane such that
〈f, C〉 ∈ P (1, 2,∞).

The examples (2.3.5) also show that the family {f : 〈f, D〉 ∈ P (k, k + 1,∞)} is
not normal for any domain D and k ∈ N. However, Nevo, Pang and Zalcman [82]
have recently shown that {f : 〈f, D〉 ∈ P (1, 2,∞)} is quasinormal of order 1,
and, as Larry Zalcman has kindly informed me, their method can be extended
to yield that {f : 〈f, D〉 ∈ P (k, k + 1,∞)} is quasinormal of order 1 for every
k ∈ N. For further results in this direction we refer to [81, 86].

The following result strengthens the Wang-Fang Theorem.

2.3.6. Theorem. Let k be a positive integer. Then there exists a positive inte-
ger Tk such that P (k, k + 2, Tk) is a Picard-Montel property.

Proof. Again it suffices that to show that there exists Tk such that (c) holds
for the property P (k, k + 2, Tk). Suppose that this is not the case. Then for
each n ∈ N there exists a non-constant entire function fn such that 〈fn, C〉 ∈
P (k, k + 2, n), and we may assume that f#

n (z) ≤ f#
n (0) = 1 for all z ∈ C. Thus

the fn form a normal family so that fnj
→ f for some subsequence (fnj

) of (fn).
Hurwitz’s Theorem now implies that 〈f, C〉 ∈ P (k, k + 2,∞), contradicting the
Wang-Fang Theorem.

2.4. Exceptional values of differential polynomials. Let n ∈ N and let
a, b ∈ C, a �= 0. We say that a meromorphic function f : D → C satisfies
property P (n, a) if f(z)nf ′(z) �= a for all z ∈ D. And we say that f has property
Q(a, b, n) if f ′(z) + af(z)n �= b for all z ∈ D. Note that 〈f, D〉 ∈ P (n, a) if and
only if 〈1/f,D〉 ∈ Q(n + 2, a, 0).
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It follows from the Zalcman-Pang Lemma with α := −1/(n + 1) that P (n, a)
is a Bloch property. This was a key ingredient in the proof of the following
result [13, 30, 122].

2.4.1. Theorem. P (n, a) is a Picard-Montel property for all n ≥ 1 and a �= 0.

That functions meromorphic in the plane which satisfy P (n, a) are constant was
proved by Hayman [55, Cor. to Thm. 9] for n ≥ 3 and by E. Mues [74, Satz 3]
for n = 2. The case that f is entire is due to W. K. Hayman [55, Thm. 10] if
n ≥ 2 and to J. Clunie [37] if n = 1. By the remarks made above, Theorem 2.4.1
is equivalent to the following result.

2.4.2. Theorem. Q(n, a, 0) is a Picard-Montel property for all n ≥ 3 and a �= 0.

Hayman [55, Thm. 9] also proved the following result.

2.4.3. Theorem. If 〈f, C〉 ∈ Q(n, a, b) where a, b ∈ C, a �= 0, and n ≥ 5, then f
is constant.

The conclusion of this theorem is not true for n = 3 and n = 4, as shown by
examples due to Mues [74]. For n = 4 such an example is given by f(z) := tan z.
Then f ′(z) = 1 + f(z)2 �= 0 so that

f ′ +
1

2
f 4 − 1

2
=

1

2
(1 + f 2)2

has no zeros. Thus 〈tan, C〉 ∈ Q (4, 1/2, 1/2) . The examples for n = 3, or for
different values of a and b, are similar.

However, an argument due to Pang [83, 84] shows that Q(n, a, b) does imply
normality for n ≥ 3.

2.4.4. Pang’s Theorem. If n ≥ 3 and a �= 0, then, for each domain D ⊂ C,
the family {f : 〈f, D〉 ∈ Q(n, a, b)} is normal on D

Sketch of proof. The idea is to deduce Theorem 2.4.4 from Theorem 2.4.2. We
note that Q(n, a, b) does not satisfy the condition (ii′) stated after the Zalcman-
Pang Lemma in Section 2.2. However, with α := 1/(n − 1) ∈ (−1, 1) and ϕ(z) :=
ρz + c where ρ, c ∈ C, ρ �= 0 we see that 〈f, D〉 ∈ Q(n, a, b) is equivalent to

〈ρα(f ◦ ϕ), ϕ−1(D)〉 ∈ Q(n, a, ρn/(n−1)b).

Since in the Zalcman-Pang Lemma one considers a sequence of ρ-values tend-
ing to 0 we see that the limit function f occurring in this lemma satisfies
〈f, C〉 ∈ Q(n, a, 0), contradicting Theorem 2.4.2.

When Pang wrote his papers, the conclusion of Theorem 2.4.2 was known only
for n ≥ 4. Therefore he could prove his result only for n ≥ 4. But his argument
also extended to the case n = 3, once Theorem 2.4.2 was known; see also [102,
p. 143] for further discussion.
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For n ∈ {3, 4} and a, b �= 0 the property Q(n, a, b) is thus a counterexample to
the Bloch Principle as stated in Section 1.5. However, L. Zalcman and, inde-
pendently, the present writer have in recent years suggested a variant of Bloch’s
Principle which allows to deal with properties such as Q(n, a, b). Instead of the
condition

(a) if 〈f, C〉 ∈ P , then f is constant;

introduced in Section 1.5 we consider the following condition:

(a′) the family {f : 〈f, C〉 ∈ P} is normal on C.

Note that (a′) is satisfied in particular if {f : 〈f, C〉 ∈ P} consists only of
constant functions. In other words, the condition (a) implies (a′). Recall the
condition (b) in the formulation of the original Bloch Principle:

(b) the family {f : 〈f, D〉 ∈ P} is normal on D for each domain D ⊂ C.

The variant of Bloch’s Principle mentioned now says that (a′) should be equiv-
alent to (b). Note that (b) trivially implies (a′), so what this modification of
Bloch’s Principle is really asking for is that (a′) implies (b).

We have seen that for n ∈ {3, 4} and a, b �= 0 the property P := Q(n, a, b) is
an example where the original Bloch Principle “(a)⇔(b)” fails, but where the
variant “(a′)⇔(b)” holds.

Some further cases where this is true will be discussed in Sections 2.5, 3.1 and 4.1.

2.5. Meromorphic functions with derivatives omitting zero. The fol-
lowing result was proved by W. K. Hayman [55, Thm. 5] for k = 2 and by
J. Clunie [36] for k ≥ 3.

2.5.1. Hayman-Clunie Theorem. Let f be entire and let k ≥ 2. Suppose
that f and f (k) have no zeros. Then f has the form f(z) = eaz+b where a, b ∈ C,
a �= 0.

Hayman obtained the case k = 2 as a corollary of his Theorem 2.1.4. In fact,
if the functions f and f ′′ have no zeros, then F := f/f ′ satisfies F (z) �= 0
and F ′(z) − 1 = −f(z)f ′′(z)/f ′(z)2 �= 0 for all z ∈ C. Thus F is constant by
Theorem 2.1.4, and this implies that f has the form stated.

So we see that the conclusion of the above theorem is equivalent to the state-
ment that f ′/f is constant. Bloch’s Principle thus suggests the following normal
families analogue proved by W. Schwick [103, Thm. 5.1].

2.5.2. Schwick’s Theorem. Let k ≥ 2 and let F be a family of functions
holomorphic in a domain D. Suppose that f and f (k) have no zeros in D, for all
f ∈ F . Then {f ′/f : f ∈ F} is normal.

Theorem 2.5.1 was extended to meromorphic functions by G. Frank [47] for k ≥ 3
and by J. K. Langley [61] for k = 2.
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2.5.3. Frank-Langley Theorem. Let f be meromorphic in C and let k ≥ 2.
Suppose that f and f (k) have no zeros. Then f has the form f(z) = eaz+b or
f(z) = (az + b)−n, where a, b ∈ C, a �= 0, and n ∈ N.

We note that if f has the form f(z) = (az+b)−n, then f ′(z)/f(z) = −n/(z+b/a)
is not constant. So the original Bloch Principle does not suggest that there is
a normal family analogue. However, the family of all functions f ′/f of the
above form is normal, and thus the following extension of Schwick’s Theorem
proved in [14] is in accordance with the variant of Bloch’s Principle discussed in
Section 2.4.

2.5.4. Theorem. Let k ≥ 2 and let F be a family of functions meromorphic in
a domain D. Suppose that f and f (k) have no zeros in D, for all f ∈ F . Then
{f ′/f : f ∈ F} is normal.

For k = 2 the result had been obtained already earlier in [11]. We omit the
proofs of the above results and refer to the papers mentioned.

Instead of considering the condition that f (k) has no zeros one may, more gener-
ally, consider the condition that

L(f) := f (k) + ak−1f
(k−1) + . . . a1f

′ + a0f

has no zeros, for certain constants or functions a0, a1, . . . , ak−1. For functions
meromorphic in the plane this has been addressed in [22, 61, 62, 48, 107], and
results about normality appear in [35].

Similarly one may replace the exceptional values of f (k) by exceptional values
of L(f) in many of the results discussed in Sections 2.1–2.3. In fact, already in
1940 it was proved by C. T. Chuang [33] that in Miranda’s Theorem 2.1.3 one
may replace the condition f (k) �= 1 by L(f) �= 1 if the aj are holomorphic. We
note that this result can be deduced from the Pólya-Saxer-Ullrich Theorem using
the Zalcman-Pang Lemma in the same way Miranda’s Theorem was proved in
Section 2.2. There are a large number of papers concerning exceptional values
of L(f). Here we only refer to [39, 102].

3. Fixed points and periodic points

3.1. Introduction. Let X, Y be sets, let f : X → Y be a function, and define
the iterates fn : Xn → Y by X1 := X, f1 := f and Xn := f−1(Xn−1 ∩ Y ),
fn := fn−1 ◦ f for n ∈ N, n ≥ 2. Note that X2 = f−1(X1 ∩ Y ) ⊂ X = X1 and
thus Xn+1 ⊂ Xn ⊂ X for all n ∈ N.

A point ξ ∈ X is called a periodic point of period p of f if ξ ∈ Xp and fp(ξ) = ξ,
but fm(ξ) �= ξ for 1 ≤ m ≤ p − 1. A periodic point of period 1 is called a
fixed point. The periodic points of period p are thus the fixed points of fp which
are not fixed points of fm for any m less than p. The periodic points play an
important role in complex dynamics.
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By the Fundamental Theorem of Algebra, every non-constant polynomial f
which is not of the form f(z) = z + c, with c ∈ C \ {0}, has a fixed point,
and so does every iterate of f . Transcendental entire functions need not have
fixed points, as shown by the example f(z) = z+ez. P. Fatou [45, p. 345] proved
that the second iterate of a transcendental entire function has a fixed point, and
this result was crucial for his proof that the Julia set of such a function is non-
empty. P. C. Rosenbloom [96] proved that in fact any iterate of a transcendental
entire function has infinitely fixed points. Summarizing these results we obtain
the following theorem.

3.1.1. Fatou-Rosenbloom Theorem. Let f be a entire function and p ∈ N,
p ≥ 2. If fp has no fixed point, then f has the form f(z) = z+c where c ∈ C\{0}.

We note that the family of all functions f of the form f(z) = z + c, with
c ∈ C \ {0}, is normal in C. Thus the variant of Bloch’s Principle discussed
in Section 2.4 suggests a normal family analogue not incorporated in the original
Bloch Principle. This normal family analogue was proved by M. Essén and S.
Wu [43], thereby answering a question of L. Yang [118, Prob. 8].

3.1.2. Essén-Wu Theorem. Let D ⊂ C be a domain and let F be the family
of all holomorphic functions f : D → C for which there exists p = p(f) > 1 such
that f p has no fixed point. Then F is normal.

We shall sketch the proof of the Essén-Wu Theorem after Theorem 3.2.4.

3.2. Periodic points and quasinormality. In Section 3.1 we discussed the
property P defined by 〈f, D〉 ∈ P if f is holomorphic in D and if there exists
p = p(f) > 1 such that f p has no fixed point in D. The Essén-Wu Theorem 3.1.2
says that P implies normality.

We shall now be concerned with the weaker property Q defined by 〈f, D〉 ∈ Q
if f is holomorphic in D and if there exists p = p(f) > 1 such that f has no
periodic point of period p in D. We note that for n ∈ N the function fn(z) := nz
has no periodic points of period greater than 1 so that 〈fn, C〉 ∈ Q for all n, but
the fn do not form a normal family.

We first discuss what entire functions have property Q. For polynomials we have
the following result due to I. N. Baker [3].

3.2.1. Baker’s Theorem. Let f be a polynomial of degree d ≥ 2 and let p ∈ N,
p ≥ 2. Suppose that f has no periodic point of period p. Then d = p = 2.
Moreover, there exists a linear transformation L such that f(z) = L−1(g(L(z))),
with g(z) = −z + z2.

Note that for g(z) = −z+z2 we have g(z)−z = z(z−2) and g2(z)−z = z3(z−2)
so that there are no periodic points of period 2.
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The case of transcendental functions is covered by the following generalization of
the Fatou-Rosenbloom Theorem 3.1.1 which was conjectured in [57, Prob. 2.20]
and proved in [6, Thm. 1] and [7, §1.6, Satz 2].

3.2.2. Theorem. Let f be a transcendental entire function and let p ∈ N, p ≥ 2.
Then f has infinitely many periodic points of period p.

These results may be summarized as follows.

3.2.3. Theorem. Let 〈f, C〉 ∈ Q. Then the function f is a polynomial of degree
at most 2. If f has degree 2, then there exists a linear transformation L such
that f(z) = L−1(g(L(z))), with g(z) = −z + z2.

As mentioned above, property Q does not imply normality. However, we have
the following result [4].

3.2.4. Theorem. For every domain D ⊂ C the family {f : 〈f, D〉 ∈ Q} is
quasinormal of order 1 in D.

The proofs of Theorem 3.2.4 and the Essén-Wu Theorem 3.1.2 are based on
similar arguments.

Sketch of Proof. For simplicity we only prove that F is normal if f 2 has no
fixed point for all f ∈ F , and that F is quasinormal of order 1 if f has no
periodic point of period 2 for all f ∈ F . The general case is proved along the
same lines; we refer to the papers cited for the details.

First we prove that a family F of functions holomorphic in a domain D is quasi-
normal of order 3 if f has no periodic point of period 2 for all f ∈ F . Suppose
that F is not quasinormal of order 3. Then there exists a sequence (fn) in F
and four points a1, a2, a3, a4 ∈ D such that no subsequence of (fn) is normal at
any of the points aj.

Applying Ahlfors’s Theorem 1.7.5 with a domain D3 containing ∞ we see that
if D1, D2 are Jordan domains in C with disjoint closures, if Ω is a neighborhood
of one of the points aj, and if n is sufficiently large, then fn has an island U
contained in Ω over one of the domains D1 or D2. We choose ε > 0 such that
the closures of the disks of radius ε around the aj are pairwise disjoint. We see
that if n is sufficiently large and j, k1, k2 ∈ {1, 2, 3, 4} with k1 �= k2, then fn

has an island U in D(aj, ε) over D(ak1 , ε) or D(ak2 , ε). Thus fn has an island in
D(aj, ε) over D(ak, ε) for at least three values of k. This implies that there exists
j, k ∈ {1, 2, 3, 4}, j �= k, such that fn has an island U in D(aj, ε) over D(ak, ε)
and an island V in D(ak, ε) over D(aj, ε). We now consider a component W of
U ∩ f−1

n (V ) and see that f 2
n|W : W → D(aj, ε) is a proper map. In particular, f2

n

takes the value aj in W .

For z ∈ ∂W we have

|(f 2
n(z) − aj) −

(
f 2

n(z) − z
) | = |z − aj| < ε = |f 2

n(z) − aj|.
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Rouché’s Theorem implies that f 2
n(z) − z has a zero in W , say f 2

n(ξ) = ξ where
ξ ∈ W . Since fn(ξ) ∈ D(ak, ε) and W ∩ D(ak, ε) = ∅ we see that ξ is a periodic
point of period 2. This contradicts our assumption. Thus F is quasinormal
of order 3 if f has no periodic point of period 2 for all f ∈ F — and thus in
particular if f 2 has no fixed point for all f ∈ F .

To complete the proof that F is normal if f 2 has no fixed point for all f ∈ F ,
suppose that F is not normal. Then there exists a sequence (fn) in F and a
point a1 ∈ D such that no subsequence of (fn) is normal at a1. Since F is
quasinormal of order 3 we may, passing to a subsequence if necessary, assume
that fn converges in D \ {a1, a2, a3} where a2, a3 ∈ D. The Maximum Principle
implies that fn → ∞ in D \ {a1, a2, a3}. We find that if ε > 0 is such that the
closure of the disk D(a1, ε) is contained in D \ {a2, a3} and if n is large enough,
then fn has an island U in D(a1, ε) over D(a1, ε). As above Rouché’s Theorem
implies that fn has a fixed point in U . This fixed point is also a fixed point of f 2

n,
contradicting the assumption.

The proof that F is quasinormal of order 1 if f has no periodic point of period 2
for all f ∈ F is completed in a similar fashion. Assuming that this is not the case
we find a sequence (fn) in F and two points a1, a2 ∈ D such that no subsequence
of (fn) is normal at a1 or a2. Passing to a subsequence we may again assume
that fn converges in D \ {a1, a2, a3} for some a3 ∈ D, and hence fn → ∞ in
D \ {a1, a2, a3} by the Maximum Principle. For suitable ε > 0 and sufficiently
large n we find that fn has an island U in D(a1, ε) over D(a2, ε) and an island V
in D(a2, ε) over D(a1, ε). Again we consider a component W of U ∩ f−1

n (V ) and
see that f 2

n|W : W → D(a1, ε) is a proper map. As above, we see that W contains
a periodic point ξ of period 2 of fn.

A fixed point ξ of a holomorphic function f is called repelling if |f ′(ξ)| > 1.
Repelling periodic points are defined accordingly. They play an important role
in complex dynamics. Many of the results mentioned above have generalizations
where instead of fixed points and periodic points only repelling fixed points and
periodic points are considered. For example, the Theorems 3.1.2 and 3.2.2 hold
literally with the word “repelling” added. But the results about polynomials are
somewhat different; see [6, 7, 12, 44] for more details.

The condition that f has no (repelling) periodic points of some period — or that
some iterate does not have (repelling) fixed points — has also been considered
for meromorphic functions. We refer to [29, 43, 105, 106, 115] for results when
this implies (quasi)normality, to [3, 60] for results concerning rational functions,
and to [8, §3] for the case of transcendental functions meromorphic in the plane.

4. Further topics

4.1. Functions sharing values. Two meromorphic functions f and g are said

to share a value a ∈ Ĉ if they have the same a-points; that is, f(z) = a if g(z) = a
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and vice versa. A famous result of Nevanlinna [78] says that if two functions
meromorphic in the plane share five values, then they are equal. E. Mues and N.
Steinmetz [75] proved that if f is meromorphic in the plane and if f and f ′ share
three values, then f ′ = f so that f(z) = cez for some c ∈ C. Now the family
{cez : c ∈ C} is normal and thus the variant of Bloch’s Principle discussed in
Section 2.4 suggests that the family of functions f meromorphic in a domain
and sharing three fixed values with their derivative is normal. W. Schwick [104]
proved that this is in fact the case.

On the other hand, G. Frank and W. Schwick [49, 50] showed that for a function f
meromorphic in the plane the condition that f and f (k) share three values for
some k ≥ 2 still implies that f = f (k), but the family of all functions f which are
meromorphic in some domain and satisfy this condition is not normal. This is
in accordance with both the original Bloch Principle and its variant introduced
in Section 2.4, since the functions f which are meromorphic in the plane and
satisfy f = f (k) do not form a normal family for k ≥ 2.

There is an enormous amount of literature on functions meromorphic in the plane
that share values, and in recent years many papers on corresponding normality
results have appeared. Here we only refer to [51, 85, 88, 89] and the literature
cited there. We note that some of these results generalize the results about
exceptional values of derivatives described in Section 2.1, since if two functions
omit the same value, then they of course also share this value.

4.2. Gap series. A classical result of L. Fejér [46, p. 412] says that an entire
function f of the form

(4.2.1) f(z) =

∞∑
k=0

akz
nk where

∞∑
k=0

1

nk

= ∞

has at least one zero. S. Ruscheweyh and K.-J. Wirths [99] have shown that the
family of all functions f of the form (4.2.1) which are holomorphic in the unit
disk and do not vanish there form a normal family.

There are a number of further results, as well as open questions, on exceptional
values of entire functions with gap series; see [76] for a survey. Here we only men-
tion a question of G. Pólya [90, p. 639] whether Fejér’s condition

∑∞
k=0 1/nk = ∞

in (4.2.1) can be replaced by Fabry’s condition limk→∞ nk/k = ∞.

In accordance with Bloch’s Principle, Ruscheweyh and Wirths [99] have made
the following conjecture.

4.2.2. Conjecture. For Λ ⊂ N ∪ {0} and a function f holomorphic in a do-
main D containing 0 define 〈f, D〉 ∈ PΛ if f has a power series expansion

f(z) =
∑
λ∈Λ

aλz
λ
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and if f(z) �= 0 for all z ∈ D. Then {f : 〈f, D〉 ∈ PΛ} is normal in D if and only
if 〈f, C〉 ∈ PΛ implies that f is constant.

We note that one direction in this conjecture is obvious: Normality of the family
{f : 〈f, D〉 ∈ PΛ} implies that 〈f, C〉 ∈ PΛ only for constant functions f . In fact,
if a non-constant entire function f has property PΛ, then so does every function
in the family {f(nz) : n ∈ N}, and this family is not normal at 0.

We mention that Zalcman’s Principle 1.5.1 cannot apply to properties concerning
gap series since condition (ii) is not satisfied. However, there are some further re-
sults in addition to [99] which support the above conjecture. W. K. Hayman [58]
has considered entire functions with gaps in arithmetic progressions. Normal
family analogues of some of the results have been obtained by S. Ruscheweyh
and L. Salinas [98] and by J. Grahl [52].

4.3. Holomorphic curves. It is easily seen that Picard’s Theorem is equiva-
lent to the statement that if f1, f2, f3 are non-vanishing entire functions and if
c1, c2, c3 are non-zero complex numbers such that

∑3
j=1 cjfj = 0, then each quo-

tient fj/fk is constant. In fact, writing F := −c1f1/(c3f3) we see that F is an
entire function without zeros. Moreover, since F = 1+ c2f2/(c3f3) we see that F
also omits the value 1. Thus F is constant by Picard’s Theorem. This implies
that not only f1/f3 but also the other quotients f1/f2 and f2/f3 are constant.

Another way to phrase this result is that the hypothesis that the three functions
f1, f2, f3 are linearly dependent already implies that two of them are linearly
dependent.

A generalization of this statement was proved by É. Borel [21].

4.3.1. Borel’s Theorem. Let p ∈ N, let f1, . . . , fp be entire functions without
zeros and let c1, . . . , cp ∈ C\{0}. Suppose that

∑p
j=1 cjfj = 0. Then {f1, . . . , fp}

contains a linearly dependent subset of less than p elements.

Repeated application of this result shows that under the hypotheses of Borel’s
Theorem the set {1, . . . , p} can be written as the union of disjoint subsets Iμ,
each of which has at least two elements, and such that if j, k are in the same set
Iμ, then fj/fk is constant.

One may ask whether this Picard type theorem also has an analogue in the
context of normal families. However, as noted already by Bloch [18, p. 311]
himself, it is not clear at first sight what such an analogue could look like. This
problem was then addressed by H. Cartan [27] who proved such an analogue in the
case that p = 4 and made a conjecture for the general case. Cartan’s conjecture
was disproved by A. Eremenko [40]. However, Eremenko [41] also showed that a
weakened form of the conjecture is true for p = 5. For a connection to gap series
we refer to a paper by J. Grahl [52].
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4.4. Quasiregular maps. Many of the concepts used in this survey are also
applicable for quasiregular maps in higher dimensions; see [93] for the definition
and basic properties of quasiregular maps. One of the most important results in
this theory is the analogue of Picard’s Theorem which was obtained by S. Rick-
man [92]. He proved that there exists q = q(d,K) ∈ N with the property that
every K-quasiregular map f : R

d → R
d which omits q points is constant. The

corresponding normality result was proved by R. Miniowitz [70], using an ex-
tension of the Zalcman Lemma to quasiregular maps. A. Eremenko [42] has
used Miniowitz’s result to extend the classical Covering Theorem of Bloch [19]
to quasiregular maps.

Recall that the limit function f occurring in Zalcman’s Lemma has bounded
spherical derivative. The corresponding conclusion in the context of quasireg-
ular maps is that the limit function is uniformly continuous. This plays an
important role in the work of M. Bonk and J. Heinonen [20] on closed, connected
and oriented Riemannian d-manifolds N for which there exists a non-constant
quasiregular map f : R

d → N . They use Miniowitz’s extension of Zalcman’s
Lemma to show that if there is such a mapping, then there is also a uniformly
continuous one.

Many of the results of Sections 3.1 and 3.2 concerning fixed points have been
extended to quasiregular mappings by H. Siebert [105, 106]. For example, The-
orems 3.1.2, 3.2.2 and 3.2.4 hold literally for quasiregular maps. We omit a
detailed discussion of the results about quasiregular mappings here and refer to
the papers cited.
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Sci. Paris 141 (1905), 1213–1215.
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68 (1940), 11–41.

34. , Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.
35. E. F. Clifford, Two new criteria for normal families, Comput. Methods Funct. Theory 5

(2005), 65–76.
36. J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962),

17–27.
37. , On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392.
38. J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic

functions, Comment. Math. Helv. 40 (1965/66), 117–148.
39. D. Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231–263.
40. A. Eremenko, A counterexample to Cartan’s conjecture on holomorphic curves omitting

hyperplanes, Proc. Amer. Math. Soc. 124 (1996), 3097–3100.
41. , Holomorphic curves omitting five planes in projective space, Amer. J. Math. 118

(1996), 1141–1151.
42. , Bloch radius, normal families and quasiregular mappings, Proc. Amer. Math.

Soc. 128 (2000), 557–560.
43. M. Essén and S. Wu, Fix-points and a normal family of analytic functions, Complex

Variables Theory Appl. 37 (1998), 171–178.
44. , Repulsive fixpoints of analytic functions with applications to complex dynamics,

J. London Math. Soc. (2) 62 (2000), 139–148.
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46. L. Fejér, Über die Wurzel vom kleinsten absoluten Betrag einer algebraischen Gleichung,

Math. Ann. 65 (1908), 413–423.
47. G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math.

Z. 149 (1976), 29–36.
48. G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear

differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986),
407-428.

49. G. Frank and W. Schwick, Meromorphe Funktionen, die mit einer Ableitung drei Werte
teilen, Results Math. 22 (1992), 679–684.

50. , A counterexample to the generalized Bloch principle, New Zealand J. Math. 23
(1994), 121–123.

51. M. Fang and L. Zalcman, A note on normality and shared values, J. Aust. Math. Soc. 76
(2004), 141–150.

52. J. Grahl, Some applications of Cartan’s theorem to normality and semiduality of gap
power series, J. Anal. Math. 82 (2000), 207–220.

53. , A short proof of Miranda’s theorem and some extensions using Zalcman’s lemma,
J. Anal. 11 (2003), 105–113.

54. Y. X. Gu, A criterion for normality of families of meromorphic functions (in Chinese),
Sci. Sinica Special Issue 1 on Math. (1979), 267–274.

55. W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math.
(2) 70 (1959), 9–42.

56. , Meromorphic Functions, Clarendon Press, Oxford, 1964.
57. , Research Problems in Function Theory, Athlone Press, London, 1967.



106 W. Bergweiler CMFT

58. , Value distribution and A.P. gaps, J. London Math. Soc. (2) 28 (1983), 327–338.
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University of Kiel, 2004; http://e-diss.uni-kiel.de/diss 1260.
106. , Fixed points and normal families of quasiregular mappings, J. Analyse Math., to

appear.
107. N. Steinmetz, On the zeros of (f (p) +ap−1f

p−1 + · · ·+a0f)f , Analysis 7 (1987), 375–389.
108. , Rational Iteration, Walter de Gruyter, Berlin, 1993.
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114. , Des théorèmes de Bloch aux théories d’Ahlfors, Bull. Sci. Math. 73 (1949), 152–

162.



108 W. Bergweiler CMFT

115. S. G. Wang and S. J. Wu, Fixpoints of meromorphic functions and quasinormal families
(in Chinese), Acta. Math. Sinica 45 (2002), 545–550.

116. Y. Wang and M. Fang, Picard values and normal families of meromorphic functions with
multiple zeros, Acta Math. Sinica New Ser. 14 (1998), 17–26.

117. G. Xue and X. Pang, A criterion for normality of a family of meromorphic functions (in
Chinese), J. East China Norm. Univ., Nat. Sci. Ed. 2 (1988), 15–22.

118. L. Yang, Some recent results and problems in the theory of value-distribution, in: W. Stoll
(ed.), Proceedings of the Symposium on Value Distribution Theory in Several Complex
Variables, Univ. of Notre Dame Press, Notre Dame Math. Lect. 12 (1992), 157–171.

119. L. Yang and K.-H. Chang, Recherches sur la normalité des familles de fonctions analy-
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