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Abstract Reconstruction of extensive bone defects remains technically challenging and has considerable medical

and financial impact on our society. Surgical procedures often require a bone/substitute graft to enhance and
accelerate bone repair. Bone autografts are associated with morbidity related to bone harvesting and are

limited in quantity. Alternatively, bone allografts expose the patient to the risk of transmission of infectious

disease. Synthetic bone graft substitutes, such as calcium sulfates, hydroxyapatite, tricalcium phosphate,

and combinations, circumvent some of the disadvantages of auto- and allografts, but have limited in-

dications. Biomedical research has made possible the stimulation of the body’s own healing mechanisms,

either by delivering exogenous growth factors locally, or by stimulating their local production by gene

transfer. Among all known factors having osteoinductive properties, only two bonemorphogenetic proteins

(for specific indications) and demineralized bone matrix have been approved for clinical use. In addition,

ongoing research is exploring the efficacy of cell therapy and tissue engineering. The present report examines

the composition, biological properties, indications, clinical experience and regulations of several of the

biotherapeutics employed for bone reconstruction.
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1. Introduction

Bone tissue has a remarkable ability for regeneration and

repair as part of physiological remodeling, or in response to

injury. In some situations, bone repair cannot occur sponta-

neously because of adverse local conditions (vascular injury,

infection, etc.), a bone defect has reached a critical size, systemic

causes, or combinations. Numerous procedures have been de-

scribed to treat these complex issues. Distraction osteogenesis

and bone transport are technically demanding and have high

complication rates. A number of surgical procedures to augment

bone regeneration imply the use of ‘biologic support’ in the form

of a bone graft or substitute, either natural or synthetic. Today,

more than 500 000 bone-grafting procedures are performed in

theUS each year, most of thembeing related to spine fusion. The

‘gold standard’ of bone graft remains autogenous bone graft

(autograft). Only autograft achieves the most desirable proper-

ties of a bone graft material, including osteoconduction (the

matrix), osteoinduction (growth factors), and osteogenesis (os-

teoprogenitor or osteogenic cells).[1] However, bone autografts

need an additional surgical site, with potential associated mor-

bidity, and are limited in quantity. Allografts circumvent someof

the issues relative to autograft, but they present concerns as well,

such as the risk of transmission of infectious disease,[2] im-

munological reactions by the recipient, loss of biologic and me-

chanical properties due to their processing, increased costs, and

availability. Improved biological safety is a desirable character-

istic of synthetic bone grafts.Approximately 60%of the synthetic

bone graft substitutes currently available involve ceramics. These

include calcium sulfates, hydroxyapatite, tricalcium phosphate,

or combinations thereof. Recent generations of bone substitutes

have introduced the potential for synthetic bone grafts to pro-

mote biologic repair, and to provide support for treatment, such

as antibacterials or bone morphogenetic proteins. The draw-

backs and potential complications related to the use of allo- and

autograft, and the limited indications for synthetic bone grafts,

have facilitated the progress toward a biologic alternative.

Exogenous treatments enable the enhancement and acceleration

of bone healing, and include bone growth factors and deminer-

alized bone matrix (DBM). This paper reviews the current

knowledge and field of application of biological options avail-

able for promoting bone repair, including natural and synthetic

bone grafts, growth factors, and gene- and cell-based strategies.

See figure 1 for an overview of biologics in orthopedic surgery.
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Fig. 1. Biologics in orthopedic surgery. The field of orthopedic surgery is currently using and investigatingmany different biologics with an aim of improving cell

and tissue regeneration. The current gold standard is the bone autograft. Additional agents presented here are osteoconductive scaffolds, growth factors, cells,

combination products, hormone therapy, and gene therapy. The current status of each product, whether it is used in basic science investigations, undergoing

clinical trials, or US FDA approved for clinical usage, is denoted by red, blue, and green, respectively. BMP= bone morphogenetic protein; CPCs= calcium
phosphate ceramics; DBM=demineralized bone matrix; MSCs=mesenchymal stromal cells; PRP= platelet-rich plasma.
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2. Osteoconductive Bone Substitutes:

Biologics as Scaffolds

2.1 Bone Allograft

Bone allografts are obtained from human cadavers or from

living donors (e.g. discarded femoral heads). They act as tridi-

mensional biological scaffolds, which support the direct growth

of bone over their surface (osteoconduction), and can re-

vascularize and incorporate into the host bed. Allografts have

the optimal porosity and microstructure with reference to hu-

man bone. Their incorporation is driven by the process of

‘creeping substitution’. Both intramembranous and endo-

chondral bone formation occurs on graft surfaces.[3] Mostly,

persistent dead trabecula will remain on the innermost layer of

the graft bed for many years.[4-8] Bone allografts should be

employed mainly in mechanically protected environments.

The expanding demand for bone allograft is mainly driven

by the growing number of revision arthroplasties. Impaction

grafting has been shown to restore satisfactory socket stability,

with implant survival rate ranging from 85% to 95% at 10–12

years.[9] When combined defects are encountered, allograft is

usually used in conjunction with an anti-protrusion cage con-

struct, which protects the grafted material.[10-12] On the femoral

side, large cavitary defects can be treated with packed partic-

ulate bone graft in association with cemented implants.[13]

Massive proximal femoral defects require both restoration of

bone stock and mechanical stability. In these cases, a long-

stemmedmetallic femoral component cemented into a proximal

femoral allograft may be indicated. Technically, the protruding

distal stem of this so-called allograft prosthesis composite

(APC) is inserted into the host’s remaining distal femur. The

APC restores femoral bone stock, offers optimal biomechanical

properties, and allows reattachment of the hip abductor mus-

cles. Globally, these techniques lead to a significant improve-

ment in function and satisfactory survival rates, estimated to be

81% at a mean of 8.1 years.[14] However, complication rates are

reportedly high, notably infection, instability, failure of the

APC, and nonunion.[15] In revision total knee arthroplasty,

large defects can be addressed with bulk grafts, associated with

metallic augments. Bulk or massive allografts are recommended

in conjunction with long-stemmed components, to offload me-

chanical stress from the graft. These techniques provided

80–93% survivorship rates at intermediate terms,[16-18] but some

concerns have arisen after a 5-year implantation period with a

consistent drop in survival.[16] In addition, rates of complica-

tions are reportedly high, despite consistent improvement in

function.[16,18,19] In posterior spinal arthrodesis, allografts are

associated with lower fusion rates than autograft,[20] although

clinical results appear to be comparable.[21]

2.2 Synthetic Bone Grafts

2.2.1 Calcium Sulfate (Plaster of Paris)

Plaster of Paris is a bioadsorbable ceramic, composed of

dihydrated calcium sulfate (CaSO4). Calcium sulfate is bio-

compatible, bioactive, and biodegrades after 4–8 weeks. It is

characterized by a lack of macroporosity, which implies that no

osteoconduction can occur within it. Compressive strength of

calcium sulfate is greater than cancellous bone, although tensile

strength is slightly inferior. Plaster of Paris provides no internal

strength or support, and therefore should only be used to fill

small bone defects or in associationwith a rigid internal fixation.

Current applications concern spine fusion, packing of be-

nign tumors or cysts after curettage, and trauma.[22,23] How-

ever, in open systems, such as spinal arthrodesis, calcium

sulfate has failed to achieve an optimal fusion rate, mainly

because of early absorption.[24] Plaster of Paris is very inex-

pensive, can be prepared easily, and has an indefinite shelf life.

Interestingly, it may also serve as a vehicle for the administra-

tion of several agents such as antimicrobials, antibacterials, or

possibly osteoinductive agents.

2.2.2 Calcium Phosphate Ceramics

Calcium phosphate materials account for most of the ce-

ramic-based bone graft substitutes currently available. Since

the 1950s,[25] extensive experimental and clinical studies have

reported the filling of bone defects in periodontics, oral and

maxillofacial surgery, neurosurgery and orthopedic surgery.

Calcium phosphate ceramics (CPCs) are characterized by

their chemical composition, which is similar to that of the

mineral phase of calcified tissue, namely calcium hydrox-

yapatite. It is possible to control the composition of the un-

treated product by adjusting the calcium-to-phosphate ratio

(Ca/P). Hydroxyapatite and b-tricalcium phosphate (b-TCP)
are themost widely used,mainly in combination in the so-called

biphasic calcium phosphate ceramic. Hydroxyapatite can also

be obtained from natural reef-building coral skeleton.[26]

Porous CPCs are osteoconductive, biocompatible, and bio-

active.[27,28] For a given chemical composition, ceramics with

lower Ca/P ratios, such as b-TCP, resorb more rapidly.[29] The

main drawback is an unpredictable biodegradation profile,

and, subsequently, an undesirable loss of strength. The com-

bination of different calcium phosphate (CaP) compounds is

therefore used as a strategy to control bioresorption rates of the

ceramics. Macroporosity (pore diameters >100 mm) and pore
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interconnectivity seem to be the most important parameters for

adhesion, proliferation, and differentiation of osteoprogenitor

cells as a prerequisite for bone ingrowth.[27,30,31] Resorption of

porous CPCs begins with the dissolution of ionic precursors in

the extracellular environment, and is driven by giant cells and

macrophages. The material is progressively replaced by new

lamellar bone.

CPCs are brittle and weak under tension and shear, and

resistant to compressive loads. The compressive and tensile

strengths of b-TCP are very similar to those of cancellous bone,

whereas dense ceramics such as hydroxyapatite can resist up to

100MPa in compression and have a much higher modulus of

elasticity than bone. Therefore, CPCs are not indicated in

constrained or load-bearing areas, unless they are associated

with an osteosynthesis.

Conditions for CPC osteointegration include close contact

between synthetic graft and host, optimal primary stability, and

a well vascularized environment. CPCs have been used in the

reconstruction of acetabular defects at the time of revision hip

arthroplasty with encouraging radiological and histological

results.[32-34] On the femoral side, subsidence of the stem com-

monly described with morselized impacted bone allograft

technique[13,35,36] led Nich and Sedel[37] to evaluate the re-

construction of femoral cavitary defects using a macroporous

CPC. Satisfying bone stock restoration and very limited rate of

subsidence were obtained. CPCs are effective promoters of

fusion in spine arthrodesis.[38] Several studies have reported

successful use of CPCs in proximal tibial open-wedge osteot-

omy in the treatment of medial compartment osteoarthritis of

varus knee.[39,40] Macroporous ceramics have been employed

successfully to fill cancellous bone void following fracture[41-43]

or curettage of benign bone tumors.[44-47] To overcome the

problem of the brittleness of CPCs, without reducing the bone-

bonding properties, researchers are developing hybrid com-

posites of CaP and polysaccharide such as chitosan.[48-50]

2.2.3 Calcium Phosphate Cements

Self-hardening CaP cements were introduced in the late

1980s,[51] and received approval by the US FDA in 1996.

Apatitic CaP cements, such as Norian� SRS (Synthes, PA,

USA), are viscous and moldable, but may be difficult to inject.

In contrast, brushite CaP cements can be initially very liquid

and still set within a short period of time. The cement setting

reaction determines its mechanical and biological properties.

After hardening, CaP cements are highly microporous,

which implies that their specific surface area is high, and, sub-

sequently, ionic exchanges with the extracellular environment

are significant. CaP cements degrade layer by layer, which

theoretically allows no bone ingrowth, as opposed to open

macroporous CaP blocks. The biocompatibility of apatitic CaP

cements is excellent, and their biodegradation is much larger

than that of hydroxyapatite, although incomplete and slow.[52]

CaP cements are brittle and have relatively low bending/
flexural strengths. Mechanical properties of CaP cements de-

pend on their composition, with brushite cements being slightly

weaker than apatitic CaP cements. CaP cements can only be

used in combination with internal or external fixation or in low-

or non-load-bearing applications. Similar to CPCs, improve-

ment of the material and mechanical properties have been

achieved by incorporating biocompatible and bioresorbable

reinforcement additives such asVicryl meshes[53] or chitosan.[54]

Mechanical properties of Norian� SRS allow for rapid load

bearing and/or provide good additional stabilization in un-

stable fractures of the distal radius,[55] tibial plateau,[56] and

calcaneus.[57,58] Potential adverse effects of apatitic cements

such as soft-tissue reactions have been described.[59] CaP ce-

ments can also be used as delivery systems for therapeutic

peptides, antibacterials, anticancer drugs, anti-inflammatory

drugs, or growth factors.[60]

2.2.4 Bioactive Glasses and Ceramics

Bioactive glasses and ceramics constitute a group of syn-

thetic silicate-basedmaterials, characterized by their bioactivity

and their unique bone-bonding properties.[61] Degradation

products of bioactive glasses are entirely metabolized by the

body. Bioactive glasses are composed of silicate (SiO2), sodium

oxide (Na2O), calcium oxide (CaO), and phospohorous pent-

oxide (P2O5). By varying the proportions of sodium oxide,

calcium oxide and silicon dioxide, a range of forms can be

produced, from soluble to non-resorbable.

Bioactivity is dependent on chemical composition. Compo-

sitions for most rapid bonding to bone tissue range from 45 to

52% in weight of SiO2, such as for 45S5 Bioglass� (US Bio-

materials Corp., FL, USA).[61] Bone bonding occurs after a

rapid sequence of chemical reactions on the surface of the im-

plant after contact with body fluids. Bioactive glasses are able

to stimulate the growth and maturation of osteoblasts,[62,63]

and to promote the expression and maintenance of the osteo-

blastic phenotype[64,65] upon cell/material contact.

The development of apatite/wollastonite (A/W) bioactive

glass-ceramic[66] resulted in a consistent improvement of the

component with regard to mechanical strength, toughness,

stability, and bone bonding.[67,68] Clinical success in spine sur-

gery has been documented.[69] Particulate glass materials were

employed to restore bone loss resulting from periodontal dis-

ease in experimental settings.[70] Difficulties associated with the
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use of bioactive glasses in biomedical applications are related to

their brittle behavior and weak mechanical properties. The

combination of biodegradable polymers with bioactive glasses

has been proposed to produce products that display improved

mechanical properties compared with conventional glasses.[71]

2.2.5 Biomimetic Nanocomposites and Nanopolymers

Bone tissue may be viewed as a nanocomposite system with a

complex hierarchical structure, mainly composed of type I col-

lagen (the organic phase), and hydroxyapatite nanocrystals (the

mineral phase). Cells naturally interact with nano-structured

materials with a surface roughness of <100nm in a physiological

environment. Such roughness can be mimicked by polymers

combined with hydroxyapatite through the use of nanophase

materials, also called nanomaterials. Nanocomposites made of

b-TCP as a matrix and hydroxyapatite nanofibers were used to

produce porous scaffolds.[72] Hence, nanomaterials exhibit me-

chanical and osteoconductive properties that are superior to

their conventional counterparts. Osteoblast adhesion is facili-

tated by the adsorption and bioactivity of fibronectin and vi-

tronectin on nanophase materials.[73] The ability of the

nanometer surface structure to control cell functions[74,75] and to

promote cell proliferation and osteogenic differentiation of hu-

man mesenchymal stem cells has been shown.[75-77] Accordingly,

it was reported that the use of a hydroxyapatite/collagen nano-

composite as a carrier for the delivery of recombinant human

bone morphogenetic protein (BMP)-2 (rhBMP-2) was effective

in promoting anterior fusion of the cervical spine in a dog

model.[78] Although promising, no clinical trials involving

nanomaterials as bone substitute have been reported yet.

3. Osteoinductive and Osteopromotive Growth

Factors: Biologics as Bone Repair Promoters

In the last few decades, growth factors that enhance mus-

culoskeletal tissue regeneration have undergone extensive pre-

clinical investigation.[79] Currently, the most relevant growth

factors for orthopedic applications are BMP-2 and -7, two

members of the transforming growth factor beta (TGFb) super-
family currently approved for clinical use in the US and

Europe.[80] The clinical product containing rhBMP-7 is Osigraft�

(Stryker, MI, USA). The active substance is connected to a col-

lagen matrix. Between 3.5mg and 7mg of Osigraft is recom-

mended for nonunions 9 months after traumatic tibial fractures

or for nonunions of the adult skeleton, when initial treatment

with autologous bone grafting is unsuccessful. rhBMP-2 is the

second clinical BMP that is currently available, marketed as In-

ductOsTM� (Europe)/Infuse� (USA) [Medtronic, MN, USA].

The clinical indications include lumbar spinal fusions and as a

supplement for the treatment of open tibial fractures that are

stabilized by an intramedullary nail. BMPs also have limited in-

dications for craniofacial bone defects. The recommended dose is

12mg for a fracture; the maximum dose is 24mg. The im-

plantation has to be done on a collagen matrix.

An osteoinductive substance stimulates the osteogenic

differentiation of precursor cells. In this context, BMP-2 and -7

have been proven to be effective as stimulatory agents for the

treatment of critical-size segmental bone defects in animal

models.[81]

Only a few prospective, randomized, controlled trials inves-

tigating the potential for bone regeneration of BMP-2[82-84] and

BMP-7[85-88] exist. In patients with open tibial fractures, BMP-2

accelerated wound and fracture healing and showed a reduced

rate of secondary intervention and infection.[83] However, no

improved fracture healing was detected for patients with open

tibial fractures when an absorbable collagen sponge with BMP-

2 was used with a reamed intramedullary nail for fixation.[84]

BMP-7,when implantedwith a type I collagen carrier, showed

comparable results to autologous bone graftingwhenused for the

treatment of tibial nonunions.[87] For critical size fibular bone

defects, BMP-7 hada healing bridging rate of 80% on a collagen 1

matrix compared with 0% for untreated cases.[88]

In addition to facilitating healing of long bone fractures as

previously discussed, BMPs are also used for anterior[89] and

transforaminal[90] lumbar interbody fusion. A combination of

allograft with BMP-2 has shown significantly higher fusion

rates when compared with allografting alone and comparable

fusion rates when compared with autografting.[89]

However, there is only limited evidence that BMP is more

effective than controls for acute tibial fracture healing in human

studies.[91] Furthermore, BMP-7, when used supportively

during distal radius corrective osteotomies, led to decreased

fracture healing as assessed by X-rays; BMP-7 also caused os-

teolysis around the osteotomywhen compared with autologous

bone grafting.[86] Osteolysis was also reported after BMP-2 was

used during transforaminal lumbar interbody fusion 1 year

after operation, as assessed by CT scans.[92] Supraphysiological

doses of BMPs are used for the treatment of fractures, though

there seems to be a limited therapeutic window as extremely

high concentrations can lead to osteolysis.[93]

Biologics that promote new bone formation are classified as

osteopromotive. Osteopromotive growth factors include pla-

telet-derived growth factor (PDGF),[94] TGFb1,[95] insulin-like
growth factor-1,[96] vascular endothelial growth factor[97] and

fibroblast growth factor,[98] all of which demonstrated clear

osteopromotive potential in preclinical studies.
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Despite a large body of preclinical evidence for the osteo-

promotive potential of platelet-rich plasma (PRP) and the

availability of several commercial PRP isolation systems, it has

not been FDA-approved for orthopedic applications at the

current time.[99] PRP can be easily derived from whole blood

samples and contains platelets, white blood cells, fibrinogen and

a variety of growth factors, notably PDGF-ab, PDGF-bb,
TGFb1, and vascular endothelial growth factor (VEGF).[100] In

the field of orthopedic surgery, PRP has been reported to im-

prove wound healing after total knee replacement,[101] to en-

hance anterior lumbar interbody fusion,[102] and to improve

treatment of nonunions.[103] However, a recent prospective

randomized controlled trial detected no difference between PRP

and a control group in anterior cruciate ligament healing.[104]

PRP is most frequently used, with good results, for conservative

orthopedic treatment of knee pain[105] and tennis elbow[106,107]

that is thought to be due to degenerative causes. Conflicting

results exist for treatment of chronic achilles tendinopathy with

PRP. While Gaweda et al.[108] showed pain reduction, de Jonge

et al.[109] found no differences between the PRP and the control

group in their Grade 1 level of evidence study. Currently, there

are several PRP-separation systems available which can lead to

wide variations in platelet and cell numbers as well as levels of

growth factors.[110] High thrombin concentration may neg-

atively influence platelet activity.[111] Overall, the level of evi-

dence of studies demonstrating successful clinical use of PRP is

low;[112] further studies are needed to clarify the relevance of

PRP for the treatment of orthopedic diseases.

One of themost challenging issues is the controlled long-term

delivery of the growth factors to the site of injury. The agents

currently in clinical use for this purpose are BMPs on carrier-

beds of collagen[84] or biodegradable polymers.[113] These have

drawbacks regarding an insufficient time span for growth fac-

tor release and a lack of consistency in the amount released

over time.[114,115] Further optimization by controlling growth

release kinetics underlies the basis for the development of highly

effectivebiodrugs in the fieldofmusculoskeletal tissue regeneration.

One example is a ‘layer-by-layer’ technique using polyelectrolyte

multilayer entrapment of growth factors.[116] An interesting tool

to potentially improve the growth of bone adjacent to ortho-

pedic implants and to decrease the rate of failure would be to

coat the implant surfaces with growth factors.[117]

4. Cell-Based Concepts for Bone Regeneration

Cells are key players in bone regeneration. Osteoblasts

produce osteoid, an extracellular protein-based matrix, which

mineralizes to become bone. Osteoprogenitor cells or mesen-

chymal stromal cells (MSCs) can differentiate into osteoblasts

and induce bone formation. MSCs can be readily isolated from

bonemarrow aspirates and expanded in culture, and provide an

excellent source of osteoprogenitor cells because of their ex vivo

differentiation and proliferation capacity.[118] Recently, the

osteoinductive properties ofMSCs have been shown in numerous

preclinical studies.[119-123] Human clinical trials employingMSCs

are currently examining their potential for orthopedic applica-

tions besides their role in the treatment of hematologic, cardio-

vascular, and neurodegenerative disorders.[124,125]

Cells can be delivered locally[126-129] or systemically.[130,131]

Osteogenic cells are usually isolated from bonemarrow aspirates

and subsequently expanded in vitro. Bone marrow aspiration is

minimally invasive with negligible morbidity.[132] Currently, two

ways exist to prepare cells for clinical application, eachwith their

advantages and disadvantages. One method is to concentrate

cells immediately in the operating room and place them directly

on the site of injury.Unfortunately, only low cell numbers can be

generated by this process. Another method is to expand the cells

in vitro. By this method a very large number of cells can be

generated. The two-step method has two disadvantages: one

additional exposure to anesthesia is required for re-implantation

of the cells, and there is a risk of an ex vivo cell dedifferentiation

and infection during the cell expansion.

Autologous chondrocyte implantation was first described in

a clinical setting by Brittberg et al.[133] in 1994. It is a two-stage

procedure used to primarily treat circumscribed chondral de-

fects in the knee joint of young patients. The first stage consists

of harvesting healthy chondrocytes by arthroscopy from a non-

load-bearing area. The cells are then culture expanded in vitro

for 3–4 weeks.[134] The second stage of the procedure entails

implanting the autologous cells into the defect area.While some

of the first prospective and randomized studies have shown

promising results for medium- and large-sized chondral de-

fects,[135-137] others detected no difference in the outcome,

compared with the microfracture technique.[138,139]

Another biologic in current clinical use is concentrated bone

marrow aspirate. This contains a high number of MSCs and

growth factors. It has been reported to improve the outcome of

non-traumatic osteonecrosis of the femoral headwhen the bone

marrow concentrate was injected into the operative core com-

pression site.[140,141] Autologous bone marrow is also currently

used to enrich bone allografts for revision arthroplasty of the

hip due to its osteogenic properties.[142] The application of bone

marrow concentrate to the site of a lesion appears to be a rel-

atively simple and safe method to improve bone healing.

Many patients and orthopedic surgeons wish to have a

completely biological joint replacement without artificial materials
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such as metal, ceramic, and polyethylene implants. There has

been no clinical case of biological total joint replacement

therapy yet, though it is an actively investigated area of basic

research. Recently, the successful regeneration of an entire rabbit

humeral condyle was reported.[143] This was accomplished by

implantation of a customized anatomically shaped bioscaffold

that was infusedwith collagen gel containing TGFb3 to stimulate

the chondrogenic differentiation of cells from the surrounding

tissues. Advancements in this field of research will be of great

interest in the next few decades.

5. Combination Products

Demineralized bone matrix (DBM) is the only allograft

material that has osteoinductive capacity. In the 1960s, Marshall

Urist discovered that DBMhad the capability of inducing bone

formation in an ectopic site.[144-146] Several years later, the

agent responsible for this was found to be a group of proteins

and was appropriately named BMP.

To prepare allograft bone for clinical use, it must be frozen,

freeze-dried, or decalcified.[147] A decalcified bone graft is less

antigenic than a simply frozen graft. This affords DBM a high

osteoinductive capacity.[147] An advantage of DBM is that it

can provide osteogenic growth factors, e.g. BMPs, and it also

serves as a structural matrix consisting primarily of type I col-

lagen. Because of its high concentration of BMPs, DBM ex-

hibits rapid mineralization of tissue,[148] and high rates of

connectivity to host bone.[149] In order to have a bone graft with

both structural stability and osteoinductive potential, combi-

nations of structural cortical bone graft and DBM are often

used clinically.

Potential indications for the clinical use of DBM include

spinal fusion, healing of unicameral bone cysts, treatment of

long bone lesions, management of nonunions, and acetabular

revision surgery.[150]

Various clinical studies compared DBM to iliac crest auto-

grafting for spinal fusion[151-153] and diaphyseal non-united

fractures of the humerus[154] and found similar healing results

for autologous bone grafting compared with autologous bone

grafting extended by DBM or DBM alone. For critical size

fibular bone defects, a healing bridging rate of 60% was shown

for DBM matrix compared with 0% for untreated controls.[88]

Some drawbacks also exist for DBM. There is a wide variability

in the osteoinductivity of different DBMs.[155] This is due to

differing processing and sterilization methods that may reduce

the amount of functional BMPs.[156] Just as there is donor-

dependent variability in the osteoinductivity of DBMs, there is

also variability in the osteoinductivity of allograft bone[157] and

a potential risk for viral transmission.[158] The clinical use of

DBM is promising, but at this time there are only a few pro-

spective randomized studies in existence. Long-term follow-up

and outcome data are still needed to establishDBMas a reliable

method for regular clinical use.

6. Hormone and Gene Therapy

Gene therapy is an interesting tool used to accomplish the

local delivery of beneficial growth factors for bone regeneration.

Genetic modification of cells can have advantages compared

with the simple supplementation of cytokines or growth fac-

tors.[159] First, the selected proteins have a short half-life.

Second, a single administration is usually not sufficient for a

biological effect. Third, the costs for the required quantities of

protein would be prohibitively high. Fourth, continuous pro-

tein synthesis by genetically modified cells increases the like-

lihood for the desired effect. Genetically modified autologous

MSCs, (over)expressing osteogenic growth factors or cytokines,

provide both autocrine and paracrine stimuli to induce and

maintain osteogenic differentiation and are therefore promising

cellular components for protocols aimed at site-specific bone

repair.[160] In addition, the systemic or intraosseous marrow

re-implantation of autologous MSCs genetically ‘corrected’ for

any skeletal degeneration-causing mutation, could help to solve

problems of limited availability and suboptimal engraftment of

allogeneic MSCs.[161]

There are both viral and non-viral methods to accomplish

the above, with the viral methods showing a higher transfer

efficiency of target genes.[162] Currently, due to safety reasons,

only animal models exist to evaluate gene therapy for fracture

healing. An interesting method being developed for future

clinical use is the ex vivo adenoviral transduction of tissue grafts

to continuously deliver growth factors such as BMP-2 over a

limited period needed for fracture healing.[162]

In addition to local agents, the systemic use of hormone

therapy in fracture healing is under investigation. Growth

hormone appears to have a positive influence on fracture

healing in animals and humans.[163] Parathyroid hormone

(PTH) has been shown to have a positive effect on fracture

healing, especially for osteoporotic bones.[164,165] The latest

large animal investigations have reported improved bone defect

healing by local delivery of PTH.[166] In addition to binding

PTH to fibrin,[166] incorporating PTH to biomimetic CaP

coating[167] also offers a potential option for future therapies in

humans. At this time, hormone therapy for human fracture

healing is only under off-label use as further investigation into

the appropriate dosages and safety factors are still necessary.
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7. Conclusions and Perspectives

Interest in the use of biologics in orthopedic surgery is rap-

idly increasing. Bone auto- and allograft techniques have been

established for decades, however new methods such as the use

of recombinant human BMPs or autologous chondrocyte im-

plantation have only reached the status of being clinical pro-

cedures in the last few years. The local application of stem cells

is currently only being performed at highly specialized centers.

In the past 40 years there have been no large developments

regarding orthopedic surgical techniques, but as Sir John

Charnley stated, there have to be other developments to im-

prove orthopedic surgery.[168] Orthopedic biologics appear to

have the best chance of improving the field in the years to come.

7.1 Recommendation

Orthopedic surgeons must recognize that their field is chang-

ing to encompass more prominent opportunities for modulation

of biologic processes to enhance repair and reconstruction of

musculoskeletal tissues. This knowledge base will continue to

expand, as new strategies and techniques to facilitate muscu-

loskeletal health evolve.
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