
1 INTRODUCTION

In performing fracture and fatigue evaluation for welded
structures, stress intensity factor solutions are needed
by considering crack-like discontinuities at welds.
Although finite element methods can be used through
either a J integral approach and or a direct K calcula-
tion using either stresses or displacements, the com-
putational procedures involving crack tip element defin-
itions can be too complicated to be practical. Weight
function methods only require the stress distributions to
be known in uncracked bodies and therefore are more
attractive for practical applications. However, in using
weight function approach, consistent normal stress
determinations with respect to a hypothetical crack plane
in finite element models are not an easy task since sharp
notches at the welds introduce mesh-dependency in
stress values calculated using finite element models [1-
3]. Often, a fictitious notch radius had to be introduced
in the finite element model to eliminate such stress sin-
gularity [1-2]. In addition to uncertainties in calculated
stresses, element refinements in the order of the
assumed notch radius must be used [1-2], which
severely limits these calculations to only simple joint
geometries.

Recently, a mesh-insensitive structural stress method
has been developed by Dong and co-workers [3-6]. The

underlying principle in the mesh-insensitive structural
stress method is based on equilibrium considerations in
displacement based finite element theory. The structural
stress parameter so calculated becomes the statically
equivalent far-field stresses with respect to a hypothet-
ical crack location, but without modelling actual crack.
The equivalence to the far-field stress definition in frac-
ture mechanics enables a direct calculation of the cor-
responding stress intensity factors by using an existing
reference K solution [3] for simple fracture specimen
geometry. Due to the mesh-insensitive nature of the
structural stress calculations, the method is particularly
effective for applications in fracture and fatigue evalua-
tion of complex structures.

In this paper, we start a brief introduction of the mesh-
insensitive structural stress method and corresponding
notch stress estimation procedure [3-6] for arbitrary weld
geometry. The stress intensity solutions not only pro-
vide consistent stress intensity estimations for crack
sizes being infinitesimally small at notch roots, but also
recover accurately the stress intensity factors for long
cracks that are controlled by the equilibrium equivalent
far-field stresses. The validity of the new stress intensity
solutions are validated by the existing weight function
based solutions.

2 NEW NOTCH STRESS ANALYSIS
PROCEDURES

With a new definition of structural stress concept, Dong
and his co-workers [3-6] have developed a series of
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mesh-insensitive stress calculation procedures for cal-
culating the equilibrium-equivalent structural stress as
shown in Fig. 1 (b) and estimating the self-equilibrium
notch stresses as shown in Fig. 1 (c) in sharp notched
components. Their applications in fatigue evaluation and
fracture analysis of welded joints have been given in a
series of recent publications [3-6]. In what follows, the
mesh-insensitive structural stress procedure is briefly
highlighted, particularly for estimating stresses and
stress intensities at notches. Additional details can be
found in the above cited publications. The structural
stress definition that follows elementary structural
mechanics theory can be established with following con-
siderations:

It can be postulated that for a given local through-thick-
ness distribution as shown in Fig. 1 (a) obtained from a
finite element model, there exists an equilibrium-equiv-
alent structural stress distribution normal to a hypothet-
ical crack plane from a notch, as shown in Fig. 1 (b), in
the form of membrane and bending components. Note
that in fracture mechanics context, such a structural
stress definition becomes the equivalent far-field stress
(σ∞) definition. While local stresses near a notch are
mesh-size sensitive due to the asymptotic singularity
behaviour as a notch tip is approached, the imposition
of the equilibrium conditions in the context of elemen-
tary structural mechanics within a reference region
should eliminate or minimise the mesh-size sensitivity in
the structural stress calculations. Within the context of
displacement based finite element methods, the most
accurate solution variables are nodal displacements and

balanced nodal forces (or internal forces at an element
level) at nodal positions before stresses and strain were
computed, on which equilibrium conditions are directly
enforced. Therefore, the nodal displacements and nodal
forces can be directly used to extract the far-field stress
at a notch. This method is particularly convenient for
characterising stress states at notch in shell/plate type
structures where shell/plate element models are typi-
cally used. The detailed procedures are given by Dong
et al. [3-6], along with a series of numerical examples
to demonstrate that essentially the same stresses were
obtained at the notch root with drastically different ele-
ment sizes and element types at both specimen and
structural levels.

2.1 Characterisation of far-field stresses

Most of the crack growth data has been generated from
standard fracture mechanics specimens with a notch as
a crack starter. Most of these specimens can be con-
veniently modelled as either 2D or simple 3D solid spec-
imens in the finite element context. The new stress
analysis procedures can be implemented by using stress
quantities from a solid element model as follows
(although balanced nodal forces are more robust when
using coarse finite element models [3]).

As shown in Fig. 2, a typical through-thickness stress
distribution at a notch root typically exhibits a monoto-
nic through-thickness distribution with the peak stress
occurring at the root of notch. It should be noted that in
typical finite element based stress analysis, the stress

Fig. 1. Through-thickness structural stresses definition.
(a) Local stresses from FE model at a notch.

(b) Equilibrium-equivalent structural stress or far-field stress.
(c) Approximation of self-equilibrating stress (notch stress) with respect to a reference depth t1



values within some distance from the notch root can
change significantly as different element sizes or ele-
ment types are used in a finite element model [16-19],
referred to as mesh-size sensitivity in those publications.
The corresponding statically equivalent structural stress
distribution is illustrated in Fig. 1 (b), in the form of a
membrane component (σm

t) and bending component
(σb

t), consistent with elementary structural mechanics
definition:

σ t
s + σ t

m + σ t
b (1)

The super script t signifies the definition of the struc-
tural stress is with respect to ligament length t in Fig. 1(a)
from the notch root.

In a series of recent publications [3-7], the use of 3D
solid element models by enforcing equilibrium condi-
tions to achieve a relative mesh-insensitivity were dis-
cussed in [3-6]. In practical applications, the mesh-insen-
sitive structural stress methods can be most effectively
implemented for shell or plate element models for arbi-
trarily curve welds as discussed in [5-7] by solving a
system of simultaneous equations using balanced nodal
forces and moments from typical finite element solu-
tions. A tubular joint example was discussed in detail in
Dong and Hong [7] recently and summarised in Fig. 2
for demonstrating the effectiveness of the mesh-insen-
sitive structural stress procedures. Some of the consid-
erations can also be inferred from this example. As seen

Fig. 2. Mesh-insensitivity demonstration for equivalent far-field stresses along tube to tube joint.
(a) A tubular joint from [8].

(b) Four FE shell models with various element sizes at the weld.
(c) Comparison of calculated far-field stresses at the weld toe (without modelling the presence

of the weld) from the four models.
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in Fig. 3, once an element size of about 2t × 2t (here, t
is the tube thickness) in using linear elements, the
curved surface around the tube to tube intersections
can no longer be corrected modelled in this example. As
a result, the structural stress based SCF around weld
starts to lose accuracy.

2.2 Fracture mechanics applications

The far-field or far structural stress parameter calculated
as discussed in the previous section has a direct rele-
vance to fracture mechanics applications. As shown in
Fig. 3, σ∞(x) represents the statically equivalent far-field
stress with respect to a hypothetical crack plane in frac-
ture mechanics definition. The mesh-insensitive struc-
tural stress procedure transforms the stress state at a
location of interest at a joint in complex structures under
an arbitrary loading to a simple 2D crack problem sub-
jected to an equivalent far-field stress state. This far-
field stress distribution is fully described by Eq. (1) as
the membrane plus bending, for instance:

σ ∞
(x) = σ t

s – 
2σ t

b x
(2)

t

which can directly enter K solution equations for a crack
in a smooth plate such as an edge crack situation as
shown in Fig. 3. The detailed K formulation using the
mesh-insensitive structural stresses will be given in the
next section after presenting the notch stress estima-
tion scheme. The equivalence between the far-field
stress and the mesh-insensitive structural stress has
been established in the previous section in view of the
fact that the both definitions are solely based on stati-
cally equivalent requirements under external loads. As
a special case, if a structure or component is loaded
under statically determinant conditions, both the struc-
tural stress and far-field stress becomes a nominal
stress, provided that nominal stress can be calculated

using simple structural mechanics theory. For general
non-linear far-field stress distribution σ∞(x), well-known
weight function methods can be used for calculating K
as follows, e.g., for mode I crack in Fig. 3:

K = 
a

∫
0 

σ ∞
(x) w (x, a) da (3)

where w(x,a) is weight function depending upon joint
geometry [1-2] and are only available for a few simple
joint types.

2.3 Characterisation of self-equilibrating
stress state

As illustrated in Fig. 1, the stress distribution along the
ligament (t) at the notch root can be represented by two
simple stress states: an equilibrium-equivalent far-field
stress state (Fig. 1 (b)) and a notch stress state that
equilibrates within itself along ligament t (dashed lines
Fig. 1 (c)). Before constructing analytical-based solution
for the self-equilibrating notch stress distribution, an
effective mean of quantifying the self-equilibrating part
of the stress distributions from finite element models
must be established, without relying on the direct sub-
traction from the FE results (dashed lines in Fig. 1 (c))
by that in Fig. 1 (b). Otherwise, infinitesimally small ele-
ments in a FE model would be required for the results
to be meaningful at the notch.

By taking advantage of the mesh-insensitive procedures
presented in the above for calculating equivalent far-
field stresses, the self-equilibrating part of the stress
state (dashed lines) can be estimated, in the equilib-
rium sense, by introducing a bilinear distribution with a
characteristic depth t1. Both the justification and selec-
tion of t1 will be discussed in detail in the later sections.
For the time being, in all calculations t1/t is taken as 0.1.
The stress distribution representing the self-equilibrating
part of the stress distributions can be considered as two

Fig. 3. Structural stress based transformation from complex 3D geometry and load mode
to a simple 2D crack problem.



linear distributions within Regions (1) and (2), respec-
tively, as shown in Fig. 4 (a). By using balanced nodal
forces in a solid element model (e.g., 2D model in the
present case), the normal stresses σ1

(1), σ2
(1), σ2

(2) can
be calculated. By enforcing equilibrium conditions and
traction continuity at Position 2, as shown in Fig. 4 (b),
the following equations are obtained:

2σ (1)
1 + σ (1)

2 = 2σ1 + σ2

t1 (2σ (1)
2 + σ (1)

1 )+ (t – t1)(2σ (2)
2 + σ (2)

3 ) =
t1(2σ2 + σ1) + (t – t1)(2σ2 + σ3) (4)

2σ (2)
3 + σ (2)

2 = 2σ3 + σ2

In the above equations, the unknowns σ1, σ2, and σ3 at
the three positions can be readily solved, resulting:

σ1 = 1 . (2 . σ (1)
1 + σ (1)

2 – σ (2)
2 ) –   t1 . (σ (1)

2 – σ (2)
2 )

2                               2 . t

σ2 = σ (2)
2 + t1 . (σ (1)

2 – σ (2)
2 ) (5)

t

σ3 = σ (2)
3 +    t1 . (σ (2)

2 – σ (1)
2 )

2 . t

Note that within Regions (1) and (2), the equivalent
membrane and bending components:

σm =
σ1 + σ2, σb = 

σ1 – σ2, σ 'm = 
σ2 + σ3, and σ 'b = 

σ2 – σ3, (6)
2                2                  2                       2

respectively. The expressions in Eq. (6) fully describe the
self-equilibrating part of the stress state as described 
in Fig. 1 (c) at a reference depth t1. The overall far-field
stress (σm

t and σb
t) corresponding to the notch ligament

t can be directly calculated by using shell element pro-
cedures as described in [6-7] and illustrated in Fig. 2.

2.4 Notch stress estimation

To relate the notch stress estimation to stress intensity
factor solutions, an equivalent crack face pressure (or
traction without a crack) for an arbitrarily small crack is
all required in view of superposition principles. To
achieve this, it is assumed that the notch-induced self-
equilibrating stress distributions can be estimated in
terms of equilibrium-equivalent tractions within an arbi-
trary reference depth of l as shown in Fig. 5 in terms of
pm and pb in Fig. 5. This can be accomplished by suc-
cessively re-distributing the intersecting areas between
the distributions described by σm

t and σb
t and σm and σb,

as illustrated in Fig. 5 for any given l. In doing so, the
self-equilibrating conditions for the notch stress distrib-
ution is maintained. The detailed discussions on solving
four equations and four unknowns are given [2]. As
shown by Dong et al. [3], a simplified solution without
losing any noticeable accuracy can be obtained by
assuming pm’ – pb’ = σm’ – σb’ in Fig. 5. As a result, the
following expressions are obtained, with l varying from
0 < l/t ≤ 1:

Pm = a1σ ’m + b1σ ’b + c1σ t
m + d1σ t

b

Pb = a2σ ’m + b2σ ’b + c2σ t
m + d2σ t

b (7)

P’m = a3σ ’m + b3σ ’b + c3σ t
m + d3σ t

b

P’b = a4σ ’m + b4σ ’b + c4σ t
m + d4σ t

b

where, for instance, the coefficients a1, a2, a3, a4 in the
above are expressed as:

a1 = t2 – 3 lt + 2 l2, a2 = t
2 + lt – 2 l2 (8)

2 tl 2 tl

a3 = – t + 2 l, a4 = – 3 t – 2 l
2 t 2 t

It is important to note that the above equations are valid
for 0 < l/t ≤ 1, recovering the solution corresponding to
those described by σm, σb, σm’ and σb’ and σb’ at l/t = t1/t
and that described by σm

t and σb
t at l/t = 1.
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Fig. 4. Estimation of self-equilibrating part of the stress state induced by notch.
(a) After applying Eqs. (4) and (5).

(b) Imposing equilibrium requirements for regions (1) and (2) and continuity at location 2.

Fig. 5. An estimation scheme for equivalent crack
face pressure for a hypothetical crack with
at an arbitrary depth (l) from the notch root.
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With the above notch stress estimation procedures, the
normal tractions in terms of pm and pb along the vertical
line emanating from the notch root are shown in Fig. 6
for a notch specimen taken from [1-2]. Note that the
tractions in terms of pm and pb here should not be inter-
preted as local stresses. They should be interpreted as
equivalent crack face tractions measured in terms of
both membrane and bending within a reference depth
l, but without the presence of a crack.

3 STRESS INTENSITY FACTOR
ESTIMATION

As discussed in Dong et al. [3-6], the present stress
analysis procedures serve as an effective stress trans-
formation process from complex geometry (with a notch)
and loading mode to a simple specimen geometry (see
Fig. 3) upon which both the far-field and notch stresses
act. For the simple specimen geometry, reference stress
intensity factor solutions in terms of  σm

t and σb
t are read-

ily available in the open literature, e.g. the handbook by
Tada et al. [21].

3.1 Stress intensities due to far-field stresses

Edge Cracks

In [3-6], it was shown that the Mode I stress intensity fac-
tor can be expressed as (using superposition principles)
for edge cracks [9]:

K = Km + Kb = √t [σ t
mfm (a) + σ t

bfb (a)] (9)
t           t

The fm(a/t ) and fb(a/t ) are dimensionless functions of rel-
ative crack size a/t for the membrane and bending com-
ponents of the far-field stress state, given as [9]:

2 tan πa
2 t

fm (a) = [0.752 + 2.02 (a) + 0.37 (1 – sin πa)3] √t                          t                        2 t cos πa
2t

2 tan πa
2 t

fb (a) = [0.923 + 0.199 (1 – sin πa)4] √t                              2t cos πa
2 t

As discussed earlier, σm
t and σb

t signify far-field struc-
tural stress components that are defined with respect
to the entire thickness (t), as illustrated in Fig. 5. Once
the structural stresses are available, the stress intensity
factor can be readily calculated from the above equa-
tions.

Elliptical Cracks

Under the given far-field stress components (σm
t, σb

t),
the corresponding elliptical crack solutions can be con-
structed in the same way as for the edge cracks in the
above. The reference K solution can be taken directly
from Shiratori et al. [10] or other reference solutions in
the literature. In adopting the elliptical crack K solutions
for a plate from [10], the remote stress definitions used
in [10] (simple tension σ0

m and simple bending σ0
b) can

be related to the present definitions of far-field stresses
as:

σ b
0 = 2 a σ t

b
t

σ m
0 = σ t

m + σ t
b –  2 a σ t

b
t

Then, stress intensity factor solution for an elliptical crack
at the deepest position (a) is given below:

Kn = σ t
s √t  

π 
a
t [Y0 – 2 R a . (Y0 – Y1)] (10)√ Q               t

where σs
t = σm

t + σb
t, and R = σb

t / σs
t. The dimension-

less parameters Q, Y0, and Y1 are documented in [22]
based on a large number of parametric finite element
analyses.

3.2 Stress intensities including notch effects

As discussed in Section 2, the notch stress distributions
can be characterised as equivalent tractions at a hypo-
thetic crack face (Fig. 5) and described by Eq. (8). By
setting a = l and re-arranging Eq. (10) for edge cracks,
the Mode I stress intensity factor including the estimated
notch effects is expressed as, for any given crack 
size a:

K = √t ps [fm – r t (fm – fb)] (11)
a

where ps = pm + pb and r = pb / ps as illustrated in 
Fig. 5. For an elliptical crack, the notch stress intensity
factor from Eq. (10) becomes:

K = ps √t π 
a
t [Y0 – 2 r (Y0 – Y1)] (12)√ Q

where pm and pb are given by the expressions in Eq. 8.

3.3 Validations

The weight function based stress intensity solutions by
Glinka and co-workers [1-2] are used here as a valida-

Fig. 6. Notch stress estimation – Linear tractions
in terms of membrane and bending with an

arbitrary depth (l) from the notch root (a notched
specimen analysed in [15]).
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tion for the notch stress intensity solution procedures
presented. The notched specimen used in [1-2] was
shown in Fig. 6, where the detailed geometry is also
given according to [1-2]. Note that in [1-2], detailed finite
element analyses with very refine meshes were per-
formed to generate stress distribution along the line from
the notch root, as shown in Fig. 6. To avoid the influence
of singular stresses at the notch root, a small radius
was used at the notch root in [1-2]. For any crack size
a, the corresponding crack face tractions in terms of pm

and pb are given by the expressions in Eq. (8) and
shown in Fig. 6, where a sharp notch is assumed, with
the notch radius being zero. With Eq. (11), the stress
intensity factor as a function of a/t can be analytically
expressed for an arbitrarily short crack length (a/t), say,
approaching zero. The corresponding stress intensity
factor solutions are shown in Fig. 7 under both remote
tension and bending conditions. The symbols are the
weight-function based K solutions taken directly from [1-
2]. A good agreement between the present solutions
and those from [1-2] can be seen. For very small crack
sizes (a/t), the present solutions using Eqs. (8) and (11)
yield higher values than those given in [1-2]. This is
mainly due to fact that they introduced a small radius at
the notch root to void the stress singularity at the notch.
In the present solution, the structural stress calculations
are not affected by the presence of the sharp notch at

the weld toe. If the notch stress effects are ignored,
Eq. 9 produces the stress intensity factor solutions rep-
resented by the dashed lines in Fig. 7, which yields a
reasonable prediction of K for a/t > 0.1 in both cases.
Furthermore, the notch effects are seen to become dom-
inant for a/t ≤ 0.1 or thereabout.

For elliptical cracks in the same notched geometry,
again, the solutions developed by Glinka et al. [1-2] are
used here for validation purposes. It is assumed the
stress distribution from the 2D plane strain model applic-
able for the stress distributions in the thick plate (in the
z direction) with the notch plane is orientated in x-y plane
as shown in Fig. 6. The stress intensity factors based
on weight function solutions at the deepest point for a/c
= 0.25 and 1 (c: major axis of the elliptical crack) were
taken from [1-2] for comparison purposes. The com-
parison between the solutions from [1-2] and the present
procedures are summarised in Fig. 8. Again, since the
stress solution used in [1] for integrating with the weight
function was based on finite element calculation using
a small radius at the notch root, the stress intensity fac-
tor as a/t approaching zero becomes lower than the pre-
sent solutions, as expected.

3.4 Notch stress determination using t1/t = 0.1

In the current notch stress intensity solutions, the notch
stresses (self-equilibrating part of the stress state as
depicted in Fig. 1 (c) are estimated by introducing a
characteristic depth parameter t1. In all calculations pre-
sented thus far, t1/t =0.1 was used. As shown by Dong
et al. [3, 6], the stress intensity solutions are not sensi-
tive to the value of t1/t, as long as adequate stress gra-
dients are captured in Eq. (7) with respect to t1. The
selection of t1/t = 0.1 can be established by the detailed
observations of the stress intensity behaviour as crack
size a/t becomes small. As shown in Fig. 9, the stress
intensity factor solution based on Eq. (9) (without notch
stress effects) exhibits incrementally slower increase as
a/t varies from near 0 to a/t ~ 0.1, as seen in Fig. 9 (a).
Such a trend can be more clearly shown if the deriva-
tive of K with respect to a (i.e., dK/da) is shown in Fig. 9
(b). In fact, as the crack size a/t becomes small, it can
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Fig. 7. Validations of the notch stress intensity
solutions using published weight function results.

(a) Remote tension.
(b) Remote bending.

Fig. 8. Validation of current 3D elliptical crack 
K solutions in a notched plate using

Eqs. (8) and (12).
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be readily shown that dK/da ~ 1/K. As the notch effects
are introduced, the stress intensity factor solutions are
only affected within a/t < 0.1, as shown in Fig. 9, beyond
which the stress intensity is governed by the through-
thickness equivalent far-field stresses (σm

t, σb
t). Similar

arguments can be made if remote loading is of bending
type, as shown in Fig. 7 (b), or elliptical cracks shown
in Fig. 8.

To further demonstrate the validity of the selection of
t1/t = 0.1, Fig. 10 shows the comparison of the K solu-
tions between using t1/t = 0.1 and t1/t = 0.2. The differ-
ence in K solutions for the entire range of a/t under both
remote tension and remote bending is not noticeable.

3.5 Stress intensity magnification factor Mk

Such notch-induced stress intensity behaviours can be
more effectively demonstrated by defining a notch-
induced stress intensity magnification factor as:

Mkn =            K (with local notch effects) (13)
Kn (based on through thickness σ t

m and σ t
b)

In the above equation, K represents the total K due to
both the far-field stress (e.g., Eq. 9) and the local notch
stress effects (e.g., Eq. 11). The term Kn represents only
the far-field stress contribution to the stress intensity
factor as described by Eq. (9) for an edge crack or 
Eq. (10) for an elliptical crack, respectively. Note that
the present definition of Mkn in Eq. (13), although resem-

bling the so called Mk factor (see discussions in [11-12]
in some of European codes and recommended prac-
tices for welded joints with sharp toe angle or notch, dif-
fers in that the denominator in Eq. (13) represents the
through-thickness structural stress contributions, instead
of nominal stresses. Any global stress concentration
effects have already been taken into account in Kn.
Therefore, Mkn reflects notch stress concentration effects
captured by the self-equilibrating part of the actual stress
state.

By examining a series of notched specimens in both 2D
and 3D configurations, Fig. 11 summarises the Mkn com-
puted as a function crack size a/t [6]. As shown in Fig. 10,
Mkn approaches unity as crack size a/t approaches 
to, approximately, a/t = 0.1 in all cases. Such behav-
iour was also seen in Mk solutions reported in [5, 6]
using crack tip elements for similar geometries. The dif-
ferences between the edge crack solutions and ellipti-
cal solutions (at deepest position) are not significant in
all cases. Consequently, a/t ≈ 0.1 can be viewed as a
characteristic depth beyond which the notch stress
effects become negligible. In Fig. 6, the reference depth
t1/t = 0.1 is chosen to estimate the self-equilibrating
notch stress distribution using the present stress analy-
sis procedures.

3.6 Applications in notched fracture specimens

Fatigue crack growth rate data are mostly collected from
some of the well-known notched fracture mechanics
specimens, as shown in Fig. 12. The presence of a
notch as a crack initiator often complicates the stress

Fig. 9. Stress intensity  changes as a function
of crack size a/t for a notched specimen under

remote tension.

Fig. 10. Effects of t1/t on stress intensity factor
calculations for a T-joint.



in the Figure. Note that the K solution indeed exhibits
non-monotonic distribution when a/t is small. The same
trend is also observed in notched SEN specimen used
by Shin and Smith [14].

CN and DEN Specimens

The centre-notched (CN) specimens as shown in 
Fig. 12 (d) are demonstrated in detail in Fig. 14 (a) for
demonstrating the present solution technique by con-
sidering the notch stress effects discussed earlier. The
corresponding K solution has the following form:

K = ps FN F√πa (15)

where the standard finite size correction F is directly
taken from [9]:

F= {1 – 0.025 ( R + a ) 2
+ 0.06 ( R + a ) 4} . √ sec ( π (R + a) )w w                        w

The effects of the notch-stress induced gradient can be
estimated by integrating pm, pb (Eq. (8)) over any given
crack size a by adopting a simple weight function form
corresponding to infinite body:

K = 2 ∫
R

R

+ a p(x)dx

π       √a2 – x2

resulting:

FN = 2 √1+R . {(1+2rR) . (π –sin–1(   R    )) – 2r .√(a+R)2 –R2}π a          a       2          a+R      a

Note in the above expression, r = pb /ps, as defined in
Section 3. To calculate the stress intensity factor (Kn)
due to the overall far-field stress (σm

t, σb
t), one simply

needs to replace ps, σ(x), and r by:

σ t
s = σ t

m + σ t
b, σ (x) = σ t

s – (2x / t) σ t
b, and r = σ b /σ s

in the above expressions. The corresponding K solu-
tions are shown in Fig. 14. If the notch is treated as a
part of the crack length, a handbook solution is also
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Fig. 11. Comparisons of stress intensity
magnification factor Mkn at 135° sharp V notch [6]

for various specimen geometries
and loading conditions.

(a) Edge crack solutions using Eqs. (8) and (11).
(b) Elliptical crack solutions using Eqs. (8) and

(12) for a/c = 0.4.

Fig. 12. Specimens used by various authors for
characterising notch-induced short crack

anomalous crack growth [9, 11, 12].
(Note that the definitions of ligament (t) and crack size

(a) indicated are for using the notch stress intensity
solutions presented in this paper).

intensity factor calculations and often introduces a sig-
nificant degree of inaccuracy when a crack is very small
such as for a/t < 0.1, as recently demonstrated by Dong,
et al. [3] in analyzing so called “anomalous short crack
growth”. By following the present notch stress solution
procedures discussed earlier, both notch stresses (self-
equilibrating) and equivalent far-field stress are calcu-
lated for each of the four specimens as discussed
before. For stress intensity factor solutions, both CT and
SEN specimens (Figs. 12 (a) and 12 (b)) with an edge
crack are analysed using Eqs. (9) and (11) with both a
and t defined in Fig. 12 to highlight the applications of
the present structural stress and notch stress methods.

Notched CT and SEN specimens

For both CT and SEN specimens, the edge crack solu-
tions given in Eqs. (9) and (11) are directly applicable
after the far-field stresses (σm

t and σm
t) and (pm, pb, etc.)

are calculated with respect to the ligament and crack
definitions indicated in Fig. 12. An example of these is
shown in Fig. 13 for the CT specimen with a key hole
as a function of a/t. Such a specimen was used in [13]
for crack growth rate testing. The solution marked with
“without notch effects” is same as the typical handbook
solution using nominal crack length combining the slot
length with the key hole diameter in addition to a shown
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shown in Fig. 14 (b). It can be seen that the notch effects
predicted by the present K solution procedures are only
presented within about a/t < 0.1, consistent with obser-
vations for other notch geometries and specimen types
discussed in earlier sections. The K solution for DEN
specimens [15] can be estimated in a similar manner
with the corresponding reference solutions from [9] and
is not discussed here due to space limitation (see [3]).

4 CONCLUDING REMARKS

In this paper, a robust K estimation procedure is pre-
sented using a new mesh-insensitive structural stress
procedure which directly provides the far-field stresses
responsible for global equilibrium and self-equilibrating
notch stresses estimated based on fracture mechanics
principles. The present K solution procedure is particu-
larly effective for fatigue and fracture evaluation of com-
plex structures since relatively coarse mesh can be used
as a typical structural mechanics calculation. Due to 
its analytical nature in the current notch stress estima-
tion scheme, the crack size can be arbitrarily small. The
validity of the current K solution procedure has been
demonstrated by comparing existing K solutions
obtained by weight function methods for welded joints.
Furthermore, some well-known notched fracture
mechanics specimens were also analysed to compare
the present solutions with typical handbook solutions.
The effectiveness of the current K solutions have been
further demonstrated by its ability to correlate short crack
growth data and the development of the master S-N
curve approach for welded joints reported elsewhere.
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