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Abstract The effects of diabetes mellitus on the pharmacokinetics and pharmacodynamics of drugs have been well

described in experimental animal models; however, only minimal data exist for humans and the current

knowledge regarding the effects of diabetes on these properties remains unclear. Nevertheless, it has been

observed that the pharmacokinetics and pharmacodynamics of drugs are changed in subjects with diabetes.

It has been reported that diabetes may affect the pharmacokinetics of various drugs by affecting (i) ab-

sorption, due to changes in subcutaneous adipose blood flow, muscle blood flow and gastric emptying;

(ii) distribution, due to non-enzymatic glycation of albumin; (iii) biotransformation, due to regulation of

enzymes/transporters involved in drug biotransformation; and (iv) excretion, due to nephropathy. Pre-

viously published data also suggest that diabetes-mediated changes in the pharmacokinetics of a particular

drug cannot be translated to others.

Although clinical studies exploring the effect of diabetes on pharmacodynamics are still very limited,

there is evidence that disease-mediated effects are not limited only to pharmacokinetics but also alter

pharmacodynamics. However, for many drugs it remains unclear whether these influences reflect diabetes-

mediated changes in pharmacokinetics rather than pharmacodynamics. In addition, even though diabetes-

mediated pharmacokinetics and pharmacodynamics might be anticipated, it is important to study the effect

on each drug and not generalize from observed data.

The available data indicate that there is a significant variability in drug response in diabetic subjects. The

discrepancies between individual clinical studies as well as between ex vivo and clinical studies are probably

due to (i) the restricted and focused population of subjects in clinical studies; (ii) failure to consider type,

severity and duration of the disease; (iii) histopathological characteristics generally being missing; and

(iv) other factors such as varying medication use, dietary protein intake, age, sex and obesity. The obesity

epidemic in the developed world has also inadvertently influenced the directions of pharmacological

research.
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This review attempts to map new information gained since Gwilt published his paper in Clinical

Pharmacokinetics in 1991. Although a large body of research has been conducted and significant progress

has been made, we still have to conclude that the available information regarding the effect of diabetes on

pharmacokinetics and pharmacodynamics remains unclear and further clinical studies are required before

we can understand the clinical significance of the effect. An understanding of diabetes-mediated changes as

well as of the source of the variability should lead to the improvement of the medical management and

clinical outcomes in patients with this widespread disease.

1. Introduction

Diabetes mellitus is one of the most significant public health

problems. The number of patients with diabetes is increasing

due to population growth and a growing prevalence of physical

inactivity leading to obesity.[1] In 1985, approximately 30 mil-

lion people were reported to have diabetes worldwide.[2] A

decade later, this estimate had reached 140 million.[3] In 2003,

the global prevalence of diabetes was estimated to be 250 mil-

lion.[3] Including undiagnosed cases of diabetes, this number is

expected to reach 438 million by 2030 (approximately 7.5% of

the adult population).[1,3,4] There seems to be no region of the

world that will not be affected by the disease.While some of this

increase will be observed in Australia, Europe and North

America, the majority will be seen in countries undergoing

westernization (the African continent, South America, China,

India and the Middle East).[1] The majority of diabetic patients

are between 45 and 65 years of age in developing countries,

while they are ‡65 years of age in developed countries.[3,5] Al-

though type 2 diabetes was previously considered to be a

chronic disease of middle and late adulthood, it is increasingly

becoming prevalent in adolescents.[6] The number of deaths

attributable to diabetes has been estimated at around 3 million

per year, which is approximately 5% of global mortality.[7]

Two types of diabetes predominate in the population. Type 1

diabetes is characterized by an inability of the body to produce

insulin, whereas type 2 diabetes reflects deficient insulin secre-

tion and/ or insulin resistance (approximately 90% of all cases

of diabetes).[8] Some patients are difficult to classify as having

type 1 or 2 diabetes, thus other specific types of the disease have

been described (e.g. gestational diabetes, malnutrition-related

diabetes, etc.). Gestational diabetes represents a separate entity

as do other specific types of diabetes associated with genetic

defects, diseases of the exocrine pancreas (i.e. pancreatitis,

cancer or cystic fibrosis), drug- or chemical-induced, infection-

related or immune-mediated diabetes. Risk factors for diabetes

are anthropometric factors (e.g. obesity), metabolic factors

(e.g. parameters of glucose metabolism), lifestyle factors (e.g.

physical activity), metabolic syndrome, age, sex and ethnicity.[9]

Most people with type 2 diabetes are obese and the degree of

duration of obesity correlates with the risk of the diabetes.

Obesity and inactivity are two of the most important lifestyle

risk factors for type 2 diabetes.[10] It has been observed that

changes in lifestyle and a moderate level of physical activity can

prevent type 2 diabetes.[11,12]

One of the major concerns with the diabetes epidemic is the

increase in both morbidity and mortality related to complica-

tions of the disease. Diabetes is associated with a progression of

microvascular (e.g. nephropathy, neuropathy, retinopathy)

and macrovascular (e.g. myocardial infarction, stroke) com-

plications.[13] Thus, the use of drugs by patients with diabetes is

expectedly higher than in an age-matched population without

the disease.[14,15] Total diabetes costs were estimated at $US174

billion in the US[16] and d3.5 billion in the UK in 2007.[17] On

the other hand, Aggarwal[18] reported that US sales of insulin

products reached $US8.4 billion.

Although the effect of diabetes on chemically induced

animal models of the disease has been studied extensively, min-

imal data are available on the effect of diabetes on pharmaco-

kinetics and pharmacodynamics in humans. An understanding

of diabetes-mediated changes as well as the source of the vari-

ability should lead to the improvement of medical management

and clinical outcomes in patients with this widespread disease.

Since the last review covering the effect of the diabetes on the

pharmacokinetics and pharmacodynamics of drugs,[19] a number

of related original publications have appeared. In this review,

general information related to diabetes-mediated changes in

clinical pharmacokinetics and pharmacodynamics is discussed.

We conducted a systemic review of previously published litera-

ture (end date January 2012) by searching the PubMed and rel-

evant bibliographies. Only papers from the English and German

literature were included in the review.

2. Effect of Diabetes Mellitus on Pharmacokinetics

Not only is drug use more widespread, but the pharmaco-

kinetics of these drugs may also be altered by the disease it-

self.[19-21] Diabetes affects protein, lipids and carbohydrate
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metabolism, and the systems that regulate these biochemical

pathways are also in many cases involved in drug bio-

transformation. Thus, it is not surprising that diabetes affects

the pharmacokinetics of drugs. Diabetes may influence the

pharmacokinetics of numerous drugs by affecting (i) absorption,

due to changes in subcutaneous/muscle blood flow and delayed

gastric emptying; (ii) distribution, due to non-enzymatic glyca-

tion of albumin; (iii) biotransformation, due to differential reg-

ulation of enzymes involved in drug biotransformation and drug

transporters; and (iv) excretion, due to nephropathy.[20-22]

However, pharmacokinetic studies in diabetic patients are lim-

ited compared with pharmacokinetic studies in animals.[23]

Moreover, different results were obtained between these studies

and, thus, animal data should be extrapolated only very carefully

to humans.[23]

2.1 Absorption

Micro- and macrovascular changes are probably the main

long-term complication of diabetes. Gastric mucosal blood

flow has been reported to be significantly reduced in diabetic

patients (2.81 – 0.15V) compared with non-diabetic subjects

(4.77 – 0.29V).[24] Because it has been demonstrated that gastric

mucosal blood flow varies in the same direction as gastric acid

secretion,[25-27] changed mucosal blood flow might explain

gastric pH changes in diabetic patients.[28]

It is long known that longstanding type 1 and 2 diabetes can

be associated with a change in the gastric emptying time and

intestinal transit time,[29-50] which was first reported by Boas[51]

in 1925. The prevalence of delayed gastric emptying in diabetic

patients has ranged from 28% to 65%;[52,53] however, the re-

lationship between delayed emptying and symptoms is vari-

able[52,54,55] (it should be pointed out that the number of diabetic

patients with emptying delay was underestimated in early stud-

ies that employed less sensitive diagnostic methods to quantify

gastric emptying[56]). Numerous studies have observed delayed

gastric emptying time in poorly controlled diabetic patients[30]

and showed a strong correlation with the progression of the

disease.[52,57-59] In most cases, the emptying of solid meat com-

ponents and low-nutrient liquids is delayed to a varying degree in

diabetic patients,[39,48,60,61] whereas the emptying of liquids has

not been found to be affected by the disease.[39,48,60-62] However,

there are discrepancies in the literature; for example, gastric

emptying rates in patients with type 2 diabetes have been reported

to be decreased,[33,36,45,60,63,64] unchanged[65] or accelerated.[66,67]

Some of these discrepancies may be explained by (i) differences

in the study design; (ii) uncontrolled hyperglycaemia;[68-70] or

(iii) diabetes-related changes in intestinal hormones.[71] Increased

knowledge of the pathophysiology of diabetes has contributed

to a development of new treatments such as glucagon-like

peptide-1 agonists and dipeptidyl peptidase-4 inhibitors. These

new classes of antidiabetic drugs can mask the effect of the

disease on gastrointestinal tract motility and make it harder to

distinguish the effect of the disease and the effect of the drug.[72]

It has also been reported that cystic fibrosis reduces level of free

incretin hormones,[73] resulting in decreased gastric emptying

time.[73,74] Although many studies have reported diabetes-

mediated changes in gastric emptying time, it seems that the

magnitude of the delay is modest and should not be clinically

important.

Transit time in diabetic patients has been reported to be

significantly lower than in non-diabetic patients (gastric transit

time: 24 [4–108] vs 87 [1–478] min;[75] small bowel transit time:

302.0 – 62.7 vs 261.2 – 55.5min;[75] transit time: 20.4 – 15.6 vs

34.9 – 29.6 hours,[76] 24.3 – 11.9 vs 43.2 – 22 hours,[77] 9.9 – 6.1
vs 14.4 – 8.3 hours[78] and 35.4 – 4.7 vs 53.8 – 5.5 hours[79]).

Delayed transit time is probably due to vagal denervation[80]

and seems to be more frequent in patients with autonomic

neuropathy.[45,81,82] Recent studies have demonstrated that the

blood glucose concentration itself has a major impact on gas-

trointestinal tract motility; marked hyperglycaemia appears to

affect every region of gastrointestinal tract.[68,76,83] The mech-

anisms by which hyperglycaemia affects gastric emptying in-

clude suppression of antral contraction,[68] increased pyloric

contractions,[68] proximal stomach relaxation[68] and induction

of gastric electrical dysrhythmias.[84]

Della-Coletta and Eller[85] reported slower absorption (26%)

of tolazamide in diabetic patients than in healthy volunteers.

In addition, Adithan et al.[86] reported a decrease (26%) in the

absorption of orally administered ampicillin in patients with

type 2 diabetes. By contrast, O’Connell et al.[87] reported that

basic pharmacokinetic parameters of metoclopramide after

single- and multiple-dose administration were not affected by

diabetes. In addition, Wahlin-Boll et al.[88] reported complete

absorption of the oral sulfonylurea glipizide (administered as a

solution as well as tablet form) in patients with type 2 diabetes

as compared with previously reported studies with healthy

volunteers.[89] Prokinetic drugs in general result in dose-related

improvement in gastric emptying time; however, variations in

the blood glucose concentration may account for variability in

results from studies that are related to the effect of these drugs

on gastric emptying in diabetic patients.[90-94]

It has been suggested that differences in the absorption rate

and bioavailability between patients with diabetes and healthy

subjects depend on several factors (table I). Previously pub-

lished studies have reported that the rate of absorption of

Effect of Diabetes on PK/PD Properties of Drugs 483

Adis ª 2012 Springer International Publishing AG. All rights reserved. Clin Pharmacokinet 2012; 51 (8)



subcutaneously administered insulin strongly correlates with

subcutaneous blood flow.[99-102] It is well known that abdominal

subcutaneous fat tissue blood flow is increased in subjects with

type 1 diabetes, probably due to reduced subcutaneous fat tissue

(5.0– 2.3 vs 11.3 – 9.1mL/100 g/min[95]).[103] Nosadini et al.[95]

reported faster absorption of insulin in subjects with type 1

diabetes; however, no difference was found in bioavailability of

the drug. On the other hand, in insulin resistant and/or obese
patients subcutaneous adipose tissue blood flow is reduced

compared with healthy normal-weight subjects (by approxi-

mately 50%[104]).[105-109]

Diabetic patients exhibit compromised muscle blood flow

(59.4 – 12.9 vs 46.7 – 14.1mL/100 g/min[97]) at rest[97,110] and

also after exercise.[111] This may be a result of blunted endo-

thelium-dependent vasodilation,[111-113] an increased plasma

level of endothelin-1,[114] a reduction in capillary density[115,116]

or decreased mitochondrial volume[117] and function.[118] These

changes may lead to a reduced rate of absorption for drugs with

an intramuscular route of administration. This finding was

supported by studies when insulin,[96] aminoglycosides[119] and

benzylpenicillin[98,120] were administered to diabetic patients.

2.2 Distribution

The volume of distribution of a drug correlates with the

degree of obesity, and because obesity is one of the most im-

portant factors in the development of insulin resistance and

diabetes, the volume of distribution of lipophilic drugs is

affected by the disease[121,122] (for more information, see the

review byHanley et al.[123]). On the other hand, obesity does not

affect serum albumin and drug binding to albumin; however,

data regarding a1-glycoprotein are contradictory.[123] A modest

increase in concentration of free diazepam (1.9 vs 1.5L/kg)[124] ni-
trazepam (19.7 vs 17.9L/kg)[125] and oxazepam (5.1 vs 4.0L/kg)[126]

Table I. Effect of diabetes mellitus on drug absorptiona,b

Drug Parameter Subjects Reference

Non-diabetic Diabetic

Subcutaneous administration

133Xe Adipose tissue blood flow 6.7– 6.0mL/100g/min 5.3 –3.1mL/100g/min 95

131I insulin Half-life 2.15– 0.80 h

Disappearance constant 0.599– 0.166 L/min· 10-2

133Xe Adipose tissue blood flow 10h fasting: 6.1 – 2.8mL/100g/min Before insulin: 9.7– 7.0mL/100g/min 96

17h fasting: 11.4– 5.3mL/100g/min After insulin: 3.9 –5.9mL/100g/min

34h fasting: 11.7– 8.4mL/100g/min

Insulin Metabolic clearance rate 4.4 (3.7–4.9) mL/kg/minc 4.7 (3.7–5.8) mL/kg/minc 96

Half-life 33.5 (24.9–45.3) minc 42.5 (39.4–48.5) minc

Porcine insulin Absorption 55– 12% 84– 28% 95

Clearance 15.5–1.9mL/kg/min 20.7– 8.8mL/kg/min

Human insulin Absorption 61– 34% 86– 23%

Clearance 17.2–6.0mL/kg/min 20.9– 9.1mL/kg/min

Intramuscular administration

131I insulin Muscle blood flow 59.4–12.9mL/100g/min 46.7– 14.1mL/100g/min 97

k1 0.35–0.07 L/min 0.45– 0.11 L/min

Capillary diffusion capacity 5.9– 1.3mol/min 8.0 –2.1mol/min

Insulin Half-life 88– 7min 123–6min 96

Insulin tmax 1 h 2 h 98

Insulin Cmax 8U/mL 5.4U/mL 98

fe 85% 40%

a Values are expressed as mean–SD unless specified otherwise.

b Blank cells indicate data not calculated.

c Mean (range).

Cmax =maximum plasma drug concentration; fe = fraction of dose excreted unchanged in urine; tmax = time to Cmax.
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reported in obese individuals might be explained by elevation in

serum free fatty acids found in obese individuals. Reduced

tissue blood flow as well as alterations in cardiac structure and

function has also been reported in obese patients.[107,127]

Diabetic patients have higher level of circulating glucose in

the blood, leading to non-enzymatic glycation of several pro-

teins including albumin.Glycated albumin exhibits atherogenic

effects in various cells.[128] Non-enzymatic glycation of albumin

produces conformational changes in the structure of albumin

(affinity of the phenytoin binding site on albumin based on a

modification of the lysine group[129]), which can increase the

free fraction of acidic drugs in patients with type 1 and 2 dia-

betes (for more detail, see table II).[21,137-144] Worner et al.[138]

reported a 50% decrease in binding of dansylsarcosine to al-

bumin in diabetic patients, whereas the concentration of cir-

culating albumin was the same in diabetic patients.[139,145,146]

Glycation of blood and plasma proteins leads to reduction in

protein binding capacity.[21,22,147] A linear relationship has been

reported between the degree of albumin glycation and the un-

bound fraction of drug in the serumof diabetic patients.[137,139,140]

Thus, for highly albumin bound acidic compounds the reduc-

tion in the plasma serum protein binding capacity has been

shown in diabetic patients.[19,137] However, studies employing

a smaller number of diabetic patients might easily fail to show

this linear relationship. There are also inconsistencies in the

reported studies; for example, the volume of distribution of

antipirine has been increased,[132] unchanged[133-135] or de-

creased[136] in diabetic compared with non-diabetic patients.

In addition, the volume of distribution of paracetamol (aceta-

minophen)[130] as well as theophylline[86,130] was increased in

diabetic patients. These inconsistencies may reflect the degree

of control of the diabetes, the duration of the disease and/or the
presence of complications of the disease. It has been reported

that diabetes can affect drug binding in several ways: (i) changing

the amount and concentration of circulating free fatty acids, the

level of which is increased in diabetic patients[137,148,149] (e.g. the

binding of valproic acid was significantly decreased in diabetic

patients;[150] a strong correlation has been previously observed

between the free fractionof valproic acid and serum free fatty acid

concentration[145]); (ii) increasing blood concentration of sub-

strates possibly inhibits drug binding; and (iii) conformation

changes of plasma proteins (as shown in table III).

2.3 Biotransformation

The effect of obesity on drug biotransformation is very

variable. Obesity has been linked to decreased hepatic blood

flow, non-alcohol fatty acid disease and the accumulation of fat

in the liver tissue.[153,154] The effect of obesity on cytochrome

P450 (CYP) appears to be enzyme specific: the enzyme activ-

Table II. Effect of diabetes mellitus on volume of distribution (values are

mean–SE)

Drug Diabetes

type

Volume of distribution (L/kg
unless specified otherwise)

Reference

Non-diabetics Diabetics

Paracetamol

(acetaminophen)

1 1.31– 0.11 2.14– 0.33* 130

2 1.31– 0.11 1.02– 0.14

Antipyrine 1 42.7– 1.5 L 43.8– 2.9 L 131

2a ND 50.2– 6.4 L

2b ND 36.2– 3.1 L

2c ND 32.5– 5.1 L*

2 0.47– 0.02 0.58– 0.03* 132

1 0.53– 0.04 0.55– 0.03 133

2 0.43– 0.10 0.40– 0.08 134

ND 27.41–1.81 L 25.65– 2.01 L 135

1 0.83– 0.08 0.57– 0.12* 136

2 0.64– 0.12 0.57– 0.12

Theophylline 1 0.83– 0.08 1.14– 0.19 130

2 0.60– 0.05 0.74– 0.05 86

a Diabetes controlled by diet.

b Diabetes controlled by chlorpropamide.

c Diabetes controlled by tolbutamide.

ND= not defined; * p <0.05 vs non-diabetics.

Table III. Effect of diabetes mellitus on drug protein binding

Drug Diabetes

type

Fraction unbound (mean–SD [%]) Reference

Non-diabetics Diabetics

Diazepam 1 16.6–0.09 18.5– 0.6 146

ND 2.6– 0.1 3.6 – 0.4* 137

1 1.40–0.04 1.64– 0.01* 146

Lidocaine 1 30.8–1.9 42.1– 2.1* 151

2 32.0–2.0 30.0– 1.0 151

Phenytoin 1 8.4– 1.1 8.2 – 1.1 145

1 13.5–0.4 14.2– 0.3 146

Propranolol 1 17.7–0.8 18.9– 0.2 146

Salicylic acid 1, 2 25.7–2.18 40.5– 1.37* 152

Sulfafurazole ND 5.1– 0.2 16.0– 1.3a 137

Valproic acid 1 6.2– 1.2 7.6 – 1.6* 145

Warfarin 1 1.19–0.02 1.43– 0.3* 151

2 1.1– 0.05 1.0 – 0.03 151

a p-Value not specified.

ND= not defined; * p <0.05 vs non-diabetics.
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ity of CYP2E1 has been increased in obese individuals.[155]

Oral clearance of triazolam (CYP3A subfamily marker) has

been decreased in obese compared with non-obese individuals

(340 – 44 vs 531 – 38mL/min).[156] On the other hand, obesity

did not significantly affect clearance of midazolam (CYP3A

subfamily marker) [471 – 38 vs 530 – 54mL/min].[156] The effect

of the disease on the activity of other CYP enzymes remains

controversial or insufficiently studied.[155,156]

The clearance of drugs undergoing glucuronidation and

sulfatation appears to be increased in obese individuals.[156]

Abernethy et al.[126] reported increased biotransformation of

oxazepam (3.1 times greater) and lorazepam (1.6 times greater)

in obese individuals.

In diabetic patients, abnormal hepatic function occurs fre-

quently, especially non-alcohol steatohepatitis, macrovesicular

steatosis, liver fibrosis/cirrhosis and focal fatty liver.[157,158]

Hence, it is not surprising that diabetes affects drug bio-

transformation. There have been numerous studies on the effect

of chemically induced diabetes on drug biotransformation in

both mice and rats.[159-161] Animal models of diabetes fall into

twomain groups: type 1 (chemically induced diabetes using, for

example, alloxan and streptozotocin) and type 2 (spontaneous

autosomal recessive mutations, e.g. C57BL/6J ob/ob, C57BL/
KsJ db/db, yellow obese mice, Zucker diabetic rats), consistent

with the aetiologies of the two main types of the disease in

humans. However, data from animal studies (especially from

small laboratory animals[23]) should be evaluated with care

when trying to predict changes in humans.[162]

Hepatic-mediated biotransformation in diabetic humans

is characterized only for a few compounds.[163] In addition, a

correlation between diabetes and the activity of enzymes in-

volved in the biotransformation is poorly known. In general, it is

apparent that uncontrolled diabetes causes an overall increase in

CYP enzymes although phase II enzymes are significantly de-

creased. Total hepatic CYP content in biopsies of diabetic

patients is significantly increased in type 1 and decreased in type

2 diabetic patients.[164] The majority of studies have examined

the effect of diabetes on the modulation of CYP2E1; however,

varied data exist regarding whether diabetes affects expression

and activity of this CYP enzyme.[165-170] Song et al.[169] reported

that CYP2E1 protein levels were elevated in the lymphocytes of

children and adolescents with type 1 diabetes, and a strong

correlation has been observed between the enzyme level and

glycosylated haemoglobin. On the other hand, enzyme activity

was not changed in a group of seven type 1 and 15 type 2

patients with diabetes using chlorozoxazone as a marker of

CYP2E1.[165] In addition, the protein level of CYP2E1 has not

been affected by diabetes.[169] Several studies that focused on

the effect of diabetes on the clearance of theophylline or caf-

feine (a marker of CYP1A2 enzyme activity) have suggested

that there is no difference in the enzyme activity of non-diabetic

and type 1 and 2 diabetic patients.[130,171-174] Sotaniemi et al.[164]

found that among type 2diabetic patients,womenbiotransformed

antipyrin normally whereas men over 40 years of age showed

reduced biotransformation. In addition, no change was found

in the biotransformation of tolbutamide (a marker of CYP2C9

enzyme activity)[175] and hepatic aryl hydrocarbon hydroxylase

(mediated by CYP1A1).[164] Dyer et al.[176] did not observe any

change in quinidine (a non-validatedmarker ofCYP3A subfamily

activity) between non-diabetic and diabetic patients. However,

other studies have described significant downregulation of liver

CYP3A4 enzyme activity[177] as well as in the biotransformation

of lidocaine (non-validated marker of CYP3A subfamily mar-

ker)[178,179] [for more details, see table IV].

Minimal data exist on the effect of diabetes on the phase II

biotransformation in human.[23] Evidence suggests that oxida-

tive stress is increased in diabetes because of extensive pro-

duction of reactive oxygen species and an impaired antioxidant

defence mechanism.[183] Thus, the majority of studies have

studied the effect of diabetes on the activity of enzymes that are

part of the antioxidant defence system such as the glutathione-

S-transferase (GST) superfamily. Controversy exists regarding

the effect of diabetes on phase II biotransformation en-

zymes.[23] Some studies did not show a difference in erythrocyte

GST between patients with type 1 and 2 diabetes and healthy

controls.[184,185] On the other hand, McRobie et al.[180] has re-

ported significant downregulation in placental GST activity

in type 1 diabetic patients. Dostalek et al.[177] described sig-

nificant downregulation in gene expression, protein levels

and enzyme activity of liver uridine diphosphate glucur-

onosyltransferase (UGT) 2B7 in liver samples from diabetic

donors (for more details, see table V). No changes have been

observed for selected enzymes from the UGT 1A subfamily.[177]

The effect of diabetes on drug clearance is summarized in

table VI.

Clinical studies investigating the effect of diabetes on gene

expression and protein levels of drug transporters are limited. It

has been demonstrated that gene and protein expression of

ABCA1 and ABCG1 in leukocytes from patients with type 2

diabetes was reduced and strongly correlated with the level of

glycaemia.[188-190]

2.4 Excretion

The effect of obesity on kidney function is not clear.[125,191]

However, glomerular filtration and tubular secretion has been
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shown to be increased in obese individuals, whereas tubular

reabsorption has been decreased by the disease.[125] Clearance

does not linearly increasewith bodyweight in obese individuals.[123]

Diabetes-related nephropathy is the leading cause of end-stage

renal disease in industrialized countries.[192,193] Nephropathy

develops in approximately 40% of diabetic patients.[194,195]

It has been observed that function of the renin-angiotensin

system is stimulated in diabetic patients with nephropathy and

angiotensin II affects the synthesis of glomerular proteins.[196]

Inhibitors of angiotensin-converting enzyme are used in type 2

diabetic patients with nephropathy to slow the progression of

the disease.[197-199] Diabetes causes micro- and macrovascular

changes and leads to hyperfiltration and, hence, an increased

glomerular filtration rate.[200,201] It has also been observed that

lowering medication doses correlates with a lowering of the

glomerular filtration rate.[201] Although poor glycaemic control

is an important risk factor, the glucose level does not fully ex-

plain why only a subset of patients with diabetes progress to

end-stage renal disease.[202]

Numerous studies have been conducted to examine the effect

of diabetes on the disposition of antibacterials in children. For

example, the half-life and glomerular filtration rate of carbe-

nicillin were determined in diabetic children[203] and the glo-

merular filtration rate was significantly increased. However,

serum concentrations were not been affected for kanamycin,

bekanamicin and amikacin.[204] Although diabetic patients

are more prone to developing renal failure, studies show

weak correlations between renal function and the clearance

of drugs.

3. Effect of Diabetes Mellitus on Pharmacodynamics

Information regarding the effect of diabetes on the pharmaco-

dynamics of drugs is very limited; however, evidence that the

effect of diabetes is not limited to the pharmacokinetics of drugs

exists. Almost all previously published studies have reported

the effect of diabetes on the pharmacodynamics of cardio-

vascular and immunosuppressive drugs. However, the question

is whether these influences reflect diabetes-mediated changes in

pharmacokinetics rather than pharmacodynamics?

Cardiovascular diseases are the cause of death in approxi-

mately 80% of patients with diabetes and account for 75% of all

hospitalizations in diabetes patients. Hence, not surprisingly,

cardiovascular drug therapy is frequently started in subjects

with diabetes. It has been suggested that diabetes may alter the

pharmacokinetics of several cardiovascular drugs.[19] Recently

published studies show a marginal effect; discrepancies occur

in lipid-lowering[205-207] and antihypertensive drugs.[151,178,179]

However, very few clinically significant diabetes-mediated changes

in the pharmacokinetics of cardiovascular drugs have been

reported. It has been demonstrated that diabetic patients ex-

hibited significant reduction in isoprenalin-induced heart rate

as compared with non-diabetic patients.[142,208] Similar data

have been observed for both atropine and propranolol (phar-

macokinetic data have not been reported).[209] Reduced biological

activity of catecholamines due to changes protein binding has

been suggested as one possible mechanism. However, no changes

were found in the protein binding of catecholamines.[141] Tissue

adaptation on changes in the insulin level is also suggested as

pathophysiological,[210,211] and the hypothesis of changed

G-protein function has been proposed.[212] In addition, Terada

et al.[213] reported an increase in the chronothropic response to

administration of exogenous epinephrine in diabetic patients as

compared with non-diabetic patients. Packer et al.[214] reported

a greater reduction in left ventricular filling pressure and mean

right atrial pressure in diabetic patients as compared with non-

diabetic patients. These changes can be attributed to a renin/
aldosterone synthesis and angiotensin-mediated vasoregula-

tion that are known to exist in diabetic patients. On the other

hand, no difference in mean prothrombin time has been re-

Table VI. Effect of diabetes mellitus on hepatic drug clearance

Drug Diabetes

type

Hepatic clearance (L/h)a Reference

Non-diabetics Diabetics

Paracetamol

(acetaminophen)

1 0.63–0.068b 0.45– 0.065b 130

2 ND 0.28– 0.025b

Antipyrine 1 2.5– 0.1 4.5 –0.8* 131

2c ND 3.3 –0.6

2d ND 3.4 –0.6*

2e ND 2.0 –0.3

2 2.58–0.222 4.84– 1.008 132

1 0.026– 0.0049b 0.021– 0.0019* 133

2 2.27–0.234 1.97– 0.148 134

ND 1.70–0.107 0.87– 0.084 135

1 2.83–0.708 3.41– 1.032 136

2 3.44–1.698 2.03– 0.750*

Theophylline 1 0.053– 0.007b 0.130– 0.020b 171

2 0.044– 0.006b 0.043– 0.005b

a Values are expressed as mean– standard error.

b L/h/kg.

c Diabetes controlled by diet.

d Diabetes controlled by chlorpropamide.

e Diabetes controlled by tolbutamide.

ND= not defined; * p <0.05 vs non-diabetics.
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ported between diabetic and non-diabetic patients when war-

farin was administered.[215]

Because diabetes is associated with renal microvascular da-

mage, the glomerular filtration rate finally declines below

15mL/min, leading to end-stage renal disease, which is irrever-

sible and fatal if untreated, but a patient’s life can be sustained

through haemodialysis followed by kidney transplantation.

Approximately 40% of all kidney transplant recipients in the

US have diabetes at the time of transplantation surgery.[216]

In addition, post-transplant diabetes occurs in 4–20% of

renal transplant recipients.[217,218] However, post-transplant

diabetes is not only typical for renal transplant recipients, it

also develops in 2.5–25% of liver transplant recipients, 4–40%
of heart transplant recipients and 30–35% of lung transplant

recipients.[219] To prevent organ rejection, a transplant recipi-

ent remains dependent on lifelong therapy with a cocktail

of immunosuppressive agents (a calcineurin/mammalian target

of rapamycin [mTOR] inhibitor, antiproliferative drug and

corticosteroid).

The literature is consistent about the effect of the disease on

the pharmacokinetics of immunosuppressive drugs, reporting

no change in the unbound fraction of pharmacologically active

ciclosporin,[220,221] or the area under the plasma concentration-

time curve of tacrolimus[222,223] and mycophenolic acid.[224-226]

However, diabetes has been shown to reduce expression of

B-cell surface markers and markers of T-cell activity,[227,228]

and increase the risk of infection-related mortality in diabetic

subjects.[229,230] Previously published studies also demonstrated

diabetes-mediated reductions in (i) protein leakage;[231-233]

(ii) microvascular responses to inflammatory mediators;[234,235]

(iii) degranulation of mast cells;[236] (iv) leukocyte-endothelial

cell interactions;[237-242] (v) lymph node retention capacity;[243]

and (vi) release of tumour necrosis factor-a and interleukin-1b
by leukocytes upon exposure to lipopolysaccharide.[244]

Although no effect of diabetes on the mycophenolic acid

plasma concentration has previously been reported,[227,245,246]

the disease highly significantly reduced gene expression, protein

level and enzyme activity of both inosine 50-monophosphate

(IMP) dehydrogenase (IMPDH) type 1 and type 2.[227,246,247]

The enzyme catalyses nicotinamide adenine dinucleotide-

dependent oxidation of IMP to xanthosine 50-monophosphate.

This is the rate-limiting step in the de novo pathway for guanine

nucleotide biosynthesis in B andT lymphocytes.[248] Although a

clear relationship between increased infection-related morbid-

ity and downregulation of IMPDH has not been reported, the

present investigation provides novel observations that may

partially explain the increased susceptibility to infections in

diabetic patients.[249,250] Because of lower immune system ac-

tivity, diabetic patients may require an increased dose of anti-

bacterials or immunosuppressive drugs to achieve an adequate

level of immunosuppressive activity. However, further clinical

studies in a larger number of patients with diabetes are needed to

verify whether optimization of antibacterial/immunosuppressive

drug dosing is required for these patients.

Last, but not least, we would like to discuss antidiabetic

drugs, which are used to keep diabetes under control. It is hard

to study the effect of diabetes on the pharmacokinetics and

pharmacodynamics of antidiabetic drugs because they are used

mainly for the treatment of the disease. The major organs in-

volved in elimination of these drugs are the liver and kidney

(e.g. rosiglitazone and pioglitazone are eliminated mainly by

CYP enzymes, whereas metformin is eliminated mainly via

glomerular filtration and tubular secretion and to some extent

via liver CYP enzymes). CYP2C and 3A subfamilies are the

main enzymes involved in the biotransformation of antidiabetic

drugs. Although diabetes affects the activity of CYP3A (dis-

cussed in section 2.3), no changes in the pharmacokinetics of

antidiabetic drugs have previously been reported.[131,182,251-253]

4. Discussion and Conclusion

There are always ethical limitations in performing clinical

studies. In order to overcome these limitations, chemically in-

duced animal models of diabetes have been established. The

effects of diabetes on the pharmacokinetics and pharmaco-

dynamics of drugs have been well described in experimental

models of diabetes; however, in humans only minimal data

exists and the effects of the disease on such properties are not

yet clear. Nevertheless, it has been shown that the pharmaco-

kinetics and pharmacodynamics of drugs are changed in dia-

betes. Available data also indicate that there is a significant

variability in drug response in diabetic patients. For example,

gastric emptying rates in patients with type 2 diabetes have been

reported to be decreased, unchanged or accelerated (as dis-

cussed in section 2.1). The reasons for the discrepancies between

individual clinical studies as well as between experimental and

clinical studies are probably due to (i) the restricted and focused

population of subjects in clinical studies; (ii) failure to consider

type, severity and duration of the disease; (iii) histopathological

characteristics generally being missing; and (iv) other factors,

including varying medication use, dietary protein intake, obesity,

age and sex. An understanding of diabetes-mediated changes in

pharmacodynamics as well as the source of the variability in

patient responses to treatment should lead to better medical

management of diabetic patients and improvement of clinical

outcomes in this population.
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In 1991, Gwilt et al.[19] concluded their excellent compre-

hensive review on the effect of diabetes on pharmacokinetics

and pharmacodynamics by saying that further clinical studies

are warranted to explain the variability in observed data and to

understand themechanisms behind diabetes-mediated changes.

Although clinical research has begun to make significant pro-

gress in characterizing the pathophysiology and genetic basis of

diabetes, available information regarding the effect of the dis-

ease on pharmacokinetics and pharmacodynamics, efficacy

and safety of drugs is limited and inconsistent. In addition,

diabetes-related changes in the pharmacodynamics of drugs

have been studied less than changes in pharmacokinetics. Pre-

viously published data also suggest that these diabetes-

mediated changes in the pharmacokinetics of a particular drug

cannot be translated to others. Unfortunately, our conclusions

are similar to those published by Gwilt and colleagues[19]

20 years ago. The effect of diabetes on pharmacokinetics and

pharmacodynamics remains unclear and further clinical stud-

ies are required to understand the clinical significance of the

effects.
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